
Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

43

Tree Wrap-data Extraction Using Tree Matching Algorithm

Jer Lang Hong1, Fariza Fauzi2
1- School of IT, Monash University, Malaysia

Email: david.hong @infotech.monash.edu.my
2- School of IT, Monash University, Malaysia
Email: wan.fariza@infotech.monash.edu.my

Received: December 2009 Revised: February 2010 Accepted: April 2010

ABSTRACT:
In this paper, we develop a non-visual automatic wrapper to extract data records from search engine results pages
which contain important information for computer users. Our wrapper consists of a series of data filter to detect and
remove irrelevant data from the web page. In the filtering stages, we incorporate two main algorithms which are able
to check the similarity of data records and to detect and extract the correct data region based on their component sizes.
To evaluate the performance of our algorithm, we carry out experimental and deletion tests. Experimental tests show
that our wrapper outperforms the existing state of the art wrappers such as ViNT and DEPTA. Deletion studies by
replacing our novel techniques with state of the art conventional techniques show that our wrapper design is efficient
and could robustly extract data records from search engine results pages. With the speed advantages, our wrapper
could be beneficial in processing large amount of web sites data, which could be helpful in meta search engine
development.

KEYWORDS: Information Extraction, Automatic Wrapper, Search Engine, Tree Matching Algorithm.

1. INTRODUCTION

The extraction of relevant data from a target source
is called Information Extraction. The target source can
be a natural language source or structured records (data
records) which usually contain important information.
Therefore, there is a need to develop wrappers to
extract these structured records. Wrappers developed
recently are mostly fully automated and they could
have significant speed advantages when processing
large volumes of web site data, therefore they could be
helpful in meta search engine development [1], [2], [3]
and in comparing and evaluating shopping lists [4].

Non visual wrappers use tree matching algorithm to
check the similarity of data records by comparing the
position and identity of each node in the trees (data
structure to represent the data records’ structure in a
tree form) to remove irrelevant data records with
dissimilar structure [5], [20], [4]. However, the
implementation and coding of the algorithm are
complicated [4]. This algorithm also runs in a time
complexity of O(n1n2) where n1 is the number of
nodes in the first tree and n2 is the number of nodes in
the second tree. In general, most web pages consist of
complex trees with a large number of nodes. Therefore,
these complexities slow down the current tree matching
algorithm.

In this paper, we focus on developing an automated
non-visual wrapper for the extraction of data records,

particularly the search engine result pages. Our aim is
to improve on current non-visual based wrapper
performance and demonstrate that our wrapper, Tree
Matching Wrapper (Tree Wrap) performs equally as
well, and in many cases, better than the current state of
the art automatic visual wrappers. A preliminary
version of this paper has appeared in [18], [19].

We incorporate a series of data filters to remove
irrelevant data records from the HTML page. These
filters are designed based on heuristic techniques, each
of them works based on the observations made by
authors of [3-5, 7, 13, 15-17, 20-25, 23-24, 29, 31-33,
36]. The idea is to reduce the “noise” or irrelevant data
records in each filtering stage so that the wrapper can
be more efficient in extracting the correct data region
containing data records.

We also propose a Dummy Tree Matching
algorithm based on the frequency measures of a tree
structure as part of the filtering stages to check the
similarity of data records. This algorithm does not
actually match two tree structures and find their
similarity by checking the identity of each node, but
uses the number of nodes in a tree to determine the
similarity of two trees. As our method does not require
the comparison of all the nodes in a tree structure, it
will reduce significantly the computational overhead.
Our algorithm works in a time complexity of O(n) (n is
the number of nodes in the tree), and is faster than the

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

44

current tree matching algorithms. This increase in
speed is useful when our wrapper is used in large scale
web comparisons.

This paper is divided into several sections. Section
2 describes the work relevant to our research. In
Section 3 we discuss our proposed methodology in
detail. Section 4 discusses the result of our
experimental tests while Section 5 summarizes our
work. It is worth noting that data labeling is outside the
scope of this paper.

2. RELATED WORK

The key component of a wrapper is the algorithm
that checks the similarity of data records. Data records
are retained and considered valid if they are similar and
discarded if they are dissimilar. Current wrappers such
as Data Extraction based on Partial Tree Alignment
(DEPTA) [4] and Mining Data Region (MDR) [35] use
edit distance techniques to check the similarity of the
structure of data records. Common edit distance
techniques in such area are string edit distance and tree
edit distance [26], [8]. For more information on edit
distance techniques the readers are encouraged to refer
to the surveys of Baeza-Yates [26], Gusfield [8] and
Navarro [14].

The string edit distance algorithm involves
matching two strings and the determination of how the
first string is to be transformed into the second string.
String edit distance algorithms are generally fast in
operation and run in a time complexity of O(m) (m is
the number of tags in a data record). However, these
algorithms are unable to compare two trees having
nearly similar tree structures, with iterative and
disjunctive data. This is because these algorithms
match flat level data, which occur in single level
(strings) rather than tree structures. String edit distance
algorithms are also unable to distinguish HTML Tag as
a single entity (they tend to compare strings by
examining the characters in these strings), therefore this
may result in inaccurate matching. For example, when
two HTML tags <P> and <NOBR> are matched, we
assume that this mismatch is counted as one (one
mismatch of two HTML tags), but string edit distance
algorithms consider this mismatch as 4 (4 characters in
the second string do not match with the 1 character in
the first string). There are several variants of string edit
distance algorithms, some common ones are
Levenshtein distance [30], Hamming distance [9],
Episode distance [12], and Longest common
subsequence distance [2], [27].

