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ABSTRACT: 
Orthogonal moment functions have long been used in image analysis. This paper proposes a novel approach based on 
4x4 discrete orthogonal Tchebichef moment for fast and efficient image compression. The method incorporates a 
simplified mathematical framework technique using matrices as well as a block-wise reconstruction technique to 
eliminate possible occurrences of numerical instabilities at higher moment orders. Then the 4x4 Tchebichef Moment 
Transform and Discrete Cosine Transform have been compared. The results show that the 4x4 Tchebichef moment 
has significant advantages over the other technique in terms of its error reconstruction, average bit-length of Huffman 
codes and image quality.  Moreover, Tchebichef moment provides a compact support to sub-block reconstruction for 
image compression. Tchebichef Moment Compression clearly performs potentially better for broader domains on real 
digital images and graphically generated images. 
 
KEYWORDS: Image Coding, Tchebichef Moment Transforms, Orthogonal Moment Functions, JPEG Compression, 
Discrete Cosine Transform. 
  
1.  INTRODUCTION 

Moment functions have been widely used in several 
computer vision and related image processing 
applications.  For examples, they are used in image 
analysis [1], texture segmentation [2], multispectral 
texture [3], pattern recognition [4][5], image 
watermarking [6], monitoring crowds [7]-[9], image 
reconstruction [10][11] and image projection [12]. 

Image compression is the art or science of efficient 
coding of picture data with a target to decrease the 
number of bits required in performing an image [13]. 
The benefits of image compression are saving time, for 
image transmission and memory, for image storage. 

A block-wise moment computation scheme which 
avoids numerical instabilities to yield a perfect 
reconstruction has been introduced in [14]. Therefore, 
it is feasible for moment functions to be used in image 
compression [15]-[17]. 

The discrete Tchebichef Moment Transform (TMT) 
is a transform method using Tchebichef polynomials 
[15][18], which has good energy compactness 
properties and works better for a certain class of 

images. Due to these advantages, this paper analyzes 
the reconstruction aspects on real and graphical images 
for compression. Using the JPEG Compression 
platform, 4x4 TMT has been used here instead of 
Discrete Cosine Transform (DCT). The Tchebichef 
Moment Compression that is developed here is meant 
for smaller computing device.  

This paper is organized as follows: Section 2 and 3 
describes the Tchebichef moment and Discrete Cosine 
Transform. The matrix implementation of moment 
equation is reviewed in Section 4. Section 5 presents 
the comparison between JPEG baseline coding and 4x4 
Tchebichef Moment Compression. The advantage of 
using 4x4 Tchebichef moments compression is 
discussed in Section 6 and conclusion is given in 
Section 7. 

 
2.  TCHEBICHEF MOMENTS 

Let Tmn be Tchebichef moments based on a discrete 
orthogonal polynomial set {tn(x)} defined directly on 
the image space [0, S–1], thus satisfying all the 
required analytical properties without any numerical 
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approximation errors, Tmn will be: 
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for m, n = 0, 1, 2, …, S −1. 
For detail description of the properties of 

Tchebichef polynomials and the definitions of related 
terms such as the squared- norm ρ(), please refer to 
[11].  The Tchebichef orthogonal polynomials set 
{tn(x)} can be generated iteratively with initial 
conditions, 
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and the general Tchebichef orthogonal polynomial 
equation is represented as: 
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for n = 2, 3, …, S–1. 
The first few discrete orthogonal Tchebichef 

polynomials are shown in Fig. 1. The above definition 
uses the following scale factor [18] for the polynomial 
of degree 

β (n, S)= Sn (3) 

The set {tn(x)}, has a squared-norm given by  
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Fig. 1. The discrete orthogonal Tchebichef polynomials 

tn(x) for n = 0, 1, 2 and 3. 
 

Discrete orthogonal Tchebichef moment has its own 
advantage in image processing which has not been fully 
investigated. Since computer image data operates on 
integers, discrete orthogonal Tchebichef moment is 
suitable for computer image processing.  

