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ABSTRACT: 
Knowledge embedded within artificial neural networks (ANNs) is distributed over the connections and weights of 
neurons. So, the user considers ANN as a black box system. There are many researches investigating the area of rule 
extraction by ANNs. In this paper, a dynamic cell structure (DCS) neural network and a modified version of LERX 
algorithm are used for rule extraction. On the other hand, intrusion detection system (IDS) is known as a critical 
technology to secure computer networks. So, the proposed algorithm is used to develop IDS and classify the patterns 
of intrusion. To compare the performance of the proposed system with other machine learning algorithms, multi-layer 
perceptron (MLP) with output weight optimization-hidden weight optimization (OWO-HWO) training algorithm is 
employed with selected inputs based on the results of a feature relevance analysis. Empirical results show the superior 
performance of the IDS based on rule extraction from DCS, in recognizing hard-detectable attack categories, e.g. user-
to-root (U2R) and also offering competitive false alarm rate (FAR). Although, MLP with 25 selected input features, 
instead of 41 standard features introduced by knowledge discovery and data mining group (KDD), performs better in 
terms of detection rate (DR) and cost per example (CPE) when compared with some other machine learning methods, 
as well. 
 
KEYWORDS: Rule extraction, dynamic cell structure, intrusion detection system. 
 
1. INTRODUCTION 

In machine learning and data mining research, rule 
learning has become an important topic. On the other 
hand, artificial neural networks (ANNs), in spite of 
their adaptivity and wide range of applications such as 
pattern classification and time-series prediction, have 
an important drawback: knowledge embedded within 
ANNs is distributed over the activations and 
connections of neurons and is not transparent to users 
[1-3]. 

There are many researches investigating the area of 
rule extraction by different structures of ANNs [4-15]. 
The researches on rule extraction can be classified into 
three approaches: decompositional, pedagogical and 
eclectic.  

Analyzing the activation and weights of the hidden 
layers of ANN is performed in decompositional 
approach [16-19]. The pedagogical approach treats the 
ANN as a black box and extract rules by only looking 
at the input and output activations [1, 20]. Finally, the 
eclectic approach, which is based on two former 
approaches, is characterized by any use of knowledge 
concerning the internal architecture and/or weight 

vectors in a trained ANN to complement a symbolic 
learning algorithm [21]. In this paper, the third 
approach is investigated in which rules are extracted 
from a dynamic cell structure (DCS) neural network. 

Most of the techniques developed thus far for rule 
extraction are very NN-specific. Two specific rule 
extraction techniques seemed closely related to this 
work. One technique, RULEX, was applied first to a 
constrained multilayer perceptron (MLP) [1] and then 
to a local-cluster NN [22]. Another technique, LREX, 
has been used to extract rules from radial basis 
function (RBF) neural network [23, 24]. In this paper, 
a modified version of LREX is used for rule extraction 
from the DCS. 

Also, because of the importance of security in 
information and communication technology (ICT) and 
critical role of intrusion detection systems (IDSs) in 
this area, the extracted rules from DCS are used in this 
paper for attack recognition in computer networks. 

The rest of this paper is organized as follows. In 
Section 2, the basics of IDS are reviewed. The 
foundation of DCS is described in Section 3. The rule 
extraction algorithm is introduced in Section 4. The 
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training data of the system is detailed in Section 5. The 
foundations of output weight optimization-hidden 
weight optimization (OWO-HWO), as the training 
algorithm of the MLPs in this paper, is described in 
Section 6. The details of empirical results and 
conclusion are also drawn in Section 7 and Section 8, 
respectively. 
 

 
Fig. 1. General architecture for IDS 

 
2. INTRUSION DETECTION SYSTEMS 

In 1998, a working group created by Defense 
Advanced Research Project Agency (DARPA) 
oriented towards coordinating and defining a common 
framework in the IDS field. Integrated within Internet 
Engineering Task Force (IETF) in 2000, and having 
adopted the new acronym Intrusion Detection 
Working Group (IDWG), the group defined a general 
IDS architecture (Fig. 1) [25]. 

This architecture is based on four types of 
functional modules: Event (E), Database (D), Analysis 
(A), and Response (R). 

