
Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

24

Intrusion Detection Based on Rule Extraction from Dynamic

Cell Structure Neural Networks

Mansour Sheikhan 1, Amir Khalili 2
1- Assistant Professor of Electrical Engineering Department, Islamic Azad University, South Tehran Branch, Iran.

Email: msheikhn@azad.ac.ir
2- M.Sc. of Computer Engineering, Islamic Azad University, South Tehran Branch, Iran.

Email: a_khalili@azad.ac.ir

Received: September 2009 Revised: September 2010 Accepted: October 2010

ABSTRACT:
Knowledge embedded within artificial neural networks (ANNs) is distributed over the connections and weights of
neurons. So, the user considers ANN as a black box system. There are many researches investigating the area of rule
extraction by ANNs. In this paper, a dynamic cell structure (DCS) neural network and a modified version of LERX
algorithm are used for rule extraction. On the other hand, intrusion detection system (IDS) is known as a critical
technology to secure computer networks. So, the proposed algorithm is used to develop IDS and classify the patterns
of intrusion. To compare the performance of the proposed system with other machine learning algorithms, multi-layer
perceptron (MLP) with output weight optimization-hidden weight optimization (OWO-HWO) training algorithm is
employed with selected inputs based on the results of a feature relevance analysis. Empirical results show the superior
performance of the IDS based on rule extraction from DCS, in recognizing hard-detectable attack categories, e.g. user-
to-root (U2R) and also offering competitive false alarm rate (FAR). Although, MLP with 25 selected input features,
instead of 41 standard features introduced by knowledge discovery and data mining group (KDD), performs better in
terms of detection rate (DR) and cost per example (CPE) when compared with some other machine learning methods,
as well.

KEYWORDS: Rule extraction, dynamic cell structure, intrusion detection system.

1. INTRODUCTION

In machine learning and data mining research, rule
learning has become an important topic. On the other
hand, artificial neural networks (ANNs), in spite of
their adaptivity and wide range of applications such as
pattern classification and time-series prediction, have
an important drawback: knowledge embedded within
ANNs is distributed over the activations and
connections of neurons and is not transparent to users
[1-3].

There are many researches investigating the area of
rule extraction by different structures of ANNs [4-15].
The researches on rule extraction can be classified into
three approaches: decompositional, pedagogical and
eclectic.

Analyzing the activation and weights of the hidden
layers of ANN is performed in decompositional
approach [16-19]. The pedagogical approach treats the
ANN as a black box and extract rules by only looking
at the input and output activations [1, 20]. Finally, the
eclectic approach, which is based on two former
approaches, is characterized by any use of knowledge
concerning the internal architecture and/or weight

vectors in a trained ANN to complement a symbolic
learning algorithm [21]. In this paper, the third
approach is investigated in which rules are extracted
from a dynamic cell structure (DCS) neural network.

Most of the techniques developed thus far for rule
extraction are very NN-specific. Two specific rule
extraction techniques seemed closely related to this
work. One technique, RULEX, was applied first to a
constrained multilayer perceptron (MLP) [1] and then
to a local-cluster NN [22]. Another technique, LREX,
has been used to extract rules from radial basis
function (RBF) neural network [23, 24]. In this paper,
a modified version of LREX is used for rule extraction
from the DCS.

Also, because of the importance of security in
information and communication technology (ICT) and
critical role of intrusion detection systems (IDSs) in
this area, the extracted rules from DCS are used in this
paper for attack recognition in computer networks.

The rest of this paper is organized as follows. In
Section 2, the basics of IDS are reviewed. The
foundation of DCS is described in Section 3. The rule
extraction algorithm is introduced in Section 4. The

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

25

training data of the system is detailed in Section 5. The
foundations of output weight optimization-hidden
weight optimization (OWO-HWO), as the training
algorithm of the MLPs in this paper, is described in
Section 6. The details of empirical results and
conclusion are also drawn in Section 7 and Section 8,
respectively.

Fig. 1. General architecture for IDS

2. INTRUSION DETECTION SYSTEMS

In 1998, a working group created by Defense
Advanced Research Project Agency (DARPA)
oriented towards coordinating and defining a common
framework in the IDS field. Integrated within Internet
Engineering Task Force (IETF) in 2000, and having
adopted the new acronym Intrusion Detection
Working Group (IDWG), the group defined a general
IDS architecture (Fig. 1) [25].

This architecture is based on four types of
functional modules: Event (E), Database (D), Analysis
(A), and Response (R).

"E" blocks acquire information events to be
analyzed by other blocks. Depending on the
information source considered, IDS may be either host
or network-based [26]. A host-based IDS analyzes
events that mainly related to operating system (OS)
information. A network-based IDS analyzes network
related events: traffic volume, Internet Protocol (IP)
addresses, service ports, protocol usage, etc.

"D" blocks intended to store information from "E"
blocks for subsequent processing by "A" and "R"
boxes.
"A" blocks are processing modules for analyzing
events and detecting potential intrusions. Depending
on the type of analysis carried out, IDSs are classified
as either anomaly-based [27, 28] or misuse-based [29,
30].

"R" blocks generate a response, if an intrusion is
detected.

Anomaly-based detectors attempt to estimate the
normal or abnormal behaviors of the system to be
protected. Misuse-based schemes seek defined
patterns within the analyzed data.

The detection techniques in anomaly-based IDS

can be classified into three main categories: statistical-
based [31], knowledge-based [25] and machine
learning (e.g. Bayesian networks [32], Markov models
[33], ANNs [27, 34], fuzzy logic [35], and genetic
algorithms [36]).

The detection techniques that have been used in
misuse-based IDS can also be classified into three
main categories: statistical-based [37], knowledge-
based [38] and machine learning (e.g. Bayesian
networks [39], ANNs [40-43], fuzzy logic [44],
genetic algorithms [45], decision trees [46] and hybrid
systems [47, 48]).

3. DCS NEURAL NETWORK

The DCS neural network is known as a member of
self-organizing maps (SOMs). This neural network,
which is implemented in the GEN1 system by
National Aeronautics Space Administration (NASA),
was originally developed by Bruske and Sommer [49].
This network was a derivative of Fritzke's work [50]
combined with competitive Hebbian learning by
Martinez [51].

The DCS is designed as a topology representing
network that learns the function that describes a map
of the input space, represented as Voronoi regions.

The neurons within the NN represent the reference
vector (centroid) for each of the Voronoi regions. The
connection between the neurons, cij, is connecting
neighboring Voronoi regions through their reference
vectors. This reference vector is known as the "best
matching unit" (BMU). Given an input, X, the BMU is
the neuron whose weights, W, are closest to X. Along
with the BMU, the "second BMU" (SBU) is found to
adjust nearby neurons within the BMU neighborhood
(NBR).

The DCS neural networks consist of two learning
rules, Hebbian and Kohonen. Hebbian learning
updates cij between neurons i and j:

),(;)(

SBU})\NBR(j)(C BMU)(i;)(

{SBU}) \ NBR(j)(C BMU)(i; 0

SBU)(j BMU)(i; 1

)1(
ij

ij



















BMUjitC

tC
tC

ij

ij
ij 

 (1)

In this equation, the forgetting constant,  , is
included to produce a weakening between i and j, if
they are not currently the closest to the stimulus, and
 is the edge threshold, a minimum acceptable
connection strength in order for the connection to be
considered valid. Kohonen learning is used to adjust
the weight vectors, W, of the neurons:

























NBR)(i BMU)(i ; 0

NBR)(i ;))(w -X(ε

BMU)(i ;))(w -X(ε

wΔ
i

i

i NBR

BMU

t

t
 (2)

where BMUε is the BMU weight adjustment

M
on

it
or

ed
 e

nv
ir

on
m

en
t E

E

E

A

A

D

A

R

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

26

parameter and NBRε is the weight adjustment applied

to the neighborhood of the BMU.
These two learning rules allow the DCS to change

its structure. The ability to add new neurons into the
network, as it grows, gives the DCS the potential to
evolve into many different configurations.

4. RULE EXTRACTION ALGORITHM

As mentioned in the introduction, a modification of
the LERX algorithm by McGarry et al. [23, 24] is used
in this work for extracting rules from the DCS. This
algorithm was originally used to extract rules from
RBF neural network [52].

After training the network, the weights of DCS are
used as inputs to the algorithm. The BMU
corresponding to each data point is recorded during
training and is used as an input to the algorithm, too.
The training data is divided into regions based on the
BMU. Then for each region, xlower is the smallest value
of the independent variable that has a particular BMU
and xupper is the largest value of that independent
variable that has the same BMU.

These two numbers form bounds for the intervals
in the antecedent statement (e.g. ("variable>= xlower"
AND "variable<= xupper")). An interval is determined
for each of the independent variables and the
statements are connected by "AND" to form the full
antecedent. The algorithm of rule extraction is as
follows:
Input:
Weights of the DCS (centers of Voronoi regions)
Best matching unit for each input
Output:
One rule for each cell of the DCS
Procedure:
Train DCS on the data set
Record BMU for each input
Collect all inputs with common BMU to form cell
For each weight (wi)
 For each independent variable
 xlower = min{x | x has BMU = wi }
 xupper = max{x | x has BMU = wi }
Build rule by:
 Independent variable in [xlower,xupper]
 Join antecedent statements with AND
 Dependent variable = category
 OR
 Dependent variable in [ylower , yupper]
 Join conclusion statements with AND
Write Rule

5. TRAINING DATA

In 1998, the Lincoln Laboratory at MIT, under the
DARPA sponsorship, