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ABSTRACT: 
In this paper, we develop a non-visual automatic wrapper to extract data records from search engine results pages 
which contain important information for computer users. Our wrapper consists of a series of data filter to detect and 
remove irrelevant data from the web page. In the filtering stages, we incorporate two main algorithms which are able 
to check the similarity of data records and to detect and extract the correct data region based on their component sizes. 
To evaluate the performance of our algorithm, we carry out experimental and deletion tests. Experimental tests show 
that our wrapper outperforms the existing state of the art wrappers such as ViNT and DEPTA. Deletion studies by 
replacing our novel techniques with state of the art conventional techniques show that our wrapper design is efficient 
and could robustly extract data records from search engine results pages. With the speed advantages, our wrapper 
could be beneficial in processing large amount of web sites data, which could be helpful in meta search engine 
development. 
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1.  INTRODUCTION 

The extraction of relevant data from a target source 
is called Information Extraction. The target source can 
be a natural language source or structured records (data 
records) which usually contain important information. 
Therefore, there is a need to develop wrappers to 
extract these structured records. Wrappers developed 
recently are mostly fully automated and they could 
have significant speed advantages when processing 
large volumes of web site data, therefore they could be 
helpful in meta search engine development [1], [2], [3] 
and in comparing and evaluating shopping lists [4].  

Non visual wrappers use tree matching algorithm to 
check the similarity of data records by comparing the 
position and identity of each node in the trees (data 
structure to represent the data records’ structure in a 
tree form) to remove irrelevant data records with 
dissimilar structure [5], [20], [4]. However, the 
implementation and coding of the algorithm are 
complicated [4]. This algorithm also runs in a time 
complexity of O(n1n2) where n1 is the number of 
nodes in the first tree and n2 is the number of nodes in 
the second tree. In general, most web pages consist of 
complex trees with a large number of nodes. Therefore, 
these complexities slow down the current tree matching 
algorithm. 

In this paper, we focus on developing an automated 
non-visual wrapper for the extraction of data records, 

particularly the search engine result pages. Our aim is 
to improve on current non-visual based wrapper 
performance and demonstrate that our wrapper, Tree 
Matching Wrapper (Tree Wrap) performs equally as 
well, and in many cases, better than the current state of 
the art automatic visual wrappers. A preliminary 
version of this paper has appeared in [18], [19].  

We incorporate a series of data filters to remove 
irrelevant data records from the HTML page. These 
filters are designed based on heuristic techniques, each 
of them works based on the observations made by 
authors of [3-5, 7, 13, 15-17, 20-25, 23-24, 29, 31-33, 
36]. The idea is to reduce the “noise” or irrelevant data 
records in each filtering stage so that the wrapper can 
be more efficient in extracting the correct data region 
containing data records.  

We also propose a Dummy Tree Matching 
algorithm based on the frequency measures of a tree 
structure as part of the filtering stages to check the 
similarity of data records. This algorithm does not 
actually match two tree structures and find their 
similarity by checking the identity of each node, but 
uses the number of nodes in a tree to determine the 
similarity of two trees. As our method does not require 
the comparison of all the nodes in a tree structure, it 
will reduce significantly the computational overhead. 
Our algorithm works in a time complexity of O(n) (n is 
the number of nodes in the tree), and is faster than the 
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current tree matching algorithms. This increase in 
speed is useful when our wrapper is used in large scale 
web comparisons.  

This paper is divided into several sections. Section 
2 describes the work relevant to our research. In 
Section 3 we discuss our proposed methodology in 
detail. Section 4 discusses the result of our 
experimental tests while Section 5 summarizes our 
work. It is worth noting that data labeling is outside the 
scope of this paper. 
 
2.  RELATED WORK 

The key component of a wrapper is the algorithm 
that checks the similarity of data records. Data records 
are retained and considered valid if they are similar and 
discarded if they are dissimilar. Current wrappers such 
as Data Extraction based on Partial Tree Alignment 
(DEPTA) [4] and Mining Data Region (MDR) [35] use 
edit distance techniques to check the similarity of the 
structure of data records. Common edit distance 
techniques in such area are string edit distance and tree 
edit distance [26], [8]. For more information on edit 
distance techniques the readers are encouraged to refer 
to the surveys of Baeza-Yates [26], Gusfield [8] and 
Navarro [14].  

The string edit distance algorithm involves 
matching two strings and the determination of how the 
first string is to be transformed into the second string. 
String edit distance algorithms are generally fast in 
operation and run in a time complexity of O(m) (m is 
the number of tags in a data record). However, these 
algorithms are unable to compare two trees having 
nearly similar tree structures, with iterative and 
disjunctive data. This is because these algorithms 
match flat level data, which occur in single level 
(strings) rather than tree structures. String edit distance 
algorithms are also unable to distinguish HTML Tag as 
a single entity (they tend to compare strings by 
examining the characters in these strings), therefore this 
may result in inaccurate matching. For example, when 
two HTML tags <P> and <NOBR> are matched, we 
assume that this mismatch is counted as one (one 
mismatch of two HTML tags), but string edit distance 
algorithms consider this mismatch as 4 (4 characters in 
the second string do not match with the 1 character in 
the first string). There are several variants of string edit 
distance algorithms, some common ones are 
Levenshtein distance [30], Hamming distance [9], 
Episode distance [12], and Longest common 
subsequence distance [2], [27].    