"E" blocks acquire information events to be 
analyzed by other blocks. Depending on the 
information source considered, IDS may be either host 
or network-based [26]. A host-based IDS analyzes 
events that mainly related to operating system (OS) 
information. A network-based IDS analyzes network 
related events: traffic volume, Internet Protocol (IP) 
addresses, service ports, protocol usage, etc. 

"D" blocks intended to store information from "E" 
blocks for subsequent processing by "A" and "R" 
boxes. 
"A" blocks are processing modules for analyzing 
events and detecting potential intrusions. Depending 
on the type of analysis carried out, IDSs are classified 
as either anomaly-based [27, 28] or misuse-based [29, 
30]. 

"R" blocks generate a response, if an intrusion is 
detected. 

Anomaly-based detectors attempt to estimate the 
normal or abnormal behaviors of the system to be 
protected. Misuse-based schemes seek defined 
patterns within the analyzed data. 

The detection techniques in anomaly-based IDS 

can be classified into three main categories: statistical-
based [31], knowledge-based [25] and machine 
learning (e.g. Bayesian networks [32], Markov models 
[33], ANNs [27, 34], fuzzy logic [35], and genetic 
algorithms [36]). 

The detection techniques that have been used in 
misuse-based IDS can also be classified into three 
main categories: statistical-based [37], knowledge-
based [38] and machine learning (e.g. Bayesian 
networks [39], ANNs [40-43], fuzzy logic [44], 
genetic algorithms [45], decision trees [46] and hybrid 
systems [47, 48]). 
 
3. DCS NEURAL NETWORK 

The DCS neural network is known as a member of 
self-organizing maps (SOMs). This neural network, 
which is implemented in the GEN1 system by 
National Aeronautics Space Administration (NASA), 
was originally developed by Bruske and Sommer [49]. 
This network was a derivative of Fritzke's work [50] 
combined with competitive Hebbian learning by 
Martinez [51].  

The DCS is designed as a topology representing 
network that learns the function that describes a map 
of the input space, represented as Voronoi regions. 

The neurons within the NN represent the reference 
vector (centroid) for each of the Voronoi regions. The 
connection between the neurons, cij, is connecting 
neighboring Voronoi regions through their reference 
vectors. This reference vector is known as the "best 
matching unit" (BMU). Given an input, X, the BMU is 
the neuron whose weights, W, are closest to X. Along 
with the BMU, the "second BMU" (SBU) is found to 
adjust nearby neurons within the BMU neighborhood 
(NBR). 

The DCS neural networks consist of two learning 
rules, Hebbian and Kohonen. Hebbian learning 
updates cij between neurons i and j: 
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In this equation, the forgetting constant,  , is 
included to produce a weakening between i and j, if 
they are not currently the closest to the stimulus, and 
  is the edge threshold, a minimum acceptable 
connection strength in order for the connection to be 
considered valid. Kohonen learning is used to adjust 
the weight vectors, W, of the neurons: 

























NBR)(i  BMU)(i  ;                         0

NBR)(i  ;  ))(w -X(ε

BMU)(i  ;  ))(w -X(ε

wΔ
i

i

i NBR

BMU

t

t
            (2) 

where BMUε  is the BMU weight adjustment 

M
on

it
or

ed
 e

nv
ir

on
m

en
t E 

E 

E 

A 

A 

D 

A 

R 



Majlesi Journal of Electrical Engineering                                                                     Vol. 4, No. 4, December 2010 
 

26 
 

parameter and NBRε  is the weight adjustment applied 

to the neighborhood of the BMU.  
These two learning rules allow the DCS to change 

its structure. The ability to add new neurons into the 
network, as it grows, gives the DCS the potential to 
evolve into many different configurations.  
 
4. RULE EXTRACTION ALGORITHM 

As mentioned in the introduction, a modification of 
the LERX algorithm by McGarry et al. [23, 24] is used 
in this work for extracting rules from the DCS. This 
algorithm was originally used to extract rules from 
RBF neural network [52]. 