As shown in Fig. 1 the polynomial domain is 
discrete over natural numbers. Unlike continuous 
orthogonal transform, discrete orthogonal Tchebichef 
moment is capable of performing image reconstruction 
exactly without any numerical errors [14]. 
 
3.  DISCRETE COSINE TRANSFORM 

Since a comparison between the efficient 
techniques of Tchebichef Moment and Discrete Cosine 
Transform (DCT) is to be done, thus DCT is introduced 
in this section. DCT polynomial set {Cn(x)} can be 
generated iteratively as follows, 
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The general DCT polynomial equation is 
represented as: 

,1cos)(
nS

xnxC n ×⎟
⎠
⎞

⎜
⎝
⎛=

π

 
(5) 

for n = 2, 3, …, S–1. 
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-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

x

C n (x )

 
Fig. 2. The Discrete Cosine Transform polynomials 

Cn(x) for n = 0, 1, 2 and 3. 
 
The first few DCT polynomials above are shown in 

Fig. 2 for visual purposes. According to [19], DCT is 
approaching a statistically optimal transform for highly 
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correlated data with a first-order Markov model which 
is one of the most widely used transforms in digital 
signal processing. The kernel for the DCT is derived 
from the orthonormal Tchebichef polynomials, 
resulting from the following definition of g’ [15]: 
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DCT is a separable linear transform, which the two-
dimensional transform is equivalent to a one-
dimensional DCT performed along a single dimension 
followed by a one-dimensional DCT in the other 
dimension [20]. The definition of the two-dimensional 
DCT for an input image A and output image B is: 
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4.  MATRIX IMPLEMENTATION OF MOMENT 
EQUATIONS 

This section provides a compact representation of 
the moment equations and the inverse moment 
transform. The matrix based framework makes the 
problem description more amenable to mathematical 
programming languages such as MATLAB, MAPLE 
and the code is less prone to errors when processing 
large images.   

In the following discussion, from (1) the moment 
set consists of all orders of moments with the values in 
range 0 < m, n < S of block size 0<S<N, where the 
image size is NxN pixels. The image matrix was 
subdivided into 4x4 pixels where the orthogonal 
moment on each block was computed independently. 
The block size S is taken to be 4 and extendable to 8, 
16 or 32. Based on the current 32-bit processor and 
word size, it is recommended to use S = 16 for large 
industrial images in addition to the current popular S = 
8 as in JPEG. 

For simplicity, consider the discrete orthogonal 

moment definition (1) above, and define a kernel 
matrix K(SxS)  as follows: 
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Let the image block intensity matrix F(SxS) with f() 
denoting the intensity values be 
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The matrix T(SxS)  of moments defined according to 
(2) can now be formed as 

T = KT F K    (8) 

The inverse moment relation used to reconstruct the 
image block from the above moment set is now simply 
calculated by, 

G = K T KT    (9) 

where G(SxS) denotes the matrix (image) of the 
reconstructed intensity values  g(i, j). The visual 
representation of the matrix (9) is given in Fig. 3. The 
resulting compressed image shall only consist of the 
moment coefficients. 

 
Fig. 3. The visual representation of the block matrices. 
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5.  JPEG BASELINE CODING VERSUS 4X4 
TCHEBICHEF MOMENT COMPRESSION 

JPEG is an international compression standard 
which is designed to support a wide variety of 
applications for continuous-tone images. JPEG baseline 
is a simple lossy technique, which is a DCT-based 
method, has been commonly used today and is 
sufficient for a large number of applications. A good 
review of the JPEG compression standard may be 
found in [21]. 

Using the JPEG Compression platform, 4x4 TMT 
has been used here instead of DCT. Fig. 4 shows how 
the TMT performs on the 4x4 blocks of the image data. 
In order to achieve good compression performance, 
correlation between the color components is first 
reduced by converting the RGB color space into a 
décor-related color space, a RGB to YCbCr conversion. 
RGB shall be separated into a luminance part (Y) and 
two chrominance parts (Cb and Cr) as recommended by 
the JPEG standard. 

To apply TMT, the image is divided into 4x4 blocks 
of pixels. The 4x4 blocks are processed from left-to-
right and from top-to-bottom. After the transformation, 
two main issues occur, which are: the quantization 
process and the entropy coding. 

