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ABSTRACT: 
Here a fully 3D algorithm for automatic liver segmentation from CT volumetric datasets is presented. The algorithm 
starts by smoothing the original volume using anisotropic diffusion. The coarse liver region is obtained from the 
threshold process that is based on a priori knowledge. Then, several morphological operations is performed such as 
operating the liver to detach the unwanted region connected to the liver and finding the largest component using the 
connected component labeling (CCL) algorithm. At this stage, both 3D and 2D CCL is done subsequently. However, 
in 2D CCL, the adjacent slices are also affected from current slice changes. Finally, the boundary of the liver is refined 
using graph-cuts solver.  Our algorithm does not require any user interaction or training datasets to be used. The 
algorithm has been evaluated on 10 CT scans of the liver and the results are encouraging to poor quality of images. 
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1.  INTRODUCTION 
Recently, researchers of radiology and computer 

science struggle to solve liver segmentation from 
Computed Tomography (CT) image datasets either 
using semi-automatic [1], [3], [6], [9], [21] or fully 
automatic segmentation approaches [4], [7], [8], [14], 
[16], [18], [19]. Despite the great efforts put on this 
issue, the problem is still present due to several 
occurrences that make a liver the most difficult organ 
to be automatically segmented from an abdominal CT. 
We summarize the challenges reported in most 
publications as follows: 

• Adjacent organs (e.g., kidneys, spleen and 
stomach) might share similar gray levels. 

• The same organ may exhibit different gray 
level values. 

• The liver has a significant shape from one 
patient to another. 

• The acquired images have low contrast and 
blurred edges due to the partial volume effects. 

Based on our experience, using a 2D approach for 
volume liver segmentation was not efficient. The 
preliminary results offered in the Proceedings of 
International Conference on Soft Computing and 
Pattern Recognition 2009 [25] had a lack of accuracy. 
The algorithm was done in a slice-by-slice fashion. In 
this work, it was attempted to improve the quality of 
segmentation results using a 3D approach, with the 

advantage that all three directions are treated 
simultaneously in comparison to the slice-by-slice 
manner. 

This paper is organized as follows: We report some 
related works in Section 2. In Section 3, we present our 
fully automatic liver segmentation algorithm using 
multi-morphological operations and graph-cuts 
techniques. Then, Section 4 reports our experimental 
results and finally we summarize our work in Section 5. 
 
2.  RELATED WORKS 

Many approaches to automatic liver segmentation 
have been presented in the literature, yet work in this 
area is ongoing. The approaches can be grouped into 
several categories but our reviews are limit on three 
most popular approaches: model-based, active contour 
and gray level based segmentation. 

 
2.1.  The Model-based Approach 

Most of the model-based approaches utilize the 
Statistical Shape Model (SSM) which was introduced 
by Cootes Et Al. [22]. SSM is a geometrical analysis of 
a set of shapes. Each shape in the training set is 
represented by a finite number of coordinate points, 
known as landmark points. 

Lamecker [6] built the SSM of liver from 20 
manually segmented individual CT datasets. They 
proposed a geometric approach based on minimizing 
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the distortion of the mapping given a few user-defined 
feature points where a user defines the feature points by 
decomposing the surface into patches. The patch 
boundaries were constructed by specifying only a few 
points on the surface and then computing the shortest 
path between them. The mean of the two 3D-shapes, 
were computed using a mere translation to align the 
gravity centers of the shapes and a rigid transformation 
computed by mean least squares (MLS). Principal 
Component Analysis (PCA) was used to analyze the 
variability over a set of training data to the set of 
corresponding liver surfaces. 

Heimann [19] trained the SSM on 35 training 
datasets to model the expected shape and appearance. 
The underlying SSM consists of 2,500 landmarks. 
Subsequently, a local search similar to the Active 
Shape method was used to initialize the main 
components of this approach which was a deformable 
mesh that strives for equilibrium between internal and 
external forces. The internal forces describe the 
deviation of the mesh from the underlying SSM, while 
the external forces model the fitness to the image data. 
They also employed a graph-based optimal surface 
detection during the calculation of the external forces.] 