The tree edit distance algorithm uses two tree
structures and matches them by comparing the node
identity and position. Tree matching algorithms
developed are the tree edit distance [22], alignment
distance [28], isolated-sub tree distance [10], top down
distance [22], [34], and bottom up distance [11]. Tree

edit distance algorithm is quite similar to string edit
distance, except that it includes tree nodes matching.
Tree edit distance algorithm for unordered tree is NP
Complete. The top down algorithm was proposed in
[34]. For this algorithm, two trees are matched in
O(n1n2) time (n1 is the number of nodes in the first tree
and n2 is the number of nodes in the second tree). The
bottom up approach was introduced by [11] and the
time complexity for it is O(n1+n2) (n1 is the number of
nodes in the first tree and n2 is the number of nodes in
the second tree). The top down and bottom up
approaches are restricted versions of tree matching
algorithm.

DEPTA [4] [36] uses a bottom up tree matching
algorithm to match tree structures of data records. A
tree matching algorithm matches two tree structures
and determines how the first tree can be transformed
into the second tree. DEPTA’s tree matching algorithm
determines the maximum matches between two trees
by comparing the location and identity of the nodes in
the tree structures. Although this algorithm solves the
problem emerged in data matching successfully, the
algorithm requires a complex data structure for its
implementation. Therefore, an algorithm that could
simplify the implementation process will be helpful.

Fig. 1. Trees with different numbers of iterative data

but with the same template (bottom tree)

DEPTA checks the similarity of two trees using the
percentage similarity of the trees. In this context,
DEPTA may not be able to match two trees having
particular elements (HTML Tags) which occur
iteratively in the two trees. This is due to the fact that
the number of occurrence of the particular element
(HTML Tags) in a tree might not be the same as it
occurs in the other tree. Figure 1 shows such a case.
The upper left and right trees are of different sizes,
DEPTA will assume that the upper left tree is
3/((5+3)/2)=3/4=75% similar to that of the upper right
tree. Basically, the two trees have a similar template
(the bottom tree of Figure 1), DEPTA treats the two
trees as dissimilar because they have different numbers
of iterative data. A reasonable way to check the
similarity of two trees is to calculate the difference in
the number of nodes of the two trees. As an example,
given two trees with 4 and 5 nodes each, and assume
that they have 3 similar nodes; DEPTA will assume the

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

45

first tree is ¾=75% similar to the second tree. However,
for large trees say with 50 and 51 nodes each, assuming
they have 49 similar nodes, then DEPTA will assume
the first tree is 49/50=98% similar to the right tree. We
consider the trees of the two examples as nearly similar
as in each case; the difference between the total number
of nodes and the total number of similar nodes is only
1. DEPTA’s tree matching algorithm works in a time
complexity of O(n1n2) time (n1 is the number of nodes
in the first tree and n2 is the number of nodes in the
second tree).

A wrapper is also designed to locate and extract the
correct data region. Visual based wrappers such as
ViNT [17], VSDR [23], and ViPER [21] use visual cue
to locate and extract correct data region. These
wrappers calculate the boundary and location of a data
region, and take data region which is large and
centrally located as the correct data region. For
example, VSDR uses the Vision-based Page
Segmentation Algorithm (VIPS) which segments
HTML page content into several regions while ViPER
uses the boundary of a HTML tag to determine data
region which is centrally located.

3. THE IMPLEMENTATION OF TREEWRAP

3.1. Overview of Tree Wrap

In this section we discuss the requirements and the
assumptions made for Tree Wrap. For Tree Wrap to
work successfully the sample pages used for data
extraction should be obtained from a search engine
query and each of these sample pages must contain at
least three data records. Tree Wrap however, does not
require the HTML page to be converted to XHTML
format as the parser can recognize the HTML format.
The first component involves parsing the HTML page
and organizing it into the DOM tree representation. In
the second component, Tree Wrap extracts data records
using dummy tree matching algorithm and scoring
function. Component 1 is described in Section 3.2.1.
Detailed description of Component 2 is presented in
Section 3.2.2 which includes set of filtering rules.

3.2. Components of Tree Wrap

3.2.1. Component 1: Parser for Tree Wrap

A search engine result page is required as input for
a parser to parse this web page. We experimented with
several open source HTML to DOM tree parsers, and
settled on the parser called “HTML Parser”
(http://htmlparser. sourceforge.net/). This parser will
read the sample pages and divide them into tokens.
There are two types of tokens, the HTML command tag
(known in short as tag) and text tokens. Tag token
could be defined as any text starting with ‘<’ and
ending with ‘>’. Others are assumed to be text token.

Once the sample web pages are parsed, Tree Wrap
stored and arranged the contents in a DOM tree, which
will be used for further processing in the subsequent
component.

Fig. 2. Components of Extraction phase in Tree Wrap

3.2.2. Component 2: Data Extraction at Record
Level in Tree Wrap

3.2.2.1. Breadth First Search (BFS) Extraction
Technique

Once a web page is parsed and represented in a
DOM Tree structure, our wrapper needs to traverse
through the DOM Tree and identify the various data
regions in the web page. To achieve this, we use
Breadth First Search (BFS) technique to detect and
label the different data regions. Our BFS technique
developed is based on the improved and modified
version used in MDR [4]. A data region can be defined
as a set of data records. Data records in turn can be
defined as any records that have similar parent HTML
tag, contains repetitive sequence of HTML tags and are
located in the same level of the DOM tree.

Fig. 3. Potential groups of data records (Case 1: Nodes

A separated by same distance, Case 2: Nodes A
separated by different distance)

The nodes in the same level are checked to

determine their similarities. In the case where none of
the nodes can satisfy this criterion, then the search will
go one level lower and perform the search again on all
the lower level nodes. Tree Wrap takes all the nodes in
the same level having similar HTML tag as a potential
group of data records regardless of the distance
between them (Error! Reference source not found.).
As long as there is a repetitive sequence of HTML tags,

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

46

TreeWrap treats and labels these similar tag nodes as
one group (Figure 3).Figure 3shows two cases, where
the first case has three A Nodes which are separated by
the same distance of 2 while the second case has two A
Nodes separated by distance of 2 and a third A Node
separated by a distance of 3.