The tree edit distance algorithm uses two tree 
structures and matches them by comparing the node 
identity and position. Tree matching algorithms 
developed are the tree edit distance [22], alignment 
distance [28], isolated-sub tree distance [10], top down 
distance [22], [34], and bottom up distance [11]. Tree 

edit distance algorithm is quite similar to string edit 
distance, except that it includes tree nodes matching. 
Tree edit distance algorithm for unordered tree is NP 
Complete. The top down algorithm was proposed in 
[34]. For this algorithm, two trees are matched in 
O(n1n2) time (n1 is the number of nodes in the first tree 
and n2 is the number of nodes in the second tree). The 
bottom up approach was introduced by [11] and the 
time complexity for it is O(n1+n2) (n1 is the number of 
nodes in the first tree and n2 is the number of nodes in 
the second tree). The top down and bottom up 
approaches are restricted versions of tree matching 
algorithm.  

DEPTA [4] [36] uses a bottom up tree matching 
algorithm to match tree structures of data records. A 
tree matching algorithm matches two tree structures 
and determines how the first tree can be transformed 
into the second tree. DEPTA’s tree matching algorithm 
determines the maximum matches between two trees 
by comparing the location and identity of the nodes in 
the tree structures. Although this algorithm solves the 
problem emerged in data matching successfully, the 
algorithm requires a complex data structure for its 
implementation. Therefore, an algorithm that could 
simplify the implementation process will be helpful.  
 

 
Fig. 1. Trees with different numbers of iterative data 

but with the same template (bottom tree) 
 

DEPTA checks the similarity of two trees using the 
percentage similarity of the trees. In this context, 
DEPTA may not be able to match two trees having 
particular elements (HTML Tags) which occur 
iteratively in the two trees. This is due to the fact that 
the number of occurrence of the particular element 
(HTML Tags) in a tree might not be the same as it 
occurs in the other tree. Figure 1 shows such a case. 
The upper left and right trees are of different sizes, 
DEPTA will assume that the upper left tree is 
3/((5+3)/2)=3/4=75% similar to that of the upper right 
tree. Basically, the two trees have a similar template 
(the bottom tree of Figure 1), DEPTA treats the two 
trees as dissimilar because they have different numbers 
of iterative data. A reasonable way to check the 
similarity of two trees is to calculate the difference in 
the number of nodes of the two trees. As an example, 
given two trees with 4 and 5 nodes each, and assume 
that they have 3 similar nodes; DEPTA will assume the 
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first tree is ¾=75% similar to the second tree. However, 
for large trees say with 50 and 51 nodes each, assuming 
they have 49 similar nodes, then DEPTA will assume 
the first tree is 49/50=98% similar to the right tree. We 
consider the trees of the two examples as nearly similar 
as in each case; the difference between the total number 
of nodes and the total number of similar nodes is only 
1. DEPTA’s tree matching algorithm works in a time 
complexity of O(n1n2) time (n1 is the number of nodes 
in the first tree and n2 is the number of nodes in the 
second tree). 

A wrapper is also designed to locate and extract the 
correct data region. Visual based wrappers such as 
ViNT [17], VSDR [23], and ViPER [21] use visual cue 
to locate and extract correct data region. These 
wrappers calculate the boundary and location of a data 
region, and take data region which is large and 
centrally located as the correct data region. For 
example, VSDR uses the Vision-based Page 
Segmentation Algorithm (VIPS) which segments 
HTML page content into several regions while ViPER 
uses the boundary of a HTML tag to determine data 
region which is centrally located. 
 
3.  THE IMPLEMENTATION OF TREEWRAP 
 
3.1.  Overview of Tree Wrap 

In this section we discuss the requirements and the 
assumptions made for Tree Wrap. For Tree Wrap to 
work successfully the sample pages used for data 
extraction should be obtained from a search engine 
query and each of these sample pages must contain at 
least three data records. Tree Wrap however, does not 
require the HTML page to be converted to XHTML 
format as the parser can recognize the HTML format. 
The first component involves parsing the HTML page 
and organizing it into the DOM tree representation. In 
the second component, Tree Wrap extracts data records 
using dummy tree matching algorithm and scoring 
function. Component 1 is described in Section 3.2.1. 
Detailed description of Component 2 is presented in 
Section 3.2.2 which includes set of filtering rules. 

 
3.2.  Components of Tree Wrap 
 
3.2.1. Component 1: Parser for Tree Wrap 

A search engine result page is required as input for 
a parser to parse this web page. We experimented with 
several open source HTML to DOM tree parsers, and 
settled on the parser called “HTML Parser” 
(http://htmlparser. sourceforge.net/). This parser will 
read the sample pages and divide them into tokens. 
There are two types of tokens, the HTML command tag 
(known in short as tag) and text tokens. Tag token 
could be defined as any text starting with ‘<’ and 
ending with ‘>’. Others are assumed to be text token. 

Once the sample web pages are parsed, Tree Wrap 
stored and arranged the contents in a DOM tree, which 
will be used for further processing in the subsequent 
component. 

 
Fig. 2. Components of Extraction phase in Tree Wrap  

 
3.2.2. Component 2: Data Extraction at Record 
Level in Tree Wrap 
 
3.2.2.1. Breadth First Search (BFS) Extraction 
Technique 

Once a web page is parsed and represented in a 
DOM Tree structure, our wrapper needs to traverse 
through the DOM Tree and identify the various data 
regions in the web page. To achieve this, we use 
Breadth First Search (BFS) technique to detect and 
label the different data regions. Our BFS technique 
developed is based on the improved and modified 
version used in MDR [4]. A data region can be defined 
as a set of data records. Data records in turn can be 
defined as any records that have similar parent HTML 
tag, contains repetitive sequence of HTML tags and are 
located in the same level of the DOM tree. 

 
Fig. 3. Potential groups of data records (Case 1: Nodes 

A separated by same distance, Case 2: Nodes A 
separated by different distance) 

 
The nodes in the same level are checked to 

determine their similarities. In the case where none of 
the nodes can satisfy this criterion, then the search will 
go one level lower and perform the search again on all 
the lower level nodes. Tree Wrap takes all the nodes in 
the same level having similar HTML tag as a potential 
group of data records regardless of the distance 
between them (Error! Reference source not found.). 
As long as there is a repetitive sequence of HTML tags, 
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TreeWrap treats and labels these similar tag nodes as 
one group (Figure 3).Figure 3shows two cases, where 
the first case has three A Nodes which are separated by 
the same distance of 2 while the second case has two A 
Nodes separated by distance of 2 and a third A Node 
separated by a distance of 3.  

 
Fig. 4. Potential data records, where a node occurs 

more than 2 times in a level of a tree  
 
In Tree Wrap, potential data records are treated as 

containing two or more nodes in one group. Figure 3 a 
depicts 4 data records, as shown by the rectangles. 
These data records appear at least twice in the same 
level of the tree, and have similar HTML tag identity. 
 
3.2.2.2. Filtering Stages 
 
3.2.2.2.1. Overview 

To locate and extract the relevant data region from a 
pool of available data regions, Tree Wrap uses four 
heuristic techniques for data extraction, each of them is 
related to the definition of a data record. The authors of 
the papers [3-5, 7, 13, 15-17, 20-24, 29, 31-33, 36] on 
Information Extraction in Web Pages have pointed out 
several unique features inherent to a data record. We 
have also made several observations on the constitution 
of a data record. Based on these observations, we come 
out with a way to apply heuristic techniques to 
correctly extract a data region. The following are the 
observations made by several authors as presented in 
their papers: 

Observation 1 [17, 21, 23, 31-33]: 
The size of the data records is usually large in 

relation to the size of the whole page 
Observation 2 [4-5, 21, 35]: 
Data Records usually occur more than three times 

in a given web page.       
Observation 3 [20-21, 35]: 
Data Records usually conform to a specific regular 

expression rule to represent their individual data, hence 
they have nearly similar tree structure.  

Our Observation 4: 
Data Records usually consist of three HTML tags 

that make up their tree structure.   
In this paper, four stages of filtering rules are 

proposed; each of them considers the above 
observations.  After the completion of BFS extraction, 
Tree Wrap will have a list of data regions. Our 
examination shows that data regions fall into one of the 
several groups. We group the first set of potential data 
regions as menus; these typically determine the layout 
of HTML pages and are usually large in size and highly 
dissimilar. The second data region group is 
advertisements, regions of this group are highly similar 
but with simple structures. The third group of data 
regions consists of menu bars; these are simple but are 
nearly similar in structure. The fourth and last group in 
these groups of data records is relevant to our work, 
they are the search engine results output. This group of 
data records is highly similar in structure and large in 
size. We aim to design our wrapper so that it can 
extract the last group of data regions, while removing 
the other irrelevant ones. We used filtering stage 1 to 
remove advertisements, filtering stage 2 to remove 
menus which determine the layout of the HTML page, 
and finally filtering stage 4 to remove the remaining 
irrelevant data records. Filtering stage 3 is designed to 
remove data records which occur less frequently, as 
observed by author of [35]. 
 
3.2.2.2.2. Stage 1: HTML Tag Structures 

In this rule, Tree Wrap performs the filtering 
process based on Observation 4. Once the list of the 
data regions are obtained from BFS Extraction, Stage 1 
involves removing data records that have less than 
three HTML tags in each and every group. The purpose 
of this filtering stage is to remove advertisement related 
information. We observe that advertisement usually 
contains simple structure to present its content (usually 
a list of hyperlinks as its content).  
 