 
2.2.  The Active Contour-based Approach 

The Active Contour developed by Kass Et Al. [10] 
also offers a means for image segmentation. The work 
was based on minimizing the energy, the sum of 
internal and external energy, associated to the current 
contour as shown in the following equation: 

snakeܧ ൌ න intܧ

ଵ

଴
ሺvሺݏሻሻ ൅ ሻሻݏimageሺvሺܧ

൅ܧconሺvሺݏሻሻ
 (1)

where Eint represents the internal energy, Eimage gives 
rise to the image forces and Econ serves as external 
constrained forces. To yield a powerful computational 
object, Xu Et Al. [2] proposed a new type of external 
field called gradient vector flow (GVF) field and 
combined it with the usual internal forces. This type of 
active contour is called the GVF snake. 

The GVF snake has been used by Gui Et Al. [21] 
for semi-automatic liver segmentation. The first step of 
their algorithm was enhancing and denoising the 
images by histogram equalization and anisotropic 
diffusion filtering. Then several manually chosen 
points were connected using hemite-splines curve for 
the initial snake boundaries. Finally, fine segmentation 
was performed based on generalizing the GVF snake. 
Another work that used GVF for liver segmentation is 
reported in [16]. They used the canny edge detector to 
generate an edge map. A new maximum force angle 
map is introduced to evaluate the direction variability 
of the GVF forces. The segmentation was done in a 
slice-by-slice fashion. 

In the late nineties, the level set method has been 
widely used in various imaging domains including 
medical domains for liver segmentation [4], [7], [18]. 
The central idea supporting such an approach is to 
evolve the contour using a signed distance function, 
where its zero level corresponds to the actual contour. 
The algorithm proposed by Furukawa Et Al. [4] starts 
by a 2 maximum posterior (MAP) estimation using a 
probabilistic atlas of the liver. The atlas was 
constructed by applying the same normalization 
method to the label images obtained by manually 
segmenting the images in the training dataset. Then, the 
correction was done using level set based method on 
two terms, the geodesic term proposed by Caselles Et 
Al. [23] and another original term defined as the 
distance of a human body from the contour. 

The two-step seeded region growing (SRG) has 
been applied by Lee Et Al. [7] onto level-set speed 
images to define an approximate initial liver boundary. 
The first SRG efficiently divides a CT image into a set 
of discrete objects based on the gradient information 
and its connectivity. The second SRG detects the 
objects belonging to the liver based on a 2.5-
dimensional shape propagation, which models the 
segmented liver boundary of the slice directly above or 
below the current slice by evaluating the points to be 
narrow-banded, or by considering the local maximum 
of distance from the boundary. They utilized level-set 
speed images generally used for level-set propagation 
to detect the initial liver boundary. Finally, a rolling 
ball algorithm was applied to refine the liver boundary 
more accurately. 
 
2.3.  The Gray Level Based Approach 

Freiman Et Al. [9] proposed an adaptive hybrid 
segmentation algorithm using Bayesian classification 
on volume intensities. The process starts with a single 
user-defined pixel seed inside the liver. The mean and 
the variance of a rectangular neighborhood around this 
pixel is computed as the initial parameter values of the 
liver class. Then, a voxel classification with a smoothed 
MAP rule is applied to produce a segmentation label 
map. The identification of the liver region is done using  
an adaptive morphological adjustment to remove the 
disconnected regions outside the liver and to fill the 
holes inside the liver. Finally the liver volume is 
corrected by a level-set method. These three steps are 
repeatedly applied to the image until no further change 
occurs. 

Campedilli Et Al. [14] proposed another gray level 
based approach that involved three steps. The first step 
was preprocessing, which consists of finding the 'body 
box volume' where based on anatomical knowledge, a 
heart volume form is detected in successive slices. On 
the second stage, they defined a 3D box located below 
the heart volume that surely contains the liver tissue 



Majlesi Jo
 

 

and calcul
box. The l
the neares
of the pea
input in t
image by
spatial rel
last step, t
3D region

 
3.  THE M

We pr
integrates 
cut techni
image to o
the compu
threshold 
The mul
perform f
done in a 3

 
3.1.  Aniso

To im
segmentat
required t
approach 
have im
componen
such as th
pass are n
these imp
should be 
considered
a valid str
simply rem
on the surr
not consid
lack such 
all data. 

One o
anisotropi
Perona an
known as
introduced
the smoot
process th
differentia

߲
ݐ߲ ,ሺvܫ ሻݐ

where div
operator. I
v=(x,y,z) i
diffusion 
diffusion 
ordering p
steps. The

ournal of Elec

lated the gray
liver gray leve

st local minimu
ak. The estima
the expansion
 considering 

lationships am
the liver volum

n growing. 

METHODOL
resent a hybr
the morpholo

ique. Our segm
one half of its
utational time.
process to fin
ti-morphologi
finer correctio
3D manner. 

otropic Diffus
mprove the r
tion algorithm
to be used at 
is to apply l

mportant and 
nts like edges 
hose used in 

not suitable due
portant structu

used instead. 
d separately an
ructure. If the
moved and re
rounding data 
dered noise a
a decision ca

f the most fam
c diffusion fi

nd Malik [13]
s the Perona 
d to MRI in 19
thing method

hat is suppress
al equation (PD

ൌ divሺܿሺv, ሻݐ

v is a divergen
I in our case is
is the coordin

strength is 
coefficient c(
parameter use
e diffusion co

ctrical Engine

y level histogra
el range was d
um at the left 
ated liver gray

n algorithm th
both the gra

mong neighbor
me was refine

LOGY 
rid segmentat

ogical approac
mentation star
s original size 
. Then, we pe
nd the coarse 
cal operators

ons. The proc

sion for Noise
reliability of 
ms, filtering 
the first step

inear filters. 
structured 

with fine det
band-pass, hi
e to the fact th
ures. Thus, a
In this case, 

nd is either as
e point is defin
eplaced by an
points. Parts o

are not modifi
apability and 

mous nonlinea
iltering. Pione
], anisotropic 

and Malik 
992 by Gerig 

d is formulate
ed at boundar

DE) of the form

,ሺvܫߘ  ሻሻݐ

nce operator an
s the 3D volum
nate vector. A

controlled b
(v,t) with t a
ed to enume

oefficient c(v,t

eering            

am within the
defined by fin
and the right 

y levels were 
hat segmented
ay levels and 
ring voxels. In
ed by employin

tion method 
ch with the gr
rts by resizing

in oder to red
erform a filter 

candidate reg
s and graph
cesses have b

e Filtering 
f automatic l

techniques 
p. The most b
Since CT ima
high freque

tails, linear fi
igh-pass and l
hey might deg
a nonlinear f
each data poin

ssigned to nois
ned as noise, 

n estimation b
of the data tha

fied. Linear fi
therefore, mo

ar filterings is
eered in 1990

diffusion is 
equation. It 
Et. Al [5]. In 

ed as a diffu
ries using a pa
m: 

nd ∇ is a grad
me of CT imag
At each voxel,
by the so-ca
as the proces
rate the itera
t) depends on

                       

e 3D 
ding 
side 
then 

d the 
the 

n the 
ng a 

that 
aph-

g the 
duce 
and 

gion. 
h-cut 
been 

liver 
are 

basic 
ages 
ency 
ilters 
low-

grade 
filter 
nt is 
se or 
it is 
ased 
t are 
ilters 
odify 

s the 
0 by 
also 
was 
[13] 

usive 
artial 

(2)

dient 
ge an 
, the 
alled 
ssing 
ation 
n the 

im

ܿሺ

Wh
con
sm
dif
rep
dra
ma
can
im
 

F

 
3.2

me
Re
vo
his
W
reg
liv
20
the
co
va
thr
ଵݐ
ଶݐ

by
the
vo
ass
ass

3.3

sha
rem
dis
usi
spe

                     

mage gradient m

ሺv, ሻݐ ൌ expሺ
െ

here the cond
ntrast of edge

moothing proce
ffusion for he
ported in [24].
astically redu
athematical fo
n be referred

mage resulted fr

(a) before fi
Fig.1. The resu

=ߢ

2.  The Estima
The distribu

eaningful info
elying on anato
lume, the in
stogram can b
e use a priori
gion. Our first
ver gray level i
0. This range 
e liver gray va
arse liver reg
lues at the le
reshold values

ൌ M௟ െ ଵߙ כ
ൌ M௟ ൅ ଶߙ כ
We found th

y the Ml  value
e smaller the 
xels which th
signed as part 
signed as the b

 
3.  The Morph

Due to the f
are similar in
maining after
sconnect smal
ing mathem
ecifically open

        Vol. 4, N

magnitude ∇Ι. 
െפ ,ሺvܫߘ ሻݐ פ

ߢ ሻଶ 

ductance para
es which has 
ess. The succe
elping in liver
 The use of a l

uce the comp
ormulation of 
d by [24]. Fig
from anisotropi

iltering 

ult from 3D an
=35 after three

ation of Liver
ution of the 
ormation abou
omical knowle
nformation c
be used to find
i knowledge t
t assumption i
is always betw
is used to fin

alues. We defi
gion is obtain
eft and the rig
 are given by: 
M௟
M௟

 

hat the values 
e; such that th
value of α1 a

heir intensity f
of the liver re

background reg

hological Ope
fact that som
tensities, there

r the thresho
ll objects con
matic morp
ning to break 

No. 3, Septemb

One popular f

ameter ߢ, dete
significant eff
ssion of using
r segmentatio
lookup table fo
utational time
3D anisotrop

g. 1 shows a
ic diffusion. 

