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Here a fully 3D algorithm for automatic liver segmentation from CT volumetric datasets is presented. The algorithm
starts by smoothing the original volume using anisotropic diffusion. The coarse liver region is obtained from the
threshold process that is based on a priori knowledge. Then, several morphological operations is performed such as
operating the liver to detach the unwanted region connected to the liver and finding the largest component using the
connected component labeling (CCL) algorithm. At this stage, both 3D and 2D CCL is done subsequently. However,
in 2D CCL, the adjacent slices are also affected from current slice changes. Finally, the boundary of the liver is refined
using graph-cuts solver. Our algorithm does not require any user interaction or training datasets to be used. The
algorithm has been evaluated on 10 CT scans of the liver and the results are encouraging to poor quality of images.
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1. INTRODUCTION

Recently, researchers of radiology and computer
science struggle to solve liver segmentation from
Computed Tomography (CT) image datasets either
using semi-automatic [1], [3], [6], [9], [21] or fully
automatic segmentation approaches [4], [7], [8], [14],
[16], [18], [19]. Despite the great efforts put on this
issue, the problem is still present due to several
occurrences that make a liver the most difficult organ
to be automatically segmented from an abdominal CT.
We summarize the challenges reported in most
publications as follows:

. Adjacent organs (e.g., kidneys, spleen and
stomach) might share similar gray levels.

. The same organ may exhibit different gray
level values.

. The liver has a significant shape from one
patient to another.

. The acquired images have low contrast and
blurred edges due to the partial volume effects.

Based on our experience, using a 2D approach for
volume liver segmentation was not efficient. The
preliminary results offered in the Proceedings of
International Conference on Soft Computing and
Pattern Recognition 2009 [25] had a lack of accuracy.
The algorithm was done in a slice-by-slice fashion. In
this work, it was attempted to improve the quality of
segmentation results using a 3D approach, with the

advantage that all three directions are treated
simultaneously in comparison to the slice-by-slice
manner.

This paper is organized as follows: We report some
related works in Section 2. In Section 3, we present our
fully automatic liver segmentation algorithm using
multi-morphological  operations and  graph-cuts
techniques. Then, Section 4 reports our experimental
results and finally we summarize our work in Section 5.

2. RELATED WORKS

Many approaches to automatic liver segmentation
have been presented in the literature, yet work in this
area is ongoing. The approaches can be grouped into
several categories but our reviews are limit on three
most popular approaches: model-based, active contour
and gray level based segmentation.

2.1. The Model-based Approach

Most of the model-based approaches utilize the
Statistical Shape Model (SSM) which was introduced
by Cootes Et Al. [22]. SSM is a geometrical analysis of
a set of shapes. Each shape in the training set is
represented by a finite number of coordinate points,
known as landmark points.

Lamecker [6] built the SSM of liver from 20
manually segmented individual CT datasets. They
proposed a geometric approach based on minimizing
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the distortion of the mapping given a few user-defined
feature points where a user defines the feature points by
decomposing the surface into patches. The patch
boundaries were constructed by specifying only a few
points on the surface and then computing the shortest
path between them. The mean of the two 3D-shapes,
were computed using a mere translation to align the
gravity centers of the shapes and a rigid transformation
computed by mean least squares (MLS). Principal
Component Analysis (PCA) was used to analyze the
variability over a set of training data to the set of
corresponding liver surfaces.

Heimann [19] trained the SSM on 35 training
datasets to model the expected shape and appearance.
The underlying SSM consists of 2,500 landmarks.
Subsequently, a local search similar to the Active
Shape method was used to initialize the main
components of this approach which was a deformable
mesh that strives for equilibrium between internal and
external forces. The internal forces describe the
deviation of the mesh from the underlying SSM, while
the external forces model the fitness to the image data.
They also employed a graph-based optimal surface
detection during the calculation of the external forces.]