3.2.2.2.3 . Stage 2: Similarity 

In this section, we introduce the Dummy Tree 
Matching Algorithm which is developed to check the 
similarity of data records. We derive this method based 
on Observation 3 and our finding that data records 
share an important characteristic, i.e. the distinct tags of 
a tree and the total number of distinct tags in each level 
of the tree are nearly similar to those of the other trees 
of the group. Thus we are able to formulate a similarity 
check algorithm which can mimic the behavior of a full 
tree matching algorithm. Our approach is to carry out 
the similarity check of two trees by examining the 
distinct tags and comparing the total number of distinct 
tags in all levels of the trees. Our algorithm is simple 
but efficient and it can obtain similar results as those of 
a tree matching algorithm but it has a reduced time 
complexity. Details of our algorithm and its use in 
detecting similarity of data records and filtering 
dissimilar data regions are presented in the following 
subsections.   
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Our Dummy Tree Matching algorithm consists of a 
two stage screening procedure to check the similarity of 
a group of trees. Given a number of trees, our algorithm 
first examines the distinct tags of the first tree and that 
of the second tree. If almost all the distinct tags occur 
concurrently in the two trees (overall with say only one 
element different), then the trees pass the similarity test 
of the first stage and they are used for the second stage 
similarity test. In the second stage, we calculate the 
total number of distinct tags in all the levels of the first 
tree and that of the second tree. If the first two trees 
have almost equal number of distinct tags in all levels 
(overall with a difference of only one tag), then the two 
trees are considered similar according to the stage two 
criterion. 

The first two trees are similar only if they pass the 
screening procedures of both stages. If the first two 
trees are similar, the first tree is retained for further 
processing and the second tree is then compared with 
the third tree of the group to check their similarity 
using Stages 1 and 2 of our screening algorithm. On the 
other hand, if the first two trees are not similar, the first 
tree will be removed and the second tree will be 
compared with the third tree to check their similarity. 
The screening procedures for both the above cases are 
repeated until the last tree is used for comparison. 

Figure 6, Figure 7 and Figure 8 show data records 
presented in a tree form obtained from the DOM Tree 
of HTML pages. For simplicity, we show only two 
trees in each figure. We calculate the similarity of the 
two trees of Figure 6, Figure 7 and Figure 8 using our 
Dummy Tree Matching algorithm. In Figure 6, the 
distinct tags of the left tree are <table, tr, td, p> which 
are exactly similar to those of the right tree, so the left 
tree is similar to the right tree according to the rules of 
stage 1 of our similarity check. Further check using 
rules of stage 2 shows that the total number of distinct 
tags for all levels is 8 for the left tree (1 <table> tag in 
level 1, 1 <tr> tag in level 2, 1 <td> tag in level 3, 1 
<p> and 1 <table> tag in level 4, 1 <tr> tag in level 5, 1 
<td> tag in level 6, and 1 <p> tag in level 7 of the tree) 
and 4 for the right tree (1 <table> tag in level 1, 1 <tr> 
tag in level 2, 1 <td> tag in level 3, 1 <p> in level 4 of 
the tree). The overall similarity checks considering 
rules of both stage 1 and stage 2 indicate that the two 
trees are not similar and therefore the left tree will be 
removed. For data records of Figure 7, the distinct tags 
are <table, tr, td, div, a, p, b> for both the left and the 
right trees. The first screening procedure shows that the 
trees are similar. The total number of distinct tags in all 
levels is 7 for the left tree and 7 for the right tree 
respectively (1 <table> tag in level 1, 1 <tr> tag in level 
2, 1 <td> tag in level 3, 1 <div> tag in level 4, 1 <a> 
tag and 1 <p> tag in level 5, 1 <b> tag in level 6 of the 
trees). Therefore, the left tree is retained for further 
processing as the two trees are similar. For Figure 8, 

the distinct tags of the left and right trees are <tr, td, 
div, a> and <tr, td, p, b>, the rule in the first step says 
that the left tree should be deleted as the trees are 
considered not similar (out of 4 distinct tags, only tr 
and td tags are similar tags that exist in both the left and 
right trees). The screening procedures will be repeated 
using the second tree and third tree and so on until the 
last tree of the group is used if there are more than 2 
trees. 

 
1  Algorithm Similarity Check  
2  for(int i:1 to numDataRecords){ 
3  //there are n nodes in a data record (O(n) 
complexity) 
4      //total number of distinct tags (Step 1) 
5      int firstNumDistinctTags = 
getNumDistinctTags  
6      (record(i)); 
7  int secondNumDistinctTags = 
getNumDistinctTags  
8      (record(i+1)); 
9      //compare left and right tree 
10     if(abs(firstNumDistinctTags –  
11     secondNumDistinctTags) > 1) { 
12          //remove record(i); delete the left tree if not  
13          similar 
14    }//end if 
15     //total number of distinct tags in all level (Step 
2) 
16     int firstDistinctTagsAllLevel =  
17     getNumDistinctTagsAllLevel(record(i)); 
18     int secondDistinctTagsAllLevel =  
19     getNumDistinctTagsAllLevel(record(i+1)); 
20     //compare left and right tree 
21     if(abs(firstDistinctTagsAllLevel –  
22     secondDistinctTagsAllLevel)>1){ 
23         //remove record(i); delete the left tree if not  
24         //similar 
25    }//end if 
26}//end for 
Fig. 5.  The Dummy Tree similarity check algorithm 

 
Calculations using the tree matching algorithm (e.g. 