 

 
Fig. 4. Tchebichef Moment Compression consists of 

TMT instead of 2-dimensional DCT. 
 
5.1.  Quantization 

For each layers, the moment coefficients shall be 
quantized separately. The quantization process has the 
key role in JPEG compression which removes the high 
frequencies present in the original image. This is done 
due to the fact that the eye is much more sensitive to 
lower spatial frequencies than to higher frequencies. 
This is done by dividing values at high indexes in the 
vector (the amplitudes of higher frequencies) with 
larger values than the values by which the amplitudes 
of lower frequencies are divided by. 

The Standard JPEG luminance and chrominance 

quantization tables QL and QR are given below, 
respectively.  
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The 2-dimensional DCT performed on the 4x4 sub-

blocks of the image data generates 4-bit gains. The 
quantization table for luminance starts with 24 = 16. 
However, Tchebichef moment generates only 2-bit 
gains. The quantization tables for Tchebichef moment 
should start with 22 = 4. The second author proposed 
the corresponding luminance and chrominance 
quantization tables QML and QMR below for Tchebichef 
Moment Compression. These tables may be generated 
mathematically in a friendlier manner. 
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80 traditionally popular images have been selected 
and went through the basic image compression 
experimental validation. These images are categorized 
into 40 real images and 40 graphical images, 
respectively. All the images are raw RGB 3-layer 
images of size 512x512 pixels. 
 
5.2.  Entropy Huffman Coding 

After the transformation and quantization over a 
4x4 image sub-blocks, the new 4x4 sub-block shall be 
reordered in a zigzag scan into a linear array as shown 
in Fig. 5. The first coefficient is the DC component and 
the other 15 coefficients are AC component. Because 
the DC coefficient contains a lot of energy, it usually 
has much larger value than AC coefficients, and there 
is a very closer relation between the DC coefficients of 
adjacent blocks. Thus, DC coefficient is differentially 
encoded from consecutive 4x4 blocks rather than its 
true value.  

 

0 1 5 6 

2 4 7 12 

3 8 11 13 

9 10 14 15 

Fig. 5. Zigzag reordering pattern. 
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The basic entropy coding is used here. It consists of 
the Huffman Coding as recommended in the JPEG 
standard. There are four Huffman tables; two for 
encoding DC coefficients and two for encoding AC 
coefficients. They are DC luminance, DC chrominance, 
AC luminance and AC chrominance tables. The 
Huffman tables used during the compression process 
are stored as header information in the compressed 
image file in order to uniquely decode the coefficients 
during the decompression process [22]. 

The average bit-length for Huffman codes between 
DCT and TMT for real and graphical set of images 
have been calculated. TMT requires approximately the 
same average bit-length as DCT as shown in Table 1 
for real images and Table 2 for graphical images. This 
indicates that TMT has the same compression rate with 
DCT during encoding process. 
 

Table 1. Average Bit Length for Huffman codes 
between DCT and TMT for real images 

Real Image DCT TMT Diff. 
DC Luminance 4.1051 4.1382 0.0331 
DC Chrominance 1.8351 1.8877 0.0526 
AC Luminance 1.8425 1.8558 0.0133 
AC Chrominance 1.0386 1.0439 0.0053 

 
Table 2. Average Bit Length for Huffman codes 

between DCT and TMT for graphical images 
Graphical Image  DCT TMT Diff. 
DC Luminance 4.0425 4.0451 0.0026 
DC Chrominance 2.8128 2.8703 0.0575 
AC Luminance 1.9571 1.9913 0.0342 
AC Chrominance 1.1657 1.1791 0.0134 

 
5.3.  Error Analysis 

Calculating the energy compactness of a transform 
cannot be calculated directly, and instead is 
approximated by analyzing the reconstruction error of 
the transform. The full image reconstruction error is 
calculated by the difference between the input and 
output images for each transform. Thus, it can be 
defined as 
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where the third index in the intensity value refers to the 
three color RGB layers. 