2.2. The Active Contour-based Approach

The Active Contour developed by Kass Et Al [10]
also offers a means for image segmentation. The work
was based on minimizing the energy, the sum of
internal and external energy, associated to the current
contour as shown in the following equation:

1
Esnake = J; Eint (V(S)) + Eimage(V(s)) (1)

+Eeon(v(s))

where Ejy represents the internal energy, Eimage gives
rise to the image forces and Egy, serves as external
constrained forces. To yield a powerful computational
object, Xu Et Al. [2] proposed a new type of external
field called gradient vector flow (GVF) field and
combined it with the usual internal forces. This type of
active contour is called the GVF snake.

The GVF snake has been used by Gui Et Al. [21]
for semi-automatic liver segmentation. The first step of
their algorithm was enhancing and denoising the
images by histogram equalization and anisotropic
diffusion filtering. Then several manually chosen
points were connected using hemite-splines curve for
the initial snake boundaries. Finally, fine segmentation
was performed based on generalizing the GVF snake.
Another work that used GVF for liver segmentation is
reported in [16]. They used the canny edge detector to
generate an edge map. A new maximum force angle
map is introduced to evaluate the direction variability
of the GVF forces. The segmentation was done in a
slice-by-slice fashion.
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In the late nineties, the level set method has been
widely used in various imaging domains including
medical domains for liver segmentation [4], [7], [18].
The central idea supporting such an approach is to
evolve the contour using a signed distance function,
where its zero level corresponds to the actual contour.
The algorithm proposed by Furukawa Et Al. [4] starts
by a 2 maximum posterior (MAP) estimation using a
probabilistic atlas of the liver. The atlas was
constructed by applying the same normalization
method to the label images obtained by manually
segmenting the images in the training dataset. Then, the
correction was done using level set based method on
two terms, the geodesic term proposed by Caselles Et
Al [23] and another original term defined as the
distance of a human body from the contour.

The two-step seeded region growing (SRG) has
been applied by Lee Et Al. [7] onto level-set speed
images to define an approximate initial liver boundary.
The first SRG efficiently divides a CT image into a set
of discrete objects based on the gradient information
and its connectivity. The second SRG detects the
objects belonging to the liver based on a 2.5-
dimensional shape propagation, which models the
segmented liver boundary of the slice directly above or
below the current slice by evaluating the points to be
narrow-banded, or by considering the local maximum
of distance from the boundary. They utilized level-set
speed images generally used for level-set propagation
to detect the initial liver boundary. Finally, a rolling
ball algorithm was applied to refine the liver boundary
more accurately.

2.3. The Gray Level Based Approach

Freiman Et Al. [9] proposed an adaptive hybrid
segmentation algorithm using Bayesian classification
on volume intensities. The process starts with a single
user-defined pixel seed inside the liver. The mean and
the variance of a rectangular neighborhood around this
pixel is computed as the initial parameter values of the
liver class. Then, a voxel classification with a smoothed
MAP rule is applied to produce a segmentation label
map. The identification of the liver region is done using
an adaptive morphological adjustment to remove the
disconnected regions outside the liver and to fill the
holes inside the liver. Finally the liver volume is
corrected by a level-set method. These three steps are
repeatedly applied to the image until no further change
occurs.

Campedilli Et Al. [14] proposed another gray level
based approach that involved three steps. The first step
was preprocessing, which consists of finding the 'body
box volume' where based on anatomical knowledge, a
heart volume form is detected in successive slices. On
the second stage, they defined a 3D box located below
the heart volume that surely contains the liver tissue



Majlesi Journal of Electrical Engineering

and calculated the gray level histogram within the 3D
box. The liver gray level range was defined by finding
the nearest local minimum at the left and the right side
of the peak. The estimated liver gray levels were then
input in the expansion algorithm that segmented the
image by considering both the gray levels and the
spatial relationships among neighboring voxels. In the
last step, the liver volume was refined by employing a
3D region growing.