DEPTA) show that trees of Figure 7 are similar and 
those of Figure 6 and Figure 8 are dissimilar. This 
algorithm gives results consistent with our Dummy 
Tree Matching algorithm. In general, single data record 
is usually represented by a regular expression which is 
applicable to all the data records. 

In summary, the procedures used in our Dummy 
Tree Matching Algorithm to check the similarity of a 
group of trees are: 
1. Examine the distinct tags of the first and second trees 

and if the trees have similar distinct tags, they pass 
the first test and will be used for the second test. 
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Fig. 6. Two trees having similar distinct tags, but different tree structures 

 

 
Fig. 7. Two trees with similar structures 

 
2. Calculate and compare the number of distinct tags in 

all levels of the trees passing the first test, the trees 
are considered to pass second test if they have the 
same number of distinct tags in all levels of the trees. 

3. The first tree and second tree are considered similar 
if they pass both the tests, for such a case, the first 

tree will be retained for further use. The trees are 
considered not similar if they fail to pass one of the 
tests carried out in Steps 1 and 2, therefore the first 
tree will be removed from the group. For both cases, 
the second tree will be compared with the third tree 
and the similarity tests are repeated for tree 2 and tree 
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3 and so on until the last tree in the group is used for 
comparison.   

 

 
Fig. 8. Two trees having dissimilar distinct HTML 

tags 
 

In general, there are two types of data regions left 
after the BFS stage, namely data regions with similar 
data records and data regions with entirely dissimilar 
data records. Dummy Tree Matching algorithm is 
designed to work by checking the data records of a data 
region and if they are not similar, they will be removed 
one by one and thus a data region with dissimilar data 
records will finally be filtered out. For data regions 
with similar data records, all these data records will be 
retained for further processing. The aim of this filtering 
stage using Dummy Tree Matching algorithm is to 

detect data regions with structurally similar data 
records normally exist in search engine results page, 
which are relevant to our study. Dissimilar data regions 
such as menus which determine the layout of a HTML 
page have structurally dissimilar data records and will 
be removed by our filtering algorithm.  
We use Figure 9 and Figure 10 to demonstrate how our 
Dummy Tree Matching algorithm is used to remove 
dissimilar data regions and retain the similar data 
regions. Figure 9 shows the Lycos search engine results 
page. Figure 10 is the similar page presented in a tree 
form. As can be seen from Figure 9, Data Region 1 
(solid rectangles in Figure 9, nodes <table> of Data 
Region 1 in Figure 10) contains repetitive nodes but 
these nodes are considered not similar (first <table > 
tag contains different sub tree from those of second and 
third <table> tags) because they have subtree structure 
with different sizes. Data records in Data Region 2 
(Figure 9 and Figure 10), which are represented by the 
dotted rectangles in Figure 9 are similar because they 
have subtree structures of similar sizes. The same 
applies to Data Regions 3, 4 and 5. Using the Dummy 
Tree Matching algorithm, Data Region 1 is removed 
while other data regions (Data Regions 2, 3, 4, 5) are 
retained. 

 

 
Fig. 9. An example of HTML page containing data regions.   
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Fig. 10. The DOM Tree for the web page in Figure 9 

 
3.2.2.2.4. Stage 3: Number of Nodes 

In this stage, Tree Wrap will filter out irrelevant 
data records based on Observation 2. Data records 
occurring less than 3 times will be filtered out and 
excluded for further processing.  
 
3.2.2.2.5. Stage 4: Scoring Function  

After the completion of Stage 3, Tree Wrap will 
have a filtered list of data regions. From the list of 
available data regions, only one data region is chosen 
based on the scoring function of this stage assigned to 
each of the data regions. Filter Rule in Stage 4 is the 
most important component of the data extraction phase 
because a good scoring function is needed to 
differentiate the correct data region from incorrect 
ones.  

This filter rule is derived based on Observations 1 
and 2. Since data records occupy most of the space in a 
web page, we need to represent this property in our 
implementation. The best way to deal with this is to 
look at the text and images of the data records. It is 
noted that the correct data records have more text and 
images than the rest of the data records. Therefore we 
take into account the total length of the text and the 
number of images.  

A constant value of 15 is added to the scoring 
function for every image detected in the data records. 
We also add a value of 1 to the scoring function for 
every character encountered in the data records. We 
decide to normalize the size of images with respect to 
the size of a character. Therefore, we choose a value of 
15 to be added to the scoring function for each image 
detected assuming that one image has the size of 15 
characters on average.  

We notice that correct data records usually have 
more parent nodes than the rest of the potential data 
records. Therefore, we give a value of 150 for every 
parent node of the data records. There are several 
reasons for the adoption of the various values for the 
scoring function. A value of 150 is assigned for the 
data records’ parent nodes as these nodes occur less 
frequently than the total text length and number of 
images. A relatively much smaller value is assigned for 
every character encountered in data records as 
characters tend to occur in large quantities. Images are 

generally larger than character, hence they are given a 
value of 15 instead of 1. Tree Wrap also recognizes 
separator tags such as <br> and <hr> that tend to 
occupy space in data records. Therefore, whenever 
Tree Wrap encounters these tags, it will assign a value 
of 50 to them, assuming that each tag contains 50 
characters on the average. 

