Document Type : Review Article

Authors

Mazandaran University

Abstract

 This paper presents the mechanical design and transient thermal analysis of a permanent magnet Brushless DC motor to be replaced with an induction motor and its gearbox for a propulsion application requiring 300 W and 220 RPM. This work presents a suitable method for direct motor drive design. The critical design criterion is based on magnet demagnetization. The motor has magnets inset into the surface of the rotor to give a maximum field-weakening range. A prototype model is fabricated based on the presented method. Analytically based lumped circuit method for thermal analysis has been used to simulate the motor. Simulation results are compared with practical measurements. The comparison of the results shows that the presented method has a high efficiency in design and thermal analysis of BLDC motors.

Keywords

[1] K.J. Tseng, G.H. Chen, “Computer-Aided Design and Analysis of Direct-Driven Wheel Motor Drive”, IEEE Transactions on Power Electronics. – 1997. – Vol. 12, No. 3. – P. 517–527.
[2] F. Caricchi, F. Crescimbini, O. Honorati, “Modular axial-flux permanent-magnet motor for ship propulsion drives”, IEEE Transactions on Energy Conversion, vol. 14, no 3, Sept 1999.
[3] M. Rosu, V. Nahkuri, A. Arkkio, T. Jokinen, J. Mantere, J. Westerlund, “Permanent magnet synchronous motor for ship propulsion drive”, Proc. of Symposium on Power Electronics Electrical Drives Advanced Machines Power Quality "SPEEDAM ‘98", Sorrento, Italy, pp. C3-7:C3-12, June 1998.
[4] C. Sadarangani, “Electrical Machines – Design and Analysis of Induction and Permanent Magnet Motors”, IR-EE-EME 2000:018, KTH 2000.
[5] Y.K. Chin, W.M. Arshad, T. Bäckström, C. Sadarangani, “Design of a Compact BLDC motor for Transient Applications”, European Conference on Power Electronics and Applications, August 2001, P. 3-10.
[6] W.M. Arshad, Y.K. Chin, T. Bächstöm, J. Soulard, S. Östlund, C. Sadarangani, “On Finding Compact Motor Solutions for Transient Applications”, IEEE International Electric Machines and conf., June 2001, P. 743-747.
[7] W.Song, K.J. Tseng, W.K. Chan, “Design of a bearingless BLDC motor”, Nanyang Technological University, Singapore 639798.
[8] F. Libert, J. Soulard, J. Engström, “Design of a 4-pole Line Start Permanent Magnet Synchronous Motor”, International Conference on Electrical Machines, ICEM 2002, August 2002.
[9] F. Libert, J. Soulard, “Design Study of low-speed Direct-Driven Permanent Magnet Motors with Concentrated Windings”, the 6th International Symposium on Advanced Electromechanical Motion Systems, September 2005.
[10] D.C. Hanselman, “Brushless Permanent Magnet Motor Design” , McGraw-Hill, 1994.
[11] Y.K. Chin, E. Nordlund, D.A. Staton, “Thermal Analysis Lumped-Circuit model and Finite Element Analysis”, sixth International Power Engineering Conference, November 2003, P. 435 - 440.
[12] Y.K. Chin, D.A. Staton, “Transient Thermal Analysis using both Lumped- Circuit Approach and Finite Element Method of a Permanent Magnet Traction Motor”, IEEE Africon, Sep. 2004, P. 1027-1035.
[13] A. Boglietti, A. Cavagnino, M. Pastorelli, D. Staton, A. Vagati, ‘‘Thermal Analysis of Induction and Synchronous Reluctance Motors,’’ IEMDC J., 2005.
[14] امین کلاه‌دوز، محسن شاکری، علی جباری، شعبانعلی گل، "طراحی، شبیه‌سازی و ساخت کنترل سرعت موتور جریان مستقیم آهن‌ربای دائم بدون جاروبک"، فصلنامه علمی – پژوهشی مهندسی برق مجلسی، سال دوم، شماره اول، تابستان 1387.
[15] T.J.E Miller, J.R. Hendershot, “Design of Brushless Permanent-Magnet Motors”, Manga Physics Publishing and Clarendon Pres, Oxford, 1994, p. 275.
[16] S.A. Nasar, I. Boldea, L.E. Unnewehr, “Permanent Magnet, Reluctance, and Self-Synchronous Motors”, CRC Pres Boca Raton Ann Arbor, London-Tokyo, 1993, p. 271.
[17] Brushless DC (BLDC) Motor Fundamentals. – Microchip, Pedmarja Yedamale Microchip Technology Inc. – 2003.
[18] J.P. Holman, “Heat Transfer, seventh Edition”, McGraw-Hill Publication, 1992.