After training the network, the weights of DCS are 
used as inputs to the algorithm. The BMU 
corresponding to each data point is recorded during 
training and is used as an input to the algorithm, too. 
The training data is divided into regions based on the 
BMU. Then for each region, xlower is the smallest value 
of the independent variable that has a particular BMU 
and xupper is the largest value of that independent 
variable that has the same BMU. 

These two numbers form bounds for the intervals 
in the antecedent statement (e.g. ("variable>= xlower" 
AND "variable<= xupper")). An interval is determined 
for each of the independent variables and the 
statements are connected by "AND" to form the full 
antecedent. The algorithm of rule extraction is as 
follows: 
Input: 
Weights of the DCS (centers of Voronoi regions) 
Best matching unit for each input 
Output: 
One rule for each cell of the DCS 
Procedure: 
Train DCS on the data set 
Record BMU for each input 
Collect all inputs with common BMU to form cell 
For each weight (wi) 
                For each independent variable 
                         xlower = min{x | x has BMU = wi } 
                         xupper = max{x | x has BMU = wi } 
Build rule by: 
                Independent variable in [xlower,xupper] 
                Join antecedent statements with AND 
                Dependent variable = category 
                        OR 
               Dependent variable in [ylower , yupper] 
               Join conclusion statements with AND 
Write Rule 
 
5. TRAINING DATA 

In 1998, the Lincoln Laboratory at MIT, under the 
DARPA sponsorship, constructed and distributed the 
first standard dataset for evaluation of computer 
network IDS [53]. Afterward knowledge discovery 

and data mining group (KDD) collected and generated 
TCP dump data provided by the aforementioned 
DARPA in the form of train-and-test sets whose 41 
features are defined for the connection records [54]. 
The attacks of KDD fall into one of four categories: 
a. Denial of Service (DoS): Attacker tries to prevent 
legitimate users from using a service. 
b. Remote to Local (R2L): Attacker does not have an 
account on the victim machine, hence tries to gain 
access. 
c. User to Root (U2R): Attacker has local access to the 
victim machine and tries to gain super user privileges. 

Probe: Attacker tries to gain information about the 
target host. 

The KDD dataset consists of three components: 
"10% KDD", "Corrected KDD", and "Whole KDD" 
(Table 1). 

There are multiple attack types for each main 
attack category. Table 2 lists the attack categories 
along with the 22 attack types in the "10% KDD" 
dataset. 

In this work, 49402 records from "10% KDD" are 
chosen as the training data. This dataset has the same 
distribution of attacks as "10% KDD" dataset (Table 
3). The "Corrected KDD" consists of 14 new unknown 
attack types. In this work, 31103 records are chosen 
from "Corrected KDD" with the same distribution of 
attacks (Table 3). 

As mentioned before, each connection in KDD is 
characterized by 41 features [55] and a label that 
determines the main category (attacks/normal 
connection). The description, type, and range of 19 
sample features are listed in Table 4. 

As shown in Table 4, the features in KDD have 
different forms (continuous, discrete, and symbolic) 
with significantly varying resolution and ranges. Most 
pattern classification methods are not able to process 
data in such a format. Hence, preprocessing is 
required. 

The preprocessing is performed in two steps: 
a. Mapping symbolic valued features, such as 

protocol_type, service, and flag, to integer values. 
b. Normalization of feature values. 

However, logarithmic scaling (base 10) is applied 
to three features spanned over a very large integer 
range, namely duration [0,58329], src_bytes 
[0,1.3billion] and dst_bytes [0,1.3billion], to reduce 
the ranges to [0,4.77] and [0,9.11], respectively. Other 
features are either Boolean, like logged_in, having 
binary values, or continuous, like diff_srv_rate, in the 
range of [0,1] and no scaling is needed for these 
features. So, each of the mapped features are linearly 
scaled to the range [0,1].  

The preprocessed features are the inputs of MLP 
neural classifier. There are five nodes at the output 
layer of this classifier. The target values of these nodes 
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are as follow: 00001 (for Normal pattern), 00010 (for 
DoS attack), 00100 (for R2L attack), 01000 (for U2R 
attack), and 10000 (for Probe attack). 

 
6. IMPROVED TRAINING ALGORITHM FOR 
MLP 

To compare the performance of the proposed 
system with other machine learning algorithms, MLP 
with OWO-HWO training algorithm is employed with 
selected input features based on the results of a feature 
relevance analysis. In this section, the details of 
OWO- HWO training algorithm and feature ranking 
method are discussed. 