Tree Wrap calculates the value of the scoring 
function according to the following equation: 
a=NumParentNodesLevel 
b=TotalTextLength 
c=NumImages 
d=NumSeparatorTags 
x=Data Region 

)5*))50*()15*((()150*()( dcbaxScore +++=  
 
4.  EXPERIMENTAL TESTS 
 
4.1.  Preparation of datasets 

The datasets used in this study are taken from web 
pages that contain search engine results. These datasets 
are divided into four groups: Dataset 1 with 150, 
Dataset 2 with 119, Dataset 3 with 50 and Dataset 4 
with 51 web pages. The data distribution for each of the 
datasets varies, ranging from academic sites, general 
sites to governmental sites. 

The first dataset is prepared by the authors. The first 
dataset is randomly chosen from the internet. Dataset 1 
is publicly available at 
http://hawksbill.infotech.monash.edu.my/~jlhong/WIS
H.html. The second and third datasets were taken from 
ViNT test bed, available at http://www. 
data.binghamton.edu:8080/vints/testbed.html. The 
fourth dataset is the TDBW v1.02, obtained from 
http://daisen.cc.kyushu-u.ac.jp/TBDW/.  

It is worth noting that for all the datasets, each web 
page belongs only to a single web site. For example, 
Dataset 1 has 150 web pages, therefore there are 150 
distinct web sites in it. The datasets contain different 
web pages, where none of the web pages chosen for 
one of the datasets will occur in any other datasets. 
Datasets 2 and 3 are the data originally used to test the 
performance of ViNT wrapper. These datasets are then 
used to test our wrapper as a useful indicator to see the 
accuracy and reliability of our wrapper. 

The fourth dataset is the one used for testing in 
ViPER [21]. The purpose of using this dataset is to see 
the performance of our wrapper compared to ViNT 
[17] and DEPTA [35] when tested against a neutral 
publicly available dataset. 

The total number of web pages used to test our 
wrapper amounts to 370. For all the datasets chosen, all 
the web pages contain semi structured data records.  

We also evaluate the time complexity of our 
wrapper with respect to DEPTA and ViNT. We use 
datasets 1 to 4 to measure the running time used to 
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extract data records for ViNT, DEPTA and our 
wrapper. The average time to perform data extraction 
for the respective wrappers is recorded. We do not 
compare our wrapper with MDR as studies shown in 
ViNT [17] and DEPTA [35] indicate that both ViNT 
and DEPTA can perform better than MDR [4] and our 
experiments show that Tree Wrap is comparatively 
better than ViNT and DEPTA. 

We further evaluate the robustness of our wrapper 
by replacing several components of our wrapper by 
available conventional techniques. This step is carried 
out to measure the reliability of our wrapper when 
these components are replaced. For example, we use 
string and tree edit distance algorithms as a 
replacement for Dummy Tree Matching for measuring 
the similarity of the structure of data records while we 
use visual cue (rectangular bounding box of a data 
region) as a replacement for heuristic scoring function 
to determine the relevant data region. Experimental 
results indicate that when using Dummy Tree Matching 
and heuristic scoring function, our wrapper is able to 
run faster and more accurately. We also test the 
reliability of our wrapper by removing the Stage 1 
(Filter HTML Tags) and by changing the number of 
nodes for Stage 3 (Filter Number of Nodes) of our 
filtering modules. Experimental tests indicate that the 
above do not affect the accuracy of our wrapper. 
 
4.2.  Method of Evaluation 

HTML web page parsing is a difficult task. 
Therefore, it is very unlikely that a publicly available 
parser can achieve 100% parsing rate. For those web 
pages that the parser failed to parse, we rule them out 
from consideration in our evaluation. The experiment 
was conducted with a PC specification of Pentium 4 2.4 
Ghz, with 1GB of RAM memory. The measures of 
wrapper’s efficiency are based on three factors, the 
number of actual data records to be extracted, the 
number of extracted data records from the test cases, 
and the number of correct data records extracted from 
the test cases. Based on these three values, precision 
and recall are calculated according to the formulas:   
Recall=Correct/Actual*100 
Precision=Correct/Extracted*100 
 
4.3.  Data Extraction Results 
 
4.3.1. Dataset 1 

TreeWrap outperforms DEPTA and ViNT both in 
terms of recall and precision rates (Table1). The 
strength of our wrapper lies in the testing of Dataset 1. 
The result in Table1 shows that our wrapper 
significantly outperforms the works of ViNT and 
DEPTA. Our wrapper incorporates an accurate tree 
matching algorithm which could detect similarity of 
data records. Besides, the filtering technique used in 

Component 2, Stage 4 allows extraction of correct data 
records. However, there are several odd cases which 
our wrapper did not consider for. Some search engine 
results have search identifier (e.g. Search query “Web” 
returns 10 results) which also has similar parent node to 
that of relevant data records. In some cases, this 
identifier also has similar tree structures as data 
records’ tree structures. This search identifier will 
eventually pass through all the filtering stages 
successfully and extracted as data records.     
 