3. THE METHODOLOGY

We present a hybrid segmentation method that
integrates the morphological approach with the graph-
cut technique. Our segmentation starts by resizing the
image to one half of its original size in oder to reduce
the computational time. Then, we perform a filter and
threshold process to find the coarse candidate region.
The multi-morphological operators and graph-cut
perform finer corrections. The processes have been
done in a 3D manner.

3.1. Anisotropic Diffusion for Noise Filtering

To improve the reliability of automatic liver
segmentation algorithms, filtering techniques are
required to be used at the first step. The most basic
approach is to apply linear filters. Since CT images
have important and structured high frequency
components like edges with fine details, linear filters
such as those used in band-pass, high-pass and low-
pass are not suitable due to the fact they might degrade
these important structures. Thus, a nonlinear filter
should be used instead. In this case, each data point is
considered separately and is either assigned to noise or
a valid structure. If the point is defined as noise, it is
simply removed and replaced by an estimation based
on the surrounding data points. Parts of the data that are
not considered noise are not modified. Linear filters
lack such a decision capability and therefore, modify
all data.

One of the most famous nonlinear filterings is the
anisotropic diffusion filtering. Pioneered in 1990 by
Perona and Malik [13], anisotropic diffusion is also
known as the Perona and Malik equation. It was
introduced to MRI in 1992 by Gerig Et. Al [5]. In [13]
the smoothing method is formulated as a diffusive
process that is suppressed at boundaries using a partial
differential equation (PDE) of the form:

%I(V, t) =div(c(v,t)VI(v,t)) (2)

where div is a divergence operator and V is a gradient
operator. | in our case is the 3D volume of CT image an
v=(X,y,Z) is the coordinate vector. At each voxel, the
diffusion strength is controlled by the so-called
diffusion coefficient c(v,t) with t as the processing
ordering parameter used to enumerate the iteration
steps. The diffusion coefficient c(v,t) depends on the
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image gradient magnitude V/ One popular form is:

mLACDOIS 3
K

Where the conductance parameter k, determines the
contrast of edges which has significant effects on the
smoothing process. The succession of using anisotropic
diffusion for helping in liver segmentation has been
reported in [24]. The use of a lookup table for c(v,t) can
drastically reduce the computational time. A detail
mathematical formulation of 3D anisotropic diffusion
can be referred by [24]. Fig. 1 shows a smoothing
image resulted from anisotropic diffusion.

c(v,t) = exp(

(b) after ering 7
Fig.1. The result from 3D anisotropic diffusion using
k=35 after three iterations.

(a) b ing

3.2. The Estimation of Liver Gray Level

The distribution of the voxel intensities holds
meaningful information about the 3D image content.
Relying on anatomical knowledge in regard to the liver
volume, the information contained in the image
histogram can be used to find the initial liver tissues.
We use a priori knowledge to obtain the coarse liver
region. Our first assumption is that, the distribution of
liver gray level is always between the values of 75 and
200. This range is used to find the local maximum of
the liver gray values. We define this value as M, . The
coarse liver region is obtained using two threshold
values at the left and the right side of the M, . The
threshold values are given by:
t; =M, —a; * M,
t2=Ml+a’2*Ml (4)

We found that the values of a; and o, are restricted
by the M, value; such that the greater the value of M,
the smaller the value of o; and a,will be. Then, the
voxels which their intensity falls between t; and t, are
assigned as part of the liver region. Otherwise they are
assigned as the background region (0 values).

3.3. The Morphological Operations

Due to the fact that some organs in a CT image
share similar intensities, there are several organs still
remaining after the threshold process. We try to
disconnect small objects connected to a liver region
using  mathematic ~ morphological  operations,
specifically opening to break the connections between
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the liver and the tissues which do not belong to it (e.g.,
kidneys).