Fig. 4. Potential data records, where a node occurs

more than 2 times in a level of a tree

In Tree Wrap, potential data records are treated as

containing two or more nodes in one group. Figure 3 a
depicts 4 data records, as shown by the rectangles.
These data records appear at least twice in the same
level of the tree, and have similar HTML tag identity.

3.2.2.2. Filtering Stages

3.2.2.2.1. Overview

To locate and extract the relevant data region from a
pool of available data regions, Tree Wrap uses four
heuristic techniques for data extraction, each of them is
related to the definition of a data record. The authors of
the papers [3-5, 7, 13, 15-17, 20-24, 29, 31-33, 36] on
Information Extraction in Web Pages have pointed out
several unique features inherent to a data record. We
have also made several observations on the constitution
of a data record. Based on these observations, we come
out with a way to apply heuristic techniques to
correctly extract a data region. The following are the
observations made by several authors as presented in
their papers:

Observation 1 [17, 21, 23, 31-33]:
The size of the data records is usually large in

relation to the size of the whole page
Observation 2 [4-5, 21, 35]:
Data Records usually occur more than three times

in a given web page.
Observation 3 [20-21, 35]:
Data Records usually conform to a specific regular

expression rule to represent their individual data, hence
they have nearly similar tree structure.

Our Observation 4:
Data Records usually consist of three HTML tags

that make up their tree structure.
In this paper, four stages of filtering rules are

proposed; each of them considers the above
observations. After the completion of BFS extraction,
Tree Wrap will have a list of data regions. Our
examination shows that data regions fall into one of the
several groups. We group the first set of potential data
regions as menus; these typically determine the layout
of HTML pages and are usually large in size and highly
dissimilar. The second data region group is
advertisements, regions of this group are highly similar
but with simple structures. The third group of data
regions consists of menu bars; these are simple but are
nearly similar in structure. The fourth and last group in
these groups of data records is relevant to our work,
they are the search engine results output. This group of
data records is highly similar in structure and large in
size. We aim to design our wrapper so that it can
extract the last group of data regions, while removing
the other irrelevant ones. We used filtering stage 1 to
remove advertisements, filtering stage 2 to remove
menus which determine the layout of the HTML page,
and finally filtering stage 4 to remove the remaining
irrelevant data records. Filtering stage 3 is designed to
remove data records which occur less frequently, as
observed by author of [35].

3.2.2.2.2. Stage 1: HTML Tag Structures

In this rule, Tree Wrap performs the filtering
process based on Observation 4. Once the list of the
data regions are obtained from BFS Extraction, Stage 1
involves removing data records that have less than
three HTML tags in each and every group. The purpose
of this filtering stage is to remove advertisement related
information. We observe that advertisement usually
contains simple structure to present its content (usually
a list of hyperlinks as its content).

3.2.2.2.3 . Stage 2: Similarity

In this section, we introduce the Dummy Tree
Matching Algorithm which is developed to check the
similarity of data records. We derive this method based
on Observation 3 and our finding that data records
share an important characteristic, i.e. the distinct tags of
a tree and the total number of distinct tags in each level
of the tree are nearly similar to those of the other trees
of the group. Thus we are able to formulate a similarity
check algorithm which can mimic the behavior of a full
tree matching algorithm. Our approach is to carry out
the similarity check of two trees by examining the
distinct tags and comparing the total number of distinct
tags in all levels of the trees. Our algorithm is simple
but efficient and it can obtain similar results as those of
a tree matching algorithm but it has a reduced time
complexity. Details of our algorithm and its use in
detecting similarity of data records and filtering
dissimilar data regions are presented in the following
subsections.

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

47

Our Dummy Tree Matching algorithm consists of a
two stage screening procedure to check the similarity of
a group of trees. Given a number of trees, our algorithm
first examines the distinct tags of the first tree and that
of the second tree. If almost all the distinct tags occur
concurrently in the two trees (overall with say only one
element different), then the trees pass the similarity test
of the first stage and they are used for the second stage
similarity test. In the second stage, we calculate the
total number of distinct tags in all the levels of the first
tree and that of the second tree. If the first two trees
have almost equal number of distinct tags in all levels
(overall with a difference of only one tag), then the two
trees are considered similar according to the stage two
criterion.

The first two trees are similar only if they pass the
screening procedures of both stages. If the first two
trees are similar, the first tree is retained for further
processing and the second tree is then compared with
the third tree of the group to check their similarity
using Stages 1 and 2 of our screening algorithm. On the
other hand, if the first two trees are not similar, the first
tree will be removed and the second tree will be
compared with the third tree to check their similarity.
The screening procedures for both the above cases are
repeated until the last tree is used for comparison.

Figure 6, Figure 7 and Figure 8 show data records
presented in a tree form obtained from the DOM Tree
of HTML pages. For simplicity, we show only two
trees in each figure. We calculate the similarity of the
two trees of Figure 6, Figure 7 and Figure 8 using our
Dummy Tree Matching algorithm. In Figure 6, the
distinct tags of the left tree are <table, tr, td, p> which
are exactly similar to those of the right tree, so the left
tree is similar to the right tree according to the rules of
stage 1 of our similarity check. Further check using
rules of stage 2 shows that the total number of distinct
tags for all levels is 8 for the left tree (1 <table> tag in
level 1, 1 <tr> tag in level 2, 1 <td> tag in level 3, 1
<p> and 1 <table> tag in level 4, 1 <tr> tag in level 5, 1
<td> tag in level 6, and 1 <p> tag in level 7 of the tree)
and 4 for the right tree (1 <table> tag in level 1, 1 <tr>
tag in level 2, 1 <td> tag in level 3, 1 <p> in level 4 of
the tree). The overall similarity checks considering
rules of both stage 1 and stage 2 indicate that the two
trees are not similar and therefore the left tree will be
removed. For data records of Figure 7, the distinct tags
are <table, tr, td, div, a, p, b> for both the left and the
right trees. The first screening procedure shows that the
trees are similar. The total number of distinct tags in all
levels is 7 for the left tree and 7 for the right tree
respectively (1 <table> tag in level 1, 1 <tr> tag in level
2, 1 <td> tag in level 3, 1 <div> tag in level 4, 1 <a>
tag and 1 <p> tag in level 5, 1 tag in level 6 of the
trees). Therefore, the left tree is retained for further
processing as the two trees are similar. For Figure 8,