Table 1. Results of Dataset 1 for Tree Wrap, ViNT and 

DEPTA 
Term DEPTA ViNT Tree Wrap 
Actual 1766 1766 1766 
Extracted 1258 2015 1742 
Correct 1183 1486 1729 
Recall 66.99% 84.14% 97.90% 
Precision 94.04% 73.75% 99.25% 
 
4.3.2. Dataset 2 

The test on Dataset 2 shows that Tree Wrap has 
improvements over the works of DEPTA and ViNT 
(Table 2). Our result shows that we obtained better 
recall and precision rates than that of DEPTA and 
ViNT. This could be attributed to the fact that our 
dummy tree matching algorithm is more efficient in 
detecting the similarity of structured data records than 
the algorithms in DEPTA and ViNT.   
 
Table 2. Results of Dataset 2 for Tree Wrap, ViNT and 

DEPTA 
Term DEPTA ViNT Tree Wrap 
Actual 1655 1655 1655 
Extracted 1027 1612 1644 
Correct 994 1583 1635 
Recall 60.06% 95.65% 98.79% 
Precision 96.79% 98.20% 99.45% 
 
4.3.3. Dataset 3 

Similar to Dataset 2, test on Dataset 3 shows 
improvements in our work compared to the works of 
DEPTA and ViNT (Table 3). 
 
Table 3. Results of Dataset 3 for Tree Wrap, ViNT and 

DEPTA 
Term DEPTA ViNT TreeWrap 
Actual 830 830 830 
Extracted 655 822 812 
Correct 612 806 806 
Recall 73.73% 97.11% 97.11% 
Precision 93.44% 98.05% 99.26% 
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4.3.4. Dataset 4 
Tree Wrap wrapper performs better than DEPTA 

and ViNT on this dataset (Table 4). As shown in the 
table, Tree Wrap produces a recall value of over 10% 
higher than ViNT. 

 
Table 4. Results of Dataset 4 for Tree Wrap, ViNT and 

DEPTA 
Term DEPTA ViNT TreeWrap 
Actual 693 693 693 
Extracted 402 661 692 
Correct 388 618 688 
Recall 55.99% 89.18% 99.28% 
Precision 96.52% 93.49% 99.42% 
 
4.3.5. Running time of our wrapper 

We evaluate the running time of our wrapper with 
respect to DEPTA [35] and ViNT [17]. We compare 
Dummy Tree Matching algorithm with the tree 
matching algorithm of DEPTA. Experimental results 
show that our wrapper runs faster than DEPTA (Table 
5). This result signifies that our dummy tree matching 
algorithm runs in a time complexity smaller than that of 
DEPTA. Our wrapper also runs faster than ViNT, a 
visual wrapper using visual cue and DOM Tree 
structure of data records.    
 

Table 5. Running time of our wrapper, DEPTA, and 
ViNT 

Wrappers Running time (avg in s) 
TreeWrap 215 
DEPTA 334 
ViNT 1136 
 
4.3.6. Evaluation of the Filter HTML Tags 

To evaluate the stability and effect of Filter HTML 
Tags in our wrapper, we test our wrapper on Datasets 1, 
2, 3, and 4 by removing the HTML Tags Filter. Results 
are presented in Table 6. Our results show that 
removing the HTML Tags Filter has no marked effect 
on the overall performance of our wrapper. Slightly 
higher accuracy rates are noted in Datasets 1 and 2. The 
higher accuracy rate could be attributed to the presence 
of web pages containing search results with simple 
structures, hence our wrapper is able to extract these 
data records. However, as shown in Table 6, with 
HTML Tags Filter included, there is a decrease in 
running time of our wrapper although the precision and 
recall rates are slightly reduced. This additional 
increase in speed will be helpful in meta search engine 
application and large scale web comparisons. 

 
4.3.7. Evaluation of the Similarity Check of Data 
Records 

As stated earlier, we test the performance of our 

wrapper by replacing Dummy Tree Matching with 
String Edit Distance algorithms. We incorporate two 
types of string edit distance techniques (the simple 
Euclidean distance and the more common Levenshtein 
edit distance [30]) using the work of 
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html  
and test our wrapper on Datasets 1 to 4. Experimental 
results indicate that String Edit Distance algorithms 
cannot improve the performance of our wrapper as can 
be seen from the recall and precision rates obtained 
(Table 7). This test also shows that Dummy Tree 
Matching algorithm is an important component of our 
wrapper as it contributes in the accuracy of data 
extraction. 

We also test the performance of our wrapper by 
replacing our Dummy Tree Matching algorithm by the 
tree matching algorithm of DEPTA [35]. Results 
indicate that although the tree matching algorithm of 
DEPTA is accurate, it is slow in operation as can be 
seen from the running time results (Table 8). Our 
Dummy Tree Matching algorithm is not only accurate, 
but it can  also perform the function of a tree matching 
algorithm at a reduced running time complexity of O(n) 
(n is the number of nodes in the tree). 
 