In mathematical morphology, opening is the
dilation of a set | by a structuring element B as in the
following equation:
1+B=(1OB) ®B (5)
Where © and @ denote the erosion and dilation
operator, respectively. The opening is done only in the
z-direction to break the undesired tissues. Though the
structuring element B takes care of the shape of the
features while processing an image, it cannot equally
treat the objects of the same shape but of the different
size. Using multi-scale morphology as described in [17]
such objects can expectantly be processed based on
their shape as well as their size. This has been done
using iteration number k=5 as the second attribute of
the structuring element. Multi-scale filtering for
opening is defined as:

ktimes
(o BYxy) ={(U°B) o B) .o B)(x, )} (O

Further on, a 3D connected component labeling
(CCL) is used to extract the largest component. The
positive aspect of using 3D CCL is its ability in
preserving two liver regions that are not connected to
each other in certain slices. However, the negative
aspect is that it still keeps regions belonging to other
tissues which are connected to adjacent slices of the
liver. Therefore, 2D CCL is used after performing in
three dimensions to complete the extraction of the
largest component.

To perform this operation, one has to specify the
start slice and normally the best result can be produced
if the start slice has the largest liver region. We
approximate the start slice, Cs as follows:
¢, =dim[0]/2 + B * dim [0]/2 (7

Where dim[0] is the size of volume in the z-
dimension and Be[0,1] is determined based on the
interior-slice distance. AP value should be larger if the
distances are large. The 2D CCL in our scheme works
from s to dim[0] and from slice C;—1 to the first. We
maintain the regions on the current slice, ¢ that have
region areas >250 due to our assumption that these
regions might belong to the liver. The regions smaller
than 250 are removed and the non-zero intensities in
the c—1 and c+1 slices that have the same position (X,Y)
to these regions are also removed. In other words, we
do not fully utilize the 2D process here but still take
into account the adjacent slices. Then, in order to
export the mask to the next slice, we perform one time
dilation to the current mask. We do this step since it is
assumed that the shape of the liver does not change
dramatically in adjacent slices. In this way, the largest
component in the next slice only can be searched
within the mask. Those regions outside the mask are
totally removed.
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3.4. Surface Reconstruction Using Graph Cut

In this section, a graph-based approach is presented
to refine the liver surface. In contrast to the active
contour method for surface refinement, the graph-based
method used in this work does not need to be done
iteratively. It means the process can be done in only
one single step. A graph G=(V,E) is a set of vertices V
and a set of edges E. In the graph-cut scenario, there
are two distinguished vertices in V called the source
{s} and the sink {t} that will represent the labeling
later.

3.5. The Proposed Formulation

Given an initial contour obtained from the
morphological segmentation as mentioned in the
previous section, set of voxels is automatically defined
which are considered to belong to the class object and
background. The dilation and erosion operations are
applied to the initial contour. Multi-scale erosion is
performed to get the seed points of object O. For the
background, B, the dilation process is only performed
once and those voxels laying outside the region are
considered as background. A binary variable X, is
defined for each voxel v=(x,y,z) in O and B such that

1vv e O

*=loyyen ®

A discrete representation of the mean intensities in
terms of the binary variables is adopted from [12]
which is defined as follows:

2 I) *x,
vEO
o = ©)
veol
V§B1 ) * (1 —-x)
2T T a-n (10
VvEB
The voxels are chosen from the start slice ¢y obtained
by Eq. 7 as seed points for mean intensities of object
and background.

Since we are aiming at reconstructing the liver
surface, only the voxels near the surface are considered.
So, at this stage, we ignore the voxels which are
certainly lie inside the liver volume or are part of the
background. Thus, the subtraction between the dilated
volume and the eroded volume is done. We denote the
vertices as C. Let m;=(1(v)—C,)* and m,=(I(v)—c,)* such
that veC. Then, for each vertex, we assign the weight
to {s} and {t} as following:
myifm; < m,

s = Lifm, > myorl(v) = 0 an
_ m,ifm, > my
We = {Oifml < myorl(v) =0 (12)

We represent the image as a 26-connectivity graph
G=(V,E) which means each vertex veV in G,
corresponding to a voxel p, has edges connecting to its
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26 neighboring vertices ( denotes each neighboring
voxel). For each edge, we assign the weight as
suggested by Boykov Et Al. [26] as follows:

(I, —1,)? 1
P — ) (13)
20 disp(p, q)
Where disp(p,q) is the Euclidean distance between two
voxels and o can be evaluated as the 'camera noise'.

The steps for the surface reconstruction are graphically
shown as in Fig. 2.

a
(a) (b)
(©) (d)

wy, = exp(—

Q)

Fig. 2. Surface reconstruction using a graph-cut: (a)
initial liver mask obtained from morphology
operations, (b) dilated liver mask, (c) eroded liver
mask, (d) surface areas for graph-cut labeling, (e) after
applying graph-cut on (d), white labels are voxels to be
removed from (b) and (f) final result after refining with
CCL.

4. THE RESULTS AND DISCUSSION
To evaluate the accuracy of the segmentation results,
we applied the proposed method to 10 datasets’ with

'from http://www.sliver07.org

Vol. 4, No. 3, September 2010

the size 512x512 for each slice. All CT images were
enhanced with contrast agents and were acquired in
transversal direction. The pixel spacing varied between
0.55 and 0.80 mm and the inter-slice distance varied
from 1 to 3mm with no neighboring slices overlapping.
We used five different evaluation metrics for the
evaluation of our segmentation results. These metrics
and their peculiarities are given in [20]. The evaluation
metrics include Volumetric Overlap Error (VOE),
Relative Volume Difference (RVD), Average
Symmetric Surface Distance (SD), Root Mean Square
Symmetric Surface Distance (RMSD) and Maximum
Symmetric Surface Distance (MSD).

The definition of these metrics can be revised from
Appendix A. Table 1 presents the results for all the ten
cases. The results have also been visually presented in
Fig. 3. For the majority of the ten cases, the VOEs are
less than 10%, while, at the same time, we achieved the
average of 2.99% for the RVD. The RMSD is below or
close to 2mm. Large MSD are mostly caused by
deviations in the region of the vena cava and portal
vein. Undersegmentation occurred when the lesions
reside near the liver edges (see Fig. 3(c)). However, the
proposed segmentation algorithm proved to be robust
for different orientations even with poor quality of the
images.

(b)

Fig. 3. Segmentation results from (a) slice 6 case 1, (b)
slice 6 case 2, (c) slice 2 case 3 and (d) slice 3 case 7.
The segmentation results outline is given in blue and

reference segmentation is in red.
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Table 1.Results of the segmentation metrics for all ten

cases
Datasets Runtime VOE RVD SD RMSD MSD
(slices) [%] [%] [mm] [mm] [mm]

1(502) 5m48.533s 981 476 141 2.39 18.31
2 (358) 5m34.486s 11.02 359 151 2.85 22.47
3(244) 4m36.241s 1223 255 248 4.93 37.46
4(165)  3m08.225s 1473 151 271 6.35 44.35
5091) 1m46.136s 985 -1.13 1.83 3.58 32.54
6(258)  4m46.995s 863 222 133 2.65 24.94
7(179)  3m21.479s 8.68 270 1.55 3.38 37.02
8(97) 1m47.895s 981 815 1.63 2.62 21.01
9(301) 5m37.645s 887 235 121 2.54 24.85
10 (73) 1m21.034s 946 3.16 1.63 3.66 30.57

Average 1031 299 1.73 3.49 29.35

5. CONCLUSION

Automatically segmenting the liver is not easy and
multiple techniques are required to perform this task.
Most of the liver segmentation algorithms that had
already been published in the literature have their own
advantages. Nevertheless, those algorithms are not
applicable in all situations. For example, using the SSM
method does not promise good results if the number of
training datasets is very small. Similarly, although
many applications in computer vision used active
contour technique and some actually achieved good
results, but for the application where segmentation
serves as a preprocessing step such as where it is used
for content-based image retrieval (CBIR), it requires a
lot of time to execute.

In concern to the above matter, the algorithm
proposed in this paper takes into account, the
computational time and the number of datasets we
have. We propose a hybrid approach using
morphological-based and graph-based techniques.
Morphology opening and connected component
labeling were used in this work concentrating on
finding liver regions and removing other regions from
the volume. While graph-cuts technique focuses on
refining the surface of the liver volume. Our
segmentation process runs without user intervention.
The maximum computational time is less than 6
minutes on an Intel(R) Core(TM) Duo CPU with 3GHz
and 7.7GB RAM. Another advantage of our approach
is that it does not demand for a training phase which is
often troublesome. Our algorithm works natively in 3D
and shows an improvement in the term of its accuracy
in comparison to the previous work that was performed
in a slice-by-slice manner.
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APPENDIX
A. The Evaluation Metrics

In the following evaluation metrics, Vyy and V, are
the set of voxels from manual segmentation and the set
of voxels from automatic segmentation, respectively.
Sw denotes the set of surface voxels of Vy and Sa
denotes the set of surface voxels of V. Before we
describe five error measures, let us first define the
shortest distance of an arbitrary voxel V to the set of
surface voxel S as follows:

d(v,S) =min | v—s| (A1)

Where ||.|| denotes the Euclidean distance. If we replace
the voxel v in the Equation A.1 with v, where V,ESy
and S with S, then the shortest distance d(vp,Sa) is
obtained for the voxel in the set Sy to the set Sp. And
we get d(V,,Sy) for V,ES,, vice versa.

Following comes the five error measures used to
evaluate our segmentation results.

e Volumetric Overlap Error: This metric
measures the percentage of mismatching voxels
between the automatic and manual segmentation. The
percentage of volumetric overlap error between Vy and
Va is defined as:

VOE = 100 » (1 — 20 Va A2
=100 (1= 210 (A2)

Where for a perfect segmentation the value of
Equation A.2 is 0% otherwise it takes the value 100%
when there is no overlap at all between Vy and V.

*  Relative Volume Difference: The relative
volume difference between Vy and V, is given in
percent and is defined as:

| Vol =1 Vy |
RVD = 100 (%) (A3)
M

Where for a perfect segmentation the value of
Equation A.3 is 0%.

«  Average Symmetric Surface Distance: The
average symmetric surface distance is defined as the
average of all stored distances. For clarity, the stored
distances are defined as follow:

DELSW= ) dWaSw) . (a4

vVa€Sa

D(Sw,Sa) = Z

vm€ESM
Then, the average symmetric surface distance is
given by:

d(Vim, Sa) . (A.5)

65



Majlesi Journal of Electrical Engineering

)" (D(S4,Si) + D(Sw, S4)) (A.6)

SD = (g

This value is 0 for a perfect segmentation.

. Root Mean Square Symmetric Surface
Distance: In contrast to the previous metric, the
Euclidean distance between surface voxels are squared
before storing them.

DZ(SA' SM) = Z dz(Va’ SM) (A7)
Va€Sa

Dz (SM' SA) = Z dz(Vm’ SA) (Ag)
Vim€Sm

After averaging the squared values, the root is
extracted and the symmetric RMS surface distance is
given, which is 0 for a perfect segmentation.

/ 1
RMSD= |——
| Sy | +1S,4 1 (A.9)

*D2(S4, Su) + D2 (Sy, Sa)

. Maximum Symmetric Surface Distance: This
metric is also known as the Hausdorff distance [11].
The determination of this metric is similar to the
previous two metrics, but only the maximum of all
voxel distances is taken instead of the average. The

maximum surface distance between Sy and Sa, denoted
by di(Sw,Sa) and din(Sa,Sy) are given by:

dm(Su,S4) = max d(sm,S,) . (A.10)
SmMESyy
and
din(Sa, Sy) = maxd(sa, Sy), . (A.11)

Respectively. Then, the symmetrical Hausdorff
distance is defined as follows:

MSD = max(dy,(Sy, Sa), dim(Sar Su)) (A.12)

When the distance is 0, it means a perfect
segmentation has been achieved.
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