Apart from that, some other measurements are 
required to represent the reconstruction accuracy. Mean 
Squared Error (MSE) calculates the average of the 
square of the error. The error is the amount by which 
the estimator differs from the quantity to be estimated. 

The difference occurs because of randomness or 
because the estimator does not account for information 
that could produce a more accurate estimate. The MSE 
is defined as 
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which for two RNM ×× color images I and K where 
one of the images is considered a noisy approximation 
of the other. 

The standard Peak-Signal-to-Noise Ratio (PSNR) is 
used as well. It is most commonly used as a measure of 
quality of reconstruction of compression. A higher 
PSNR would indicate that the reconstruction is of 
higher quality.   
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IMAX is the maximum possible pixel value of the 
image. In this case, when the pixels are represented 
using 8 bits per sample, its value will be 255. 

Moreover, Average Difference (AD) and Maximum 
Difference (MD) are also been calculated for the 
comparison. AD is to measure the average difference 
that occurred between original image and reconstructed 
image, while MD is to measure the maximum 
difference that occurred between the original image and 
reconstructed image. The formulas are defined as 
below 
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On average, TMT performs consistently better than 
DCT in quality image reconstruction for real and 
graphical images as shown in Table 3 and Table 4 
respectively. The results show that TMT produces 
smaller reconstruction errors and higher PSNR. This 
indicates that the TMT encodes better quality for 
compressed images. 

 
Table 3. Average error score between DCT and TMT 

for 40 real images 
Real Image DCT TMT Diff. 
Full Error 4.2852 4.0167 -0.2685 
MSE 36.3798 32.7326 -3.6472 
PSNR 33.4683 33.7317 0.2634 
AD -0.0241 -0.0655 -0.0414 
MD 55.8250 45.9500 -9.8750 
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Table 4. Average error score between DCT and TMT 
for 40 graphical images 

Graphical Image DCT TMT Diff. 

Full Error 3.8875 3.2319 -0.6556 

MSE 37.7305 28.1534 -9.5771 

PSNR 34.0483 34.8735 0.8252 

AD -0.0558 -0.1102 -0.0544 

MD 66.7250 50.8750 -15.8500 
 
The Tchebichef moment performs better in this case 

especially for graphical images as expected. This has 
been due to the linear first order Tchebichef polynomial  

S
Sxxt −+

=
12)(1

. 

Moreover, from the results shown in tables [23] 
below, it is indicated that TMT has the same 
compression rate with DCT during the encoding 
process. 4x4 image block coding is more compact than 
8x8 in terms of lossless compression such as Huffman 
codes with the same image reconstruction quality as 
numerically shown in Table 5 and Table 6. 

 
Table 5. Average bit length of Huffman codes between 

DCT and TMT for real images 

Real Image 
4 x 4 8 x 8 

DCT TMT DCT TMT 

DC Luminance 4.1051 4.1382 5.7730 4.7660 

DC Chrominance 1.8351 1.8877 2.7635 2.0237 

AC Luminance 1.8425 1.8558 2.8395 1.7680 

AC Chrominance 1.0386 1.0439 2.9970 2.3589 

 
Table 6. Average bit length of Huffman codes between 

DCT and TMT for graphical images 

Graphical Image 
4 x 4 8 x 8 

DCT TMT DCT TMT 

DC Luminance 4.0425 4.0451 5.5088 4.9000 

DC Chrominance 2.8128 2.8703 4.2354 3.2357 

AC Luminance 1.9571 1.9913 2.1093 1.2124 

AC Chrominance 1.1657 1.1791 2.4756 2.0027 

 
Fig. 6 shows the 400% compressed image of 

Baboon, zoomed to the right eye, using DCT and TMT 
methods, along with the original image. Based on Fig. 
6b, DCT gives a smoother output whereas the output of 

TMT projected sharper and closer in consider to the 
original image in Fig. 6c. In refer to numerical analysis; 
the reconstruction error for Baboon right eye via DCT 
method is 6.9681 while the reconstruction error for 
Baboon right eye via TMT method is 6.7007. This 
indicates that the TMT encodes better quality for 
Baboon compressed image. Nonetheless, similar results 
have been observed in image projection [24] as well. 