A critical problem in MLP neural networks has 
been the long training time required. Several fast 
training techniques, that require the solution of sets of 
linear equations, have been devised [56, 57].  

In output weight optimization-backpropagation 
(OWO-BP), linear equations are solved to find output 
weights and backpropagation is used to find hidden 
weights [58]. Unfortunately, backpropagation is not a 
very effective method for updating hidden weights 
[59]. The idea of minimizing a separate error function 
for each hidden unit is adapted to find the hidden 
weights and have termed as hidden weight 
optimization (HWO) [58]. 

It is noted that in a MLP, if the jth unit is a hidden 
unit, then the net input netp(j) and the output activation 
Op(j) for the pth training pattern are: 

( ) ( , ). ( ) p p
i

net j w j i x i                                   (3) 

))(()( jnetfjO pp                                                  (4) 

where the ith unit is in any previous layer and w(j,i) 
denotes the weight connecting the ith unit to the jth 
unit. For the kth output unit, the net input netop(k) for 
the pth training pattern and the output activation 
Oop(k), with the linear property assumption of the 
output units, are: 

op o p
i

net (k) = w (k, i).O (i)                                         (5)

op opO (k) = net (k)                                                      (6)

where wo(k,i) denotes the output weight connecting the 
ith unit to the kth output unit. 

In order to train a neural network in batch mode, 
the error for the kth output unit is defined as:  


vN

2
p op

v p=1

1
E(k) = [T (k) - O (k)]

N
                              (7)                                                                                    

in which Nv is the number of training patterns.  
In this paper, the conjugate gradient approach is 

used to minimize E(k) [58]. For hidden weight 
changes, it is desirable to optimize the hidden weights 
by minimizing separate error functions for each hidden 
unit. By minimizing many simple error functions, 
instead of a large one, it is hoped that the training 

speed and convergence can be improved. The desired 
hidden net function can be approximated by a current 
net function plus a net change. That is, for jth unit and 
pth pattern, a desired net function can be constructed 
as [60]: 

pd p pnet (j) = net (j) + Zδ (j)                (8)                             

where Z is the learning factor and δp(j) for output units 
and hidden units are as follows, respectively: 

p j p pδ (j) = f (net ).[T (j) - O (j)]                                   (9) 

 p j p
n

δ (j) = f (net ). δ (n)w(n, j)                               (10) 

Similarly, the hidden weights can be updated as: 
w(j, i) w(j, i) + Z.e(j, i)                                         (11)                             

where e(j,i) is the weight change and serves the same 
purpose as the negative gradient in backpropagation. 

By defining an objective function in terms of mean 
squared error (MSE) for the jth unit as: 

 
vN

2
δ p p

p=1 i

E (j) = [δ (j) - e(j, i).O (i)]                         (12)                             

and taking the gradient of E(j) with respect to the 
weight changes, and setting it to zero, the following 
linear equations are achieved: 


 oo

i

- E
e(j, i).R (i, m) =

w(j, m)
                                    (13)                             

where 


vN

oo p p
p=1

R (i,m) = O (i).O (m)                                      (14)                             

The steps of OWO-HWO algorithm are listed as 
follow: 

1. Initialize all weights and thresholds. 
2. Increase n by 1 and stop if n>Nit

.       
(Nit=Number of iterations) 

3. Apply training pattern and calculate the 
output activation. 

4. Use the conjugate gradient approach to 
minimize error. 

5. If  MSE(n) > MSE(n-1) 
Z Z   % Reduce the value of Z (learning 
factor) 
Reload the previous best hidden weights 
Go to step 9 

6. If ( ) ( 1)MSE n MSE n   

Accumulate the cross-correlation Ro(m) 
and auto-correlation Roo(m) for hidden 
units: 

   
vN

δo p p
p=1

R (m) = δ (j).O (m)  

    
vN

oo p p
p=1

R (m) = O (i).O (m)     
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7. Solve linear equations for hidden weight 
changes: 

        oo δo
i

e(j, i).R (i, m) = R (m)  

8. Calculate the learning factor as: 
     

 
 

  
 

j i

-0.05E
Z =

E
.e(j, i)

w(j, i)

              

9. Update the hidden weights as: 
w(j, i) w(j, i) + Z.e(j, i)  

10. Go to step 2 

Also, feature ranking is an important issue in 
intrusion detection. Elimination of less significant 
features lowers the size of ANN and speeds up the 
computations. The results of using logistic regression 
to rank the features based on the Chi-square values for 
different subsets are used in this paper [61]. In this 
way, the higher the Chi-square value, the higher is the 
ranking. In Table 5, the ranking results of the Chi-
square test on KDD dataset are listed for the 25 most 
significant features. 
 
7. EMPIRICAL RESULTS 

The performance of DCS-based neural IDS is 
investigated in this section and is compared to MLP 
with OWO-HWO training algorithm and selected 
input features. 

Based on the results of feature ranking, three 
experiments are performed by selecting 25, 20 and 15 
features as the input vector of MLP, respectively. The 
MLP in each of these experiments has five linear 
output neurons (representing 4 attack categories, and 1 
normal category). The number of MLP hidden nodes 
in each of these experiments is selected as 33, 30 and 
25, respectively. This selection is based on monitoring 
the MSE on test data for different values of hidden 
nodes, e.g. as shown in Table 6 for the case of 20 input 
features. 

The effect of the input feature-vector size 
reduction on the performance of MLP, when using 
OWO-HWO as training algorithm, is shown in Fig. 4 
for each of the mentioned experiments along with no-
feature selection condition. The structure of MLP is 
shown as [x y z] in the legend of figure, representing 
the number of input, hidden and output nodes, 
respectively.  

Before discussing about the results of experiments, 
it seems necessary to mention the standard metrics that 
have been developed for evaluating IDS. Detection 
rate (DR) and false alarm rate (FAR) are the two most 
common metrics. DR is computed as the ratio between 
the number of correctly detected attacks and the total 
number of attacks, while FAR is computed as the ratio 
between the number of normal connections that is 

incorrectly misclassified as attacks and the total 
number of normal connections. 

For the purpose of classifier algorithm evaluation, 
another comparative measure is cost per example 
(CPE) [62]. CPE is calculated using the following 
formula: 


m m

i =1 j =1

1
CPE = CM(i, j).C(i, j)

N
                   (15)                             

Where CM and C are confusion matrix and cost 
matrix, respectively. In Eq. (15), N represents the total 
number of test instances, and m is the number of 
classes in classification. CM is a square matrix in 
which each column corresponds to the predicted class, 
while rows correspond to the actual classes. An entry 
at row i and column j, CM(i,j), represents the number 
of misclassified instances that originally belong to 
class i, although incorrectly identified as a member of 
class j. The entries of the primary diagonal, CM(i,i), 
stand for the number of properly detected instances. 
Cost matrix is similarly defined, as well, and entry 
C(i,j) represents the cost penalty for misclassifying an 
instance belonging to class i into class j. Cost matrix 
values employed for the KDD 99 classifier learning 
contest are shown in Table 7 [54]. 

The procedure of performance evaluation of the 
proposed IDS models is depicted in Fig. 3. 

The confusion matrices for rule extraction-based 
approach and also three mentioned MLP classifiers are 
reported in Table 8 to Table 11, respectively. 

The performance of the proposed IDS models is 
compared with some other machine learning methods, 
as well (Table 12). 

As shown in Table 12, the classification rates of 
DoS, Probe, and R2L attacks for MLP with 25 
selected input-features are better than other reported 
models. However, DCS offers better classification rate 
for U2R attack as compared to others. It should be 
noted that most of the machine learning algorithms 
have offered an acceptable level of classification rate 
for DoS and Probe attack categories and demonstrated 
poor performance on the R2L and U2R categories 
[65]. 

DR and CPE of MLP classifier with 25 selected 
input-features are better than other models, too. 
However, FAR of the DCS model is competitive as 
compared to other models. 
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Table 1. Number of samples in KDD 99 datasets 

KDD dataset Normal Probe DoS U2R R2L 
10% 97277 4107 391458 52 1126 

Corrected 60593 4166 229853 70 16347 
Whole 972780 41102 3883370 52 1126 

 
Table 2. Attack types and number of their samples in 10% KDD dataset 

Category Type (Number of samples) 
Probe satan (1589), ipsweep (1247), portsweep (1040), nmap (231) 
DoS smurf (280790), neptune (107201), back (2203), teardrop (979), pod (264), land (21)  
U2R buffer_overflow (30), rootkit (10), loadmodule (9), perl (3) 

R2L 
warezclient (1020), guess_passwd (53), warezmaster (20), imap (12), ftp_write (8), 
multihop (7), phf (4), spy (2) 

 
Table 3. Size of the training and test datasets 

Class Training samples Test samples 
Number  Distribution (%) Number  Distribution (%) 

Normal 9727 19.69 6059 19.48 
Probe 411 0.83 417 1.34 
DoS 39145 79.24 22985 73.90 
U2R 6 0.01 7 0.02 
R2L 113 0.23 1635 5.26 
Total 49402 100 31103 100 

Table 4. Description and value ranges of 19 sample features in KDD dataset 
Feature Description Type Value ranges 

duration Duration of the connection (in seconds)  continuous [0,58329] 

protocol_type Type of the connection protocol discrete 3 different symbols 

service Service on the destination discrete 70 different symbols 

flag Status flag of the connection discrete 11 different symbols 

src_bytes Number of bytes sent from source to destination continuous [0,1.3e+9] 

dst_bytes Number of bytes sent from destination to source continuous [0,1.3e+9] 

wrong_fragment Number of wrong fragments continuous [0,3] 

urgent Number of urgent packets continuous [0,14] 

hot Number of "hot" indicators continuous 0,101] 

num_failed_logins Number of failed logins continuous [0,5] 

num_compromised Number of "compromised" conditions continuous [0,9] 

num_root Number of "root" accesses continuous [0,7468] 

num_file_creations Number of file creation operations continuous [0,100] 

num_shells Number of shell prompts continuous [0,5] 

num_access_files Number of operations on access control files continuous [0,9] 

count 
Number of connections to the same host as the current connection in the past two 

seconds 
continuous [0,511] 

srv_count 
Number of connections to the same service as the current connection in the past two 

seconds 
continuous [0,511] 

dst_host_count Number of connections having the same destination host continuous [0,255] 

dst_host_srv_count Number of connections having the same destination host and using the same service continuous [0,255] 
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Table 5. Chi-square values of the 25 most significant features 
Attack type 

Feature 
Probe DoS U2R R2L 

dst_host_diff_srv_rate 3686.3 1334.8 2532.0 1114.1 
rerror_rate 2734.5 1016.3 613.4 1016.5 
dst_host_srv_rerror_rate 2707.7 967.9 301.1 586.2 
srv_rerror_rate 2515.7 805.5 244.9 583.3 
dst_ host_rerror_rate 2252.0 732.8 207.8 560.6 
diff_srv_rate 1228.3 551.7 39.9 350.1 
dst_host_same_srv_rate 793.3 449.2 39.2 311.1 
service 588.7 438.8 36.7 249.5 
dst_host_srv_count 546.1 433.0 32.6 239.2 
logged_in 427.2 363.6 25.1 141.8 
dst_host_srv_diff_host_rate 422.3 353.5 25.0 141.3 
srv_count 123.4 344.9 15.5 141.2 
same_srv_rate 91.8 336.9 15.3 126.1 
protocol_type 84.6 328.7 10.7 125.0 
num_compromised 70.4 308.4 10.3 116.0 
wrong_fragment 68.6 275.6 6.4 99.8 
dst_host_same_src_port_rate 65.4 274.0 6.3 78.3 
hot 33.9 240.3 6.2 53.1 
srv_serror_rate 20.3 188.9 6.2 46.8 
dst_host_srv_serror_rate 19.6 129.1 6.2 45.5 
is_guest_login 18.2 121.4 3.8 37.1 
serror_rate 17.7 102.2 3.4 33.9 
src_bytes 8.3 101.5 3.4 27.7 
duration 7.6 52.4 2.9 26.1 
dst_host_serror_rate 7.4 45.4 2.7 26.0 