the distinct tags of the left and right trees are <tr, td,
div, a> and <tr, td, p, b>, the rule in the first step says
that the left tree should be deleted as the trees are
considered not similar (out of 4 distinct tags, only tr
and td tags are similar tags that exist in both the left and
right trees). The screening procedures will be repeated
using the second tree and third tree and so on until the
last tree of the group is used if there are more than 2
trees.

1 Algorithm Similarity Check
2 for(int i:1 to numDataRecords){
3 //there are n nodes in a data record (O(n)
complexity)
4 //total number of distinct tags (Step 1)
5 int firstNumDistinctTags =
getNumDistinctTags
6 (record(i));
7 int secondNumDistinctTags =
getNumDistinctTags
8 (record(i+1));
9 //compare left and right tree
10 if(abs(firstNumDistinctTags –
11 secondNumDistinctTags) > 1) {
12 //remove record(i); delete the left tree if not
13 similar
14 }//end if
15 //total number of distinct tags in all level (Step
2)
16 int firstDistinctTagsAllLevel =
17 getNumDistinctTagsAllLevel(record(i));
18 int secondDistinctTagsAllLevel =
19 getNumDistinctTagsAllLevel(record(i+1));
20 //compare left and right tree
21 if(abs(firstDistinctTagsAllLevel –
22 secondDistinctTagsAllLevel)>1){
23 //remove record(i); delete the left tree if not
24 //similar
25 }//end if
26}//end for
Fig. 5. The Dummy Tree similarity check algorithm

Calculations using the tree matching algorithm (e.g.

DEPTA) show that trees of Figure 7 are similar and
those of Figure 6 and Figure 8 are dissimilar. This
algorithm gives results consistent with our Dummy
Tree Matching algorithm. In general, single data record
is usually represented by a regular expression which is
applicable to all the data records.

In summary, the procedures used in our Dummy
Tree Matching Algorithm to check the similarity of a
group of trees are:
1. Examine the distinct tags of the first and second trees

and if the trees have similar distinct tags, they pass
the first test and will be used for the second test.

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

48

Fig. 6. Two trees having similar distinct tags, but different tree structures

Fig. 7. Two trees with similar structures

2. Calculate and compare the number of distinct tags in

all levels of the trees passing the first test, the trees
are considered to pass second test if they have the
same number of distinct tags in all levels of the trees.

3. The first tree and second tree are considered similar
if they pass both the tests, for such a case, the first

tree will be retained for further use. The trees are
considered not similar if they fail to pass one of the
tests carried out in Steps 1 and 2, therefore the first
tree will be removed from the group. For both cases,
the second tree will be compared with the third tree
and the similarity tests are repeated for tree 2 and tree

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

49

3 and so on until the last tree in the group is used for
comparison.

Fig. 8. Two trees having dissimilar distinct HTML

tags

In general, there are two types of data regions left
after the BFS stage, namely data regions with similar
data records and data regions with entirely dissimilar
data records. Dummy Tree Matching algorithm is
designed to work by checking the data records of a data
region and if they are not similar, they will be removed
one by one and thus a data region with dissimilar data
records will finally be filtered out. For data regions
with similar data records, all these data records will be
retained for further processing. The aim of this filtering
stage using Dummy Tree Matching algorithm is to

detect data regions with structurally similar data
records normally exist in search engine results page,
which are relevant to our study. Dissimilar data regions
such as menus which determine the layout of a HTML
page have structurally dissimilar data records and will
be removed by our filtering algorithm.
We use Figure 9 and Figure 10 to demonstrate how our
Dummy Tree Matching algorithm is used to remove
dissimilar data regions and retain the similar data
regions. Figure 9 shows the Lycos search engine results
page. Figure 10 is the similar page presented in a tree
form. As can be seen from Figure 9, Data Region 1
(solid rectangles in Figure 9, nodes <table> of Data
Region 1 in Figure 10) contains repetitive nodes but
these nodes are considered not similar (first <table >
tag contains different sub tree from those of second and
third <table> tags) because they have subtree structure
with different sizes. Data records in Data Region 2
(Figure 9 and Figure 10), which are represented by the
dotted rectangles in Figure 9 are similar because they
have subtree structures of similar sizes. The same
applies to Data Regions 3, 4 and 5. Using the Dummy
Tree Matching algorithm, Data Region 1 is removed
while other data regions (Data Regions 2, 3, 4, 5) are
retained.

Fig. 9. An example of HTML page containing data regions.

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

50

Fig. 10. The DOM Tree for the web page in Figure 9

3.2.2.2.4. Stage 3: Number of Nodes

In this stage, Tree Wrap will filter out irrelevant
data records based on Observation 2. Data records
occurring less than 3 times will be filtered out and
excluded for further processing.

3.2.2.2.5. Stage 4: Scoring Function

After the completion of Stage 3, Tree Wrap will
have a filtered list of data regions. From the list of
available data regions, only one data region is chosen
based on the scoring function of this stage assigned to
each of the data regions. Filter Rule in Stage 4 is the
most important component of the data extraction phase
because a good scoring function is needed to
differentiate the correct data region from incorrect
ones.

This filter rule is derived based on Observations 1
and 2. Since data records occupy most of the space in a
web page, we need to represent this property in our
implementation. The best way to deal with this is to
look at the text and images of the data records. It is
noted that the correct data records have more text and
images than the rest of the data records. Therefore we
take into account the total length of the text and the
number of images.

A constant value of 15 is added to the scoring
function for every image detected in the data records.
We also add a value of 1 to the scoring function for
every character encountered in the data records. We
decide to normalize the size of images with respect to
the size of a character. Therefore, we choose a value of
15 to be added to the scoring function for each image
detected assuming that one image has the size of 15
characters on average.

We notice that correct data records usually have
more parent nodes than the rest of the potential data
records. Therefore, we give a value of 150 for every
parent node of the data records. There are several
reasons for the adoption of the various values for the
scoring function. A value of 150 is assigned for the
data records’ parent nodes as these nodes occur less
frequently than the total text length and number of
images. A relatively much smaller value is assigned for
every character encountered in data records as
characters tend to occur in large quantities. Images are

generally larger than character, hence they are given a
value of 15 instead of 1. Tree Wrap also recognizes
separator tags such as
 and <hr> that tend to
occupy space in data records. Therefore, whenever
Tree Wrap encounters these tags, it will assign a value
of 50 to them, assuming that each tag contains 50
characters on the average.

Tree Wrap calculates the value of the scoring
function according to the following equation:
a=NumParentNodesLevel
b=TotalTextLength
c=NumImages
d=NumSeparatorTags
x=Data Region

)5*))50*()15*((()150*()(dcbaxScore +++=

4. EXPERIMENTAL TESTS

4.1. Preparation of datasets

The datasets used in this study are taken from web
pages that contain search engine results. These datasets
are divided into four groups: Dataset 1 with 150,
Dataset 2 with 119, Dataset 3 with 50 and Dataset 4
with 51 web pages. The data distribution for each of the
datasets varies, ranging from academic sites, general
sites to governmental sites.

The first dataset is prepared by the authors. The first
dataset is randomly chosen from the internet. Dataset 1
is publicly available at
http://hawksbill.infotech.monash.edu.my/~jlhong/WIS
H.html. The second and third datasets were taken from
ViNT test bed, available at http://www.
data.binghamton.edu:8080/vints/testbed.html. The
fourth dataset is the TDBW v1.02, obtained from
http://daisen.cc.kyushu-u.ac.jp/TBDW/.

It is worth noting that for all the datasets, each web
page belongs only to a single web site. For example,
Dataset 1 has 150 web pages, therefore there are 150
distinct web sites in it. The datasets contain different
web pages, where none of the web pages chosen for
one of the datasets will occur in any other datasets.
Datasets 2 and 3 are the data originally used to test the
performance of ViNT wrapper. These datasets are then
used to test our wrapper as a useful indicator to see the
accuracy and reliability of our wrapper.

The fourth dataset is the one used for testing in
ViPER [21]. The purpose of using this dataset is to see
the performance of our wrapper compared to ViNT
[17] and DEPTA [35] when tested against a neutral
publicly available dataset.

The total number of web pages used to test our
wrapper amounts to 370. For all the datasets chosen, all
the web pages contain semi structured data records.

We also evaluate the time complexity of our
wrapper with respect to DEPTA and ViNT. We use
datasets 1 to 4 to measure the running time used to

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

51

extract data records for ViNT, DEPTA and our
wrapper. The average time to perform data extraction
for the respective wrappers is recorded. We do not
compare our wrapper with MDR as studies shown in
ViNT [17] and DEPTA [35] indicate that both ViNT
and DEPTA can perform better than MDR [4] and our
experiments show that Tree Wrap is comparatively
better than ViNT and DEPTA.

We further evaluate the robustness of our wrapper
by replacing several components of our wrapper by
available conventional techniques. This step is carried
out to measure the reliability of our wrapper when
these components are replaced. For example, we use
string and tree edit distance algorithms as a
replacement for Dummy Tree Matching for measuring
the similarity of the structure of data records while we
use visual cue (rectangular bounding box of a data
region) as a replacement for heuristic scoring function
to determine the relevant data region. Experimental
results indicate that when using Dummy Tree Matching
and heuristic scoring function, our wrapper is able to
run faster and more accurately. We also test the
reliability of our wrapper by removing the Stage 1
(Filter HTML Tags) and by changing the number of
nodes for Stage 3 (Filter Number of Nodes) of our
filtering modules. Experimental tests indicate that the
above do not affect the accuracy of our wrapper.

4.2. Method of Evaluation

HTML web page parsing is a difficult task.
Therefore, it is very unlikely that a publicly available
parser can achieve 100% parsing rate. For those web
pages that the parser failed to parse, we rule them out
from consideration in our evaluation. The experiment
was conducted with a PC specification of Pentium 4 2.4
Ghz, with 1GB of RAM memory. The measures of
wrapper’s efficiency are based on three factors, the
number of actual data records to be extracted, the
number of extracted data records from the test cases,
and the number of correct data records extracted from
the test cases. Based on these three values, precision
and recall are calculated according to the formulas:
Recall=Correct/Actual*100
Precision=Correct/Extracted*100

4.3. Data Extraction Results

4.3.1. Dataset 1

TreeWrap outperforms DEPTA and ViNT both in
terms of recall and precision rates (Table1). The
strength of our wrapper lies in the testing of Dataset 1.
The result in Table1 shows that our wrapper
significantly outperforms the works of ViNT and
DEPTA. Our wrapper incorporates an accurate tree
matching algorithm which could detect similarity of
data records. Besides, the filtering technique used in

Component 2, Stage 4 allows extraction of correct data
records. However, there are several odd cases which
our wrapper did not consider for. Some search engine
results have search identifier (e.g. Search query “Web”
returns 10 results) which also has similar parent node to
that of relevant data records. In some cases, this
identifier also has similar tree structures as data
records’ tree structures. This search identifier will
eventually pass through all the filtering stages
successfully and extracted as data records.