(b) after fil
isotropic diffu
e iterations. 

r Gray Level
voxel intens

ut the 3D ima
edge in regard
ontained in 
d the initial li
to obtain the 
is that, the dis
ween the value
nd the local m
ine this value 
ned using tw
ght side of th

of α1 and α2 ar
he greater the v
and α2 will be
falls between t
egion. Otherw
gion (0 values

erations 
e organs in a
e are several 

old process. 
nnected to a l
phological 
the connectio

ber 2010 

61 

form is: 

(3)

ermines the 
fects on the 

g anisotropic 
on has been 
for c(v,t) can 
e. A detail 
ic diffusion 

a smoothing 

ltering 

usion using 

sities holds 
age content. 
d to the liver 

the image 
iver tissues. 
coarse liver 
stribution of 
es of 75 and 

maximum of 
as Ml . The 
o threshold 

he Ml . The 

(4)

re restricted 
value of Ml 

e. Then, the 
t1 and t2 are 

wise they are 
s). 

a CT image 
organs still 
We try to 
liver region 
operations, 

ons between 



Majlesi Journal of Electrical Engineering                                                                 Vol. 4, No. 3, September 2010 
 

62 
 

the liver and the tissues which do not belong to it (e.g., 
kidneys). 

In mathematical morphology, opening is the 
dilation of a set I by a structuring element B as in the 
following equation: 
ܫ ל ܤ ൌ ሺܫ ٓ ሻܤ ْ (5) ܤ
Where ٓ and ْ denote the erosion and dilation 
operator, respectively. The opening is done only in the 
z-direction to break the undesired tissues. Though the 
structuring element B takes care of the shape of the 
features while processing an image, it cannot equally 
treat the objects of the same shape but of the different 
size. Using multi-scale morphology as described in [17] 
such objects can expectantly be processed based on 
their shape as well as their size. This has been done 
using iteration number k=5 as the second attribute of 
the structuring element. Multi-scale filtering for 
opening is defined as: 

ሺܫ ௞ל ,ݔሻሺܤ ሻݕ ൌ ሼሺሺሺܫ ל ሻܤ ל ሻܤ … ל ሻܤ
௞times

ሺݔ, ሻሽ (6)ݕ

Further on, a 3D connected component labeling 
(CCL) is used to extract the largest component. The 
positive aspect of using 3D CCL is its ability in 
preserving two liver regions that are not connected to 
each other in certain slices. However, the negative 
aspect is that it still keeps regions belonging to other 
tissues which are connected to adjacent slices of the 
liver. Therefore, 2D CCL is used after performing in 
three dimensions to complete the extraction of the 
largest component. 

To perform this operation, one has to specify the 
start slice and normally the best result can be produced 
if the start slice has the largest liver region. We 
approximate the start slice, cs as follows: 
ܿ௦ ൌ dim ሾ0ሿ 2⁄ ൅ ߚ כ dim ሾ0ሿ 2⁄  (7)

Where dim[0] is the size of volume in the z-
dimension and β∈[0,1] is determined based on the 
interior-slice distance. Aβ value should be larger if the 
distances are large. The 2D CCL in our scheme works 
from cs to dim[0] and from slice cs−1 to the first. We 
maintain the regions on the current slice, c that have 
region areas ≥250 due to our assumption that these 
regions might belong to the liver. The regions smaller 
than 250 are removed and the non-zero intensities in 
the c−1 and c+1 slices that have the same position (x,y) 
to these regions are also removed. In other words, we 
do not fully utilize the 2D process here but still take 
into account the adjacent slices. Then, in order to 
export the mask to the next slice, we perform one time 
dilation to the current mask. We do this step since it is 
assumed that the shape of the liver does not change 
dramatically in adjacent slices. In this way, the largest 
component in the next slice only can be searched 
within the mask. Those regions outside the mask are 
totally removed. 