Even though in real life it is ideally rare to find 
straight lines, in reality there are many near straight 
curves within significant portions of an image 
especially among graphical images. Thus, Tchebichef 
moment converges faster than DCT via fewer low 
frequency coefficients. 

 

(a) Original 

(b) DCT (c) TMT 

Fig. 6. Comparison of compressed images from (a) 
Original image using (b) DCT and (c) TMT methods. 

 
5.4.  Frequency Distribution 

In this section, a discussion on the frequency 
distribution of the transform coefficients on forty real 
images via TMT transformation technique is presented. 
Frequency distribution is a summary of the values 
obtained and the frequencies which these values have 
occurred. 

Fig. 7(a)-(d) shows the frequency distribution of 
DC coefficients for luminance, DC coefficients for 
chrominance, AC coefficients for luminance and AC 
coefficients for chrominance via the Tchebichef 
Moment Transform on forty real images, respectively. 
The frequency decreases exponentially from the center 
coefficients of zero. This characteristic can be exploited 
in the cause of generating the lossless codes of the 
TMT coefficients for compression. 
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6.  THE ADVANTAGES OF 4X4 TCHEBICHEF 
MOMENT COMPRESSION 

Image is becoming an important element in daily 
life. Computing devices is getting smaller and 
affordable. Current popular small computing device 
such as mobile phones require a lot of image 
transmission and processing. It is always essential to 
have efficient image compression technique which is 
scalable and portable to smaller computing device such 
as personal digital assistance and mobile phones. 

The Tchebichef Moment Compression that has been 
developed in this paper is meant for smaller computing 
devices. The efficiency of Tchebichef Moment 
Compression is much higher than of DCT in terms of 
the compression performance. As proposed in [25], a 
new fast 4x4 forward Discrete Tchebichef Transform 
algorithm can also be used as the base core for TMT 
computation using recursive reduction of polynomial 
orders. The experimental results have shown that the 
proposed algorithm reduces the time taken to transform 
images of different size efficiently.  

In addition, this Tchebichef Moment Compression 
has the potential to be applicable not only for 
continuous natural digital images but also for generic 
artificial images generated by graphical software. 
Concurrently, it has lower computational complexity 
since it does not require special algorithms for DCT 
[26]. This advantage makes it simpler and a more 
feasible software implementation for new software and 
hardware developers.  

The Tchebichef Transform has the additional 
advantage of requiring the evaluation of only algebraic 
expressions, whereas certain implementations of DCT 

require lookup tables for computing trigonometric 
functions [25]. Two important characteristics of 
Tchebichef moments are:  

i. a discrete domain of definition which matches 
exactly with the image coordinate space, and 

ii. absence of numerical approximation terms 
allows a more accurate representation of image 
features than otherwise possible using 
conventional moments [11]. 

 
7.  CONCLUSION 

This paper proposes the TMT as a possible 
alternative to DCT for applications in image 
compression and reconstruction. Discrete orthogonal 
moment using Tchebichef polynomials as basic 
functions were initially introduced as a feature 
descriptor that eliminates many problems associated 
with geometric as well as continuous moment functions 
like Zernike and Legendre moments.  

Images can also be exactly reconstructed from a 
complete set of Tchebichef Discrete Orthogonal 
Moments. This paper also proposes a simplified matrix-
based implementation. At the same time, the 
experimental results show that the Tchebichef moment 
provides better quality with the same compression rate 
on small computing devices via 4x4 sub-block 
reconstruction compression. This is evidenced by 
obtaining a smaller reconstruction error and similar 
average bit-length of Huffman codes. The Tchebichef 
Moment Compression has the potential to perform 
better for broader domains on real digital images and 
graphically generated images. 

 
 
 
 

(a) The frequency distribution of DC coefficients for 
luminance. 

(b) The frequency distribution of DC coefficients for 
chrominance. 
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(c) The frequency distribution of AC coefficients for 

luminance. 
(d) The frequency distribution of AC coefficients for 

chrominance. 

Fig. 7. The preliminary analysis for frequency distribution via Tchebichef Moment Transform on forty real images. 
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