Table 1. Results of Dataset 1 for Tree Wrap, ViNT and

DEPTA
Term DEPTA ViNT Tree Wrap
Actual 1766 1766 1766
Extracted 1258 2015 1742
Correct 1183 1486 1729
Recall 66.99% 84.14% 97.90%
Precision 94.04% 73.75% 99.25%

4.3.2. Dataset 2

The test on Dataset 2 shows that Tree Wrap has
improvements over the works of DEPTA and ViNT
(Table 2). Our result shows that we obtained better
recall and precision rates than that of DEPTA and
ViNT. This could be attributed to the fact that our
dummy tree matching algorithm is more efficient in
detecting the similarity of structured data records than
the algorithms in DEPTA and ViNT.

Table 2. Results of Dataset 2 for Tree Wrap, ViNT and

DEPTA
Term DEPTA ViNT Tree Wrap
Actual 1655 1655 1655
Extracted 1027 1612 1644
Correct 994 1583 1635
Recall 60.06% 95.65% 98.79%
Precision 96.79% 98.20% 99.45%

4.3.3. Dataset 3

Similar to Dataset 2, test on Dataset 3 shows
improvements in our work compared to the works of
DEPTA and ViNT (Table 3).

Table 3. Results of Dataset 3 for Tree Wrap, ViNT and

DEPTA
Term DEPTA ViNT TreeWrap
Actual 830 830 830
Extracted 655 822 812
Correct 612 806 806
Recall 73.73% 97.11% 97.11%
Precision 93.44% 98.05% 99.26%

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

52

4.3.4. Dataset 4
Tree Wrap wrapper performs better than DEPTA

and ViNT on this dataset (Table 4). As shown in the
table, Tree Wrap produces a recall value of over 10%
higher than ViNT.

Table 4. Results of Dataset 4 for Tree Wrap, ViNT and

DEPTA
Term DEPTA ViNT TreeWrap
Actual 693 693 693
Extracted 402 661 692
Correct 388 618 688
Recall 55.99% 89.18% 99.28%
Precision 96.52% 93.49% 99.42%

4.3.5. Running time of our wrapper

We evaluate the running time of our wrapper with
respect to DEPTA [35] and ViNT [17]. We compare
Dummy Tree Matching algorithm with the tree
matching algorithm of DEPTA. Experimental results
show that our wrapper runs faster than DEPTA (Table
5). This result signifies that our dummy tree matching
algorithm runs in a time complexity smaller than that of
DEPTA. Our wrapper also runs faster than ViNT, a
visual wrapper using visual cue and DOM Tree
structure of data records.

Table 5. Running time of our wrapper, DEPTA, and
ViNT

Wrappers Running time (avg in s)
TreeWrap 215
DEPTA 334
ViNT 1136

4.3.6. Evaluation of the Filter HTML Tags

To evaluate the stability and effect of Filter HTML
Tags in our wrapper, we test our wrapper on Datasets 1,
2, 3, and 4 by removing the HTML Tags Filter. Results
are presented in Table 6. Our results show that
removing the HTML Tags Filter has no marked effect
on the overall performance of our wrapper. Slightly
higher accuracy rates are noted in Datasets 1 and 2. The
higher accuracy rate could be attributed to the presence
of web pages containing search results with simple
structures, hence our wrapper is able to extract these
data records. However, as shown in Table 6, with
HTML Tags Filter included, there is a decrease in
running time of our wrapper although the precision and
recall rates are slightly reduced. This additional
increase in speed will be helpful in meta search engine
application and large scale web comparisons.

4.3.7. Evaluation of the Similarity Check of Data
Records

As stated earlier, we test the performance of our

wrapper by replacing Dummy Tree Matching with
String Edit Distance algorithms. We incorporate two
types of string edit distance techniques (the simple
Euclidean distance and the more common Levenshtein
edit distance [30]) using the work of
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
and test our wrapper on Datasets 1 to 4. Experimental
results indicate that String Edit Distance algorithms
cannot improve the performance of our wrapper as can
be seen from the recall and precision rates obtained
(Table 7). This test also shows that Dummy Tree
Matching algorithm is an important component of our
wrapper as it contributes in the accuracy of data
extraction.

We also test the performance of our wrapper by
replacing our Dummy Tree Matching algorithm by the
tree matching algorithm of DEPTA [35]. Results
indicate that although the tree matching algorithm of
DEPTA is accurate, it is slow in operation as can be
seen from the running time results (Table 8). Our
Dummy Tree Matching algorithm is not only accurate,
but it can also perform the function of a tree matching
algorithm at a reduced running time complexity of O(n)
(n is the number of nodes in the tree).

4.3.8. Evaluation of Filter Number of Nodes

We also test our wrapper by changing the number
of data records to be filtered out from 3 to 2 in the stage
3 filtering process: Number of nodes. Results show that
the recall and precision rates will decrease slightly
when 2 data records instead of 3 data records are used
(Table 9). This is because the menus, a data region
containing highly dissimilar data records are extracted
instead of relevant data region. As relevant data region
which contains only two data records is smaller in size
compared to other data region such as menu bars, they
are more difficult to be extracted compared to other
data region.

4.3.9. Evaluation of Locating Correct Data Region

To further measure the reliability of our wrapper,
we test our wrapper by replacing the component which
determines the correct data region. We used the
algorithm of VSDR (determine the large and centrally
located data region) as a replacement for Component 2,
Stage 4 of our wrapper (Largest Score Filtration). As
the algorithm in VSDR requires visual cue for its
implementation, we used ICE browser available at
http://www.icesoft.com/ as part of our wrapper design.
This browser is able to parse a HTML page and provide
visual cue in addition to DOM Tree. Experimental
results show that our technique is able to obtain more
accurate results than the technique using the
rectangular bounding box to locate the relevant data
region (Table 10). However, our test also indicates that
the technique using rectangular bounding box is slow in

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

53

operation, thus it is a limitation for large scale web
comparisons. The increase in running time is due to the
extra processing needed to obtain visual information
from the underlying browser rendering engine during
the parsing phase. Experimental results also indicate

non visual wrappers like Tree Wrap which use fast
heuristic techniques could also attain similar
performances as visual wrappers.

Table 6. Test on Filter HTML Tags

Datasets With HTML Tags Filter Without HTML Tags Filter

Recall Precision Time (avg. msec) Recall Precision Time (avg. msec)

Dataset 1 97.90% 99.25% 215 98.19% 99.54% 254
Dataset 2 98.79% 99.45% 187 98.97% 99.64% 201
Dataset 3 97.11% 99.26% 196 97.11% 99.26% 208
Dataset 4 99.28% 99.42% 178 99.28% 99.42% 185

Table 7. Performance of Dummy Tree Matching and String Edit Distance
Datasets Dummy Tree Matching Levenshtein distance Euclidean distance

Recall Precision Recall Precision Recall Precision

Dataset 1 97.90% 99.25% 80.29% 77.61% 60.79% 69.67%
Dataset 2 98.79% 99.45% 67.61% 81.32% 41.69% 64.13%
Dataset 3 97.11% 99.26% 75.18% 75.72% 36.63% 53.62%
Dataset 4 99.28% 99.42% 79.65% 81.42% 64.21% 75.28%

Table 8. Performance of Dummy Tree Matching and DEPTA Tree Matching algorithm
Datasets Dummy Tree Matching DEPTA Tree Matching

Recall Precision Time (avg. msec) Recall Precision Time (avg. msec)

Dataset 1 97.90% 99.25% 215 93.54% 98.10% 638
Dataset 2 98.79% 99.45% 187 95.83% 98.88% 427
Dataset 3 97.11% 99.26% 196 95.06% 97.17% 441
Dataset 4 99.28% 99.42% 178 94.95% 98.21% 354

Table 9. Test on Filter Number of Nodes
Datasets Less than 3 Number of Nodes Less than 2 Number of Nodes

Recall Precision Recall Precision

Dataset 1 97.90% 99.25% 95.64% 99.17%
Dataset 2 98.79% 99.45% 96.56% 99.25%
Dataset 3 97.11% 99.26% 94.82% 98.62%
Dataset 4 99.28% 99.42% 95.82% 98.81%

Table 10. Performance of Scoring Function and Visual Cue
Datasets Scoring Function Rectangular Bounding Box

Recall Precision Time (avg.) Recall Precision Time (avg.)

Dataset 1 97.90% 99.25% 215 89.69% 94.00% 552
Dataset 2 98.79% 99.45% 187 89.55% 96.05% 386
Dataset 3 97.11% 99.26% 196 96.63% 98.53% 328
Dataset 4 99.28% 99.42% 178 95.82% 97.36% 383

5. CONCLUSIONS

In this study we propose a non-visual wrapper Tree
Wrap which is able to extract data records from
structured web pages. Our results show that our
wrapper is able to obtain results as well as and in most
cases better than the current state of the art visual

wrappers such as ViNT and DEPTA. Our approach
uses a set of filtering methods based on the DOM Tree
structure of data records and a more accurate algorithm
to calculate the space occupied by the data region. Our
dummy tree matching algorithm simplifies the
complicated process of comparing every node of each

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

54

tree to check the similarity of two trees as used in the
tree matching algorithm. We use the number of nodes
of a tree to compare the similarity of two trees. This
procedure improves the overall running time without
compromising the accuracy, making it suitable for large
scale web comparisons. Our stability tests on each of
the heuristic data extraction components of our wrapper
also show that Dummy Tree Matching and scoring
function are the most important components for
extracting data records.

REFERENCES
[1] Weiyi Meng H. and Yu, C.; “Mining Templates from

Search Result Records of Search Engines”, in
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining
San Jose, California, USA: ACM, (2007)

[2] Zhao H., Meng W., Wu Z., Raghavan V. and Yu C.;
“Fully Automatic Wrapper Generation for Search
Engines”, in Proceedings of the 14th international
conference on World Wide Web Chiba, Japan: ACM,
(2005)

[3] Ricardo A. Baeza-Yates, “Algorithms for String
Searching” SIGIR Forum, Vol. 23, pp. 34-58, (1989)

[4] Zhai Y. and Liu B.; “Structured Data Extraction
from the Web Based on Partial Tree Alignment”
IEEE Transaction on Knowledge and Data
Engineering, Vol. 18, pp. 1614-1628, (2006)

[5] Liu B. and Zhai Y.; “NET – A System for Extracting
Web Data from Flat and Nested Data Records”, in
Web Information Systems Engineering – WISE 2005,
pp. 487-495, (2005)

[6] Chang,Ch.H, Kayed M., Ramzy Girgis M. and
Shaalan Kh.; “A Survey of Web Information
Extraction Systems”, Transactions on Knowledge
and Data Engineering, Vol. 18, pp. 1411-1428, (2006)

[7] Tao Cui and David W. Embley, “Automatic Hidden-
Web Table Interpretation, Conceptualization, and
Semantic Annotation”, Data Knowl. Eng., Vol. 68,
pp. 683-703, (2009)

[8] Gusfield D.; Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology: Cambridge University Press, (1997)

[9] Sankoff David and Kruskal Joseph, Time Warps,
String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison: Technical Report
of Center for the Study of Language and Inf, (1999)

[10] Tanaka E. and Tanaka K., “The Tree-to-tree Editing
Problem," Int’l J. Pattern Recognition and Artificial
Intelligence, pp. pp. 221-240, (1988)

[11] Valiente G.; “An Efficient Bottom-up Distance
between Trees”, in Proc. Eighth Int’l Symp. String
Processing and Information Retrieval, pp. pp. 212-
219, (2001)

[12] Das G., Fleischer R., Gasieniec L., Gunopulos D. and
Karkkainen Juha; “Episode Matching”, in
Proceedings of the 8th Annual Symposium on
Combinatorial Pattern Matching, (1997)

[13] Miao G., Tatemura J., Hsiung W.P., Sawires A. and
Louise E. Moser; “Extracting Data Records from
the Web Using Tag Path Clustering”, in

Proceedings of the 18th international conference on
World Wide Web, Spain, Madrid, (2009)

[14] Navarro Gonzalo; “A Guided Tour to Approximate
String Matching”, ACM Comput. Surv., Vol. 33, pp.
31-88, (2001)

[15] Alberto H.F. Laender, Berthier A. Ribeiro-Neto,
Altigran S. da Silva, and Juliana S. Teixeira; “A Brief
Survey of Web Data Extraction Tools”, SIGMOD
Rec., Vol. 31, pp. 84-93, (2002)

[16] Apostolico A. and Guerra C.; The Longest Common
Subsequence Problem Revisited, Algorithmica 2,
(1987)

[17] Hong J.L., Siew E. and Egerton S.; “DTM-
Extracting Data Records from Search Engine
Results Page using Tree Matching Algorithm”, in
Proceedings of the 1st international conference on
Soft computing and pattern recognition: IEEE, (2009)

[18] Hong J.L., Siew E. and Egerton S.; “Information
Extraction for Search Engines Using Fast Heuristic
Techniques”, Data Knowledge Engineering, Vol. 69,
pg 169-196, (2010)

[19] Wang J. and Frederick H. Lochovsky; “Data
Extraction And Label Assignment For Web
Databases”, in Proceedings of the 12th international
conference on World Wide Web Budapest, Hungary:
ACM, (2003)

[20] Simon K. and Lausen G.; “Viper: Augmenting
Automatic Information Extraction with Visual
Perceptions”, in Proceedings of the 14th ACM
international conference on Information and
knowledge management Bremen, Germany: ACM,
(2005)

[21] Tai K. Ch.; “The Tree-to-Tree Correction
Problem”, J. ACM, Vol. 26, pp. 422-433, (1979)

[22] Li L., Liu Y., Obregon A. and Weatherston M.;
“Visual Segmentation-Based Data Record
Extraction from Web Documents”, in Information
Reuse and Integration, 2007. IRI 2007. IEEE
International Conference, pp. 502-507, (2007)

[23] lvarez M., Pan A., Raposo J., Bellas F. and Cacheda
F.; “Extracting Lists Of Data Records From Semi-
Structured Web Pages”, Data Knowl. Eng., Vol. 64,
pp. 491-509, (2008)

[24] Song M., Song Il-Yeol, Hu Xiaohua, and Robert B.
Allen; “Integration of Association Rules and
Ontologies for Semantic Query Expansion”, Data
Knowl. Eng., Vol. 63, pp. 63-75, (2007)

[25] Arasu A. and Garcia-Molina H.; “Extracting
Structured Data from Web Pages”, in Proceedings
of the 2003 ACM SIGMOD international conference
on Management of data San Diego, California: ACM,
(2003)

[26] Saul B. Needleman and Christian D. Wünsch; “A
General Method Applicable To the Search for
Similarities In The Amino Acid Sequences Of Two
Proteins”, Journal of Molecular Biology, (1970)

[27] Jiang T., Wang L. and Zhang K.; “Alignment of
Trees - An Alternative to Tree Edit”, “in
Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching: Springer-Verlag,
(1994)

[28] Crescenzi V., Mecca G. and Merialdo P.;

Majlesi Journal of Electrical Engineering Vol. 4, No. 2, June 2010

55

“RoadRunner: Towards Automatic Data
Extraction from Large Web Sites”, in Proceedings
of the 27th International Conference on Very Large
Data Bases: Morgan Kaufmann Publishers Inc.,
(2001)

[29] Levenshtein Vladimir I; “Binary Codes Capable Of
Correcting Deletions, Insertions, And Reversals”
Soviet Physics Doklady, Vol. 10, pp.707, (1966)

[30] Liu Wei, Meng Xiaofeng, and Meng,Weiyi; “Vision-
based Web Data Records Extraction”, ACM Ninth
International Workshop on the Web and Databases
(WebDB 2006), (2006)

[31] Liu W., Meng X., and Meng W.; “ViDE: A Vision-
based Approach for Deep Web Data Extraction”,
IEEE Transaction on Knowledge and Data
Engineering, (2009)

[32] Su W., Wang J. and Frederick H. Lochovsky; “ODE:
Ontology-assisted Data Extraction”, ACM
Transactions on Database Systems, (2009)

[33] Yang W.; “Identifying Syntactic Differences
between Two Programs”, Softw. Pract. Exper., Vol.
21, pp. 739-755, (1991)

[34] Zhai Y. and Liu B.; “Web Data Extraction Based on
Partial Tree Alignment”, in Proceedings of the 14th
international conference on World Wide Web Chiba,
Japan: ACM, (2005)

[35] Liu B., Grossman R. and Zhai Y.; “Mining Data
Records in Web Pages”, in Proceedings of the ninth
ACM SIGKDD international conference on
Knowledge discovery and data mining Washington,
D.C.: ACM, (2003)