 
Table 6. Performance of MLP-based IDS with 20 input features after 50 training epochs 

Number of hidden 
nodes 

MSE-training samples MSE-test samples Detection rate (%) 

10 0.0044 0.0447 97.42 
15 0.0038 0.0406 97.75 
20 0.0031 0.0407 97.96 
25 0.0020 0.0350 99.20 
30 0.0020 0.0284 99.58 
35 0.0018 0.0291 99.52 
 

Table 7. Cost matrix values for KDD dataset 
Predicted 

Actual 
Normal Probe DoS U2R R2L 

Normal 0 1 2 2 2 
Probe 1 0 2 2 2 
DoS 2 1 0 2 2 
U2R 3 2 2 0 2 
R2L 4 2 2 2 0 

 
Table 8. Confusion matrix of DCS-based IDS 
Predicted 

Actual 
Normal Probe DoS U2R R2L 

Normal 6031 18 10 0 0 
Probe 44 325 48 0 0 
DoS 59 33 22893 0 0 
U2R 2 2 1 1 1 
R2L 657 5 0 1 972 
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Fig. 2. Performance of MLP-based IDS, using OWO-HWO training algorithm and feature-selection method. 

 

 
Fig. 3. Performance comparison procedure of ANN and rule extraction modules. 
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Table 9. Confusion matrix of MLP-based IDS with 25 input features 

Predicted 
Actual 

Normal Probe DoS U2R R2L 

Normal 6027 8 10 0 14 
Probe 7 374 32 0 4 
DoS 12 1 22964 0 8 
U2R 2 3 1 0 1 
R2L 31 2 4 0 1598 

 
Table10. Confusion matrix of MLP-based IDS with 20 input features 

Predicted 
Actual 

Normal Probe DoS U2R R2L 

Normal 6015 7 16 0 21 
Probe 8 371 30 0 8 
DoS 5 5 22956 0 19 
U2R 2 2 2 0 1 
R2L 33 2 15 0 1585 

 
Table 11. Confusion matrix of MLP-based IDS with 15 input features 

Predicted 
Actual 

Normal Probe DoS U2R R2L 

Normal 6041 10 7 0 1 
Probe 9 362 21 0 25 
DoS 8 8 22899 0 70 
U2R 3 1 2 0 1 
R2L 21 0 25 0 1589 

 
Table 12. Performance comparison of different models for intrusion detection 

Model 
Classification rate 

DR FAR CPE 
DoS Probe R2L U2R Normal 

Winner of KDD in 2000 [46] 97.1 83.3 8.4 13.2 99.5 91.8 0.6 0.2331 
Runner up of KDD in 2000 [63] 97.5 84.5 7.3 11.8 99.4 91.5 0.6 0.2356 
PNrule [62] 96.9 73.2 10.7 6.6 99.5 91.1 0.4 0.2371 
ESC-IDS [64] 99.5 84.1 31.5 14.1 98.2 95.3 1.9 0.1579 
DCS (proposed) 99.6 77.9 59.4 14.3 99.5 92.7 0.46 0.0959 
MLP-25 features (OWO-HWO) 99.9 89.7 97.7 0.0 99.5 99.6 0.53 0.0105 
MLP-20 features (OWO-HWO) 99.9 89.0 96.9 0.0 99.3 99.5 0.73 0.0129 
MLP-15 features (OWO-HWO) 99.6 86.8 97.2 0.0 99.7 99.2 0.30 0.0142 

 

8. CONCLUSION 
In this paper, the performance of rule extracting 

module from a dynamic cell structure neural network 
has been investigated in intrusion detection application 
and compared with fast MLP-based IDS which has 
used OWO-HWO training algorithm and selected 
input features. 

In this way, a modified version of LERX algorithm 
has been used for rule extraction from the DCS. The 
proposed DCS model performs successfully in 
recognizing hard detectable attacks, such as U2R. The 
FAR of DCS model is competitive, as compared to 
other models, too. 

The MLP with OWO-HWO training algorithm and 

25 selected input features has offered better 
performance in classifying other attack categories. The 
DR of this model is higher and its CPE is lower than 
other models, as well.  
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