4.3.8. Evaluation of Filter Number of Nodes 

We also test our wrapper by changing the number 
of data records to be filtered out from 3 to 2 in the stage 
3 filtering process: Number of nodes. Results show that 
the recall and precision rates will decrease slightly 
when 2 data records instead of 3 data records are used 
(Table 9). This is because the menus, a data region 
containing highly dissimilar data records are extracted 
instead of relevant data region. As relevant data region 
which contains only two data records is smaller in size 
compared to other data region such as menu bars, they 
are more difficult to be extracted compared to other 
data region. 
 
4.3.9. Evaluation of Locating Correct Data Region 

To further measure the reliability of our wrapper, 
we test our wrapper by replacing the component which 
determines the correct data region. We used the 
algorithm of VSDR (determine the large and centrally 
located data region) as a replacement for Component 2, 
Stage 4 of our wrapper (Largest Score Filtration). As 
the algorithm in VSDR requires visual cue for its 
implementation, we used ICE browser available at 
http://www.icesoft.com/ as part of our wrapper design. 
This browser is able to parse a HTML page and provide 
visual cue in addition to DOM Tree. Experimental 
results show that our technique is able to obtain more 
accurate results than the technique using the 
rectangular bounding box to locate the relevant data 
region (Table 10). However, our test also indicates that 
the technique using rectangular bounding box is slow in 
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operation, thus it is a limitation for large scale web 
comparisons. The increase in running time is due to the 
extra processing needed to obtain visual information 
from the underlying browser rendering engine during 
the parsing phase. Experimental results also indicate 

non visual wrappers like Tree Wrap which use fast 
heuristic techniques could also attain similar 
performances as visual wrappers. 
 

 
Table 6. Test on Filter HTML Tags  

Datasets With HTML Tags Filter Without HTML Tags Filter 

Recall  Precision Time (avg. msec) Recall  Precision Time (avg. msec) 

Dataset 1 97.90% 99.25% 215 98.19% 99.54% 254 
Dataset 2 98.79% 99.45% 187 98.97% 99.64% 201 
Dataset 3 97.11% 99.26% 196 97.11% 99.26% 208 
Dataset 4 99.28% 99.42% 178 99.28% 99.42% 185 
 

Table 7. Performance of Dummy Tree Matching and String Edit Distance 
Datasets Dummy Tree Matching Levenshtein distance  Euclidean distance 

Recall Precision Recall Precision Recall Precision 

Dataset 1 97.90% 99.25% 80.29% 77.61% 60.79% 69.67% 
Dataset 2 98.79% 99.45% 67.61% 81.32% 41.69% 64.13% 
Dataset 3 97.11% 99.26% 75.18% 75.72% 36.63% 53.62% 
Dataset 4 99.28% 99.42% 79.65% 81.42% 64.21% 75.28% 
 

Table 8. Performance of Dummy Tree Matching and DEPTA Tree Matching algorithm 
Datasets Dummy Tree Matching DEPTA Tree Matching 

Recall  Precision Time (avg. msec) Recall  Precision Time (avg. msec) 

Dataset 1 97.90% 99.25% 215 93.54% 98.10% 638 
Dataset 2 98.79% 99.45% 187 95.83% 98.88% 427 
Dataset 3 97.11% 99.26% 196 95.06% 97.17% 441 
Dataset 4 99.28% 99.42% 178 94.95% 98.21% 354 
 

Table 9. Test on Filter Number of Nodes 
Datasets Less than 3 Number of Nodes Less than 2 Number of Nodes 

Recall  Precision Recall  Precision 

Dataset 1 97.90% 99.25% 95.64% 99.17% 
Dataset 2 98.79% 99.45% 96.56% 99.25% 
Dataset 3 97.11% 99.26% 94.82% 98.62% 
Dataset 4 99.28% 99.42% 95.82% 98.81% 
 

Table 10. Performance of Scoring Function and Visual Cue 
Datasets Scoring Function Rectangular Bounding Box 

Recall Precision Time (avg.) Recall Precision Time (avg.) 

Dataset 1 97.90% 99.25% 215 89.69% 94.00% 552 
Dataset 2 98.79% 99.45% 187 89.55% 96.05% 386 
Dataset 3 97.11% 99.26% 196 96.63% 98.53% 328 
Dataset 4 99.28% 99.42% 178 95.82% 97.36% 383 
 
5.  CONCLUSIONS 

In this study we propose a non-visual wrapper Tree 
Wrap which is able to extract data records from 
structured web pages. Our results show that our 
wrapper is able to obtain results as well as and in most 
cases better than the current state of the art visual 

wrappers such as ViNT and DEPTA. Our approach 
uses a set of filtering methods based on the DOM Tree 
structure of data records and a more accurate algorithm 
to calculate the space occupied by the data region. Our 
dummy tree matching algorithm simplifies the 
complicated process of comparing every node of each 
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tree to check the similarity of two trees as used in the 
tree matching algorithm. We use the number of nodes 
of a tree to compare the similarity of two trees. This 
procedure improves the overall running time without 
compromising the accuracy, making it suitable for large 
scale web comparisons. Our stability tests on each of 
the heuristic data extraction components of our wrapper 
also show that Dummy Tree Matching and scoring 
function are the most important components for 
extracting data records. 
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