3.4.  Surface Reconstruction Using Graph Cut 
In this section, a graph-based approach is presented 

to refine the liver surface. In contrast to the active 
contour method for surface refinement, the graph-based 
method used in this work does not need to be done 
iteratively. It means the process can be done in only 
one single step. A graph G=(V,E) is a set of vertices V 
and a set of edges E. In the graph-cut scenario, there 
are two distinguished vertices in V called the source 
{s} and the sink {t} that will represent the labeling 
later. 

 
3.5.  The Proposed Formulation 

Given an initial contour obtained from the 
morphological segmentation as mentioned in the 
previous section, set of voxels is automatically defined 
which are considered to belong to the class object and 
background. The dilation and erosion operations are 
applied to the initial contour. Multi-scale erosion is 
performed to get the seed points of object O. For the  
background, B, the dilation process is only performed 
once and those voxels laying outside the region are 
considered as background. A binary variable xv is 
defined for each voxel v=(x,y,z) in O and B such that 

vݔ ൌ ሼ1׊v א O
v׊0 א B (8)

A discrete representation of the mean intensities in 
terms of the binary variables is adopted from [12] 
which is defined as follows: 

ܿଵ ൌ
∑

vאO
ሺvሻܫ כ vݔ

∑
vאO

vݔ
 (9)

ܿଶ ൌ
∑

vאB
ሺvሻܫ כ ሺ1 െ vሻݔ

∑
vאB

ሺ1 െ vሻݔ  (10)

The voxels are chosen from the start slice cs obtained 
by Eq. 7 as seed points for mean intensities of object 
and background. 

Since we are aiming at reconstructing the liver 
surface, only the voxels near the surface are considered. 
So, at this stage, we ignore the voxels which are 
certainly lie inside the liver volume or are part of the 
background. Thus, the subtraction between the dilated 
volume and the eroded volume is done. We denote the 
vertices as C. Let m1=(I(v)−c2)2 and m2=(I(v)−c1)2 such 
that v∈C. Then, for each vertex, we assign the weight 
to {s} and {t} as following: 

௦ݓ ൌ ሼ ݉ଵif݉ଵ ൑ ݉ଶ
0if݉ଵ ൐ ݉ଶorܫሺvሻ ൌ 0 (11)

௧ݓ ൌ ሼ ݉ଶif݉ଶ ൐ ݉ଵ
0if݉ଵ ൑ ݉ଶorܫሺvሻ ൌ 0 (12)

We represent the image as a 26-connectivity graph 
G=(V,E) which means each vertex v∈V in G, 
corresponding to a voxel p, has edges connecting to its 
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Table 1.Results of the segmentation metrics for all ten 
cases 

Datasets 
(slices) 

Runtime VOE 
[%] 

RVD 
[%] 

SD 
[mm] 

RMSD 
[mm] 

MSD 
[mm] 

1 (502) 5m48.533s 9.81 4.76 1.41 2.39 18.31

2 (358) 5m34.486s 11.02 3.59 1.51 2.85 22.47

3 (244) 4m36.241s 12.23 2.55 2.48 4.93 37.46

4 (165) 3m08.225s 14.73 1.51 2.71 6.35 44.35

5 (91) 1m46.136s 9.85 -1.13 1.83 3.58 32.54

6 (258) 4m46.995s 8.63 2.22 1.33 2.65 24.94

7 (179) 3m21.479s 8.68 2.70 1.55 3.38 37.02

8 (97) 1m47.895s 9.81 8.15 1.63 2.62 21.01

9 (301) 5m37.645s 8.87 2.35 1.21 2.54 24.85

10 (73) 1m21.034s 9.46 3.16 1.63 3.66 30.57

Average  10.31 2.99 1.73 3.49 29.35

 
5.  CONCLUSION 

Automatically segmenting the liver is not easy and 
multiple techniques are required to perform this task. 
Most of the liver segmentation algorithms that had 
already been published in the literature have their own 
advantages. Nevertheless, those algorithms are not 
applicable in all situations. For example, using the SSM 
method does not promise good results if the number of 
training datasets is very small. Similarly, although 
many applications in computer vision used active 
contour technique and some actually achieved good 
results, but for the application where segmentation 
serves as a preprocessing step such as where it is used 
for content-based image retrieval (CBIR), it requires a 
lot of time to execute. 

In concern to the above matter, the algorithm 
proposed in this paper takes into account, the 
computational time and the number of datasets we 
have. We propose a hybrid approach using 
morphological-based and graph-based techniques. 
Morphology opening and connected component 
labeling were used in this work concentrating on 
finding liver regions and removing other regions from 
the volume. While graph-cuts technique focuses on 
refining the surface of the liver volume. Our 
segmentation process runs without user intervention. 
The maximum computational time is less than 6 
minutes on an Intel(R) Core(TM) Duo CPU with 3GHz 
and 7.7GB RAM. Another advantage of our approach 
is that it does not demand for a training phase which is 
often troublesome. Our algorithm works natively in 3D 
and shows an improvement in the term of its accuracy 
in comparison to the previous work that was performed 
in a slice-by-slice manner. 
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APPENDIX 
A. The Evaluation Metrics 

In the following evaluation metrics, VM and VA are 
the set of voxels from manual segmentation and the set 
of voxels from automatic segmentation, respectively. 
SM denotes the set of surface voxels of VM and SA 
denotes the set of surface voxels of VA. Before we 
describe five error measures, let us first define the 
shortest distance of an arbitrary voxel v to the set of 
surface voxel S as follows: 
݀ሺv,Sሻ ൌ min

௦אௌ
צ v െ ݏ (A.1) צ

Where ||.|| denotes the Euclidean distance. If we replace 
the voxel v in the Equation A.1 with vm where vmאSM 
and S with SA then the shortest distance d(vm,SA) is 
obtained for the voxel in the set SM to the set SA. And 
we get d(va ,SM) for vaאSA, vice versa. 

 Following comes the five error measures used to 
evaluate our segmentation results. 

• Volumetric Overlap Error: This metric 
measures the percentage of mismatching voxels 
between the automatic and manual segmentation. The 
percentage of volumetric overlap error between VM and 
VA is defined as: 

VOE ൌ 100 כ ሺ1 െ
Vெ ת V஺

Vெ ׫ V஺
ሻ (A.2)

Where for a perfect segmentation the value of 
Equation A.2 is 0% otherwise it takes the value 100% 
when there is no overlap at all between VM and VA. 

• Relative Volume Difference: The relative 
volume difference between VM and VA is given in 
percent and is defined as: 

RVD ൌ 100 כ ሺ
פ V஺ פ െפ Vெ פ

פ Vெ פ ሻ (A.3)

Where for a perfect segmentation the value of 
Equation A.3 is 0%. 

• Average Symmetric Surface Distance: The 
average symmetric surface distance is defined as the 
average of all stored distances. For clarity, the stored 
distances are defined as follow: 

DሺS஺, Sெሻ ൌ ෍
vೌאSಲ

݀ሺv௔, Sெሻ • (A.4)

DሺSெ, S஺ሻ ൌ ෍
v೘אSಾ

݀ሺv௠, S஺ሻ • (A.5)

Then, the average symmetric surface distance is 
given by: 
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SD ൌ ሺ ଵ
פSಲפାפSಾפ

ሻ*ሺDሺS஺, Sெሻ ൅ DሺSெ, S஺ሻሻ                  (A.6)

This value is 0 for a perfect segmentation. 
• Root Mean Square Symmetric Surface 

Distance:  In contrast to the previous metric, the 
Euclidean distance between surface voxels are squared 
before storing them. 

DଶሺS஺, Sெሻ ൌ ෍
vೌאSಲ

݀ଶሺv௔, Sெሻ (A.7)

DଶሺSெ, S஺ሻ ൌ ෍
v೘אSಾ

݀ଶሺv௠, S஺ሻ (A.8)

After averaging the squared values, the root is 
extracted and the symmetric RMS surface distance is 
given, which is 0 for a perfect segmentation. 

RMSD ൌ ඨ
1

פ Sெ פ ൅פ S஺ פ

*ඥDଶሺS஺, Sெሻ ൅ DଶሺSெ, S஺ሻ

 (A.9)

• Maximum Symmetric Surface Distance: This 
metric is also known as the Hausdorff distance [11]. 
The determination of this metric is similar to the 
previous two metrics, but only the maximum of all 
voxel distances is taken instead of the average. The 
maximum surface distance between SM and SA, denoted 
by dm(SM,SA) and dm(SA,SM) are given by: 
݀mሺSெ, S஺ሻ ൌ max

smאSಾ
݀ሺsm, S஺ሻ • (A.10)

and 
݀mሺS஺, Sெሻ ൌ max

saאSಲ
݀ሺsa, Sெሻ, • (A.11)

Respectively. Then, the symmetrical Hausdorff 
distance is defined as follows: 

MSD ൌ max൫݀mሺSெ, S஺ሻ, ݀mሺS஺, Sெሻ൯             (A.12) 
When the distance is 0, it means a perfect 

segmentation has been achieved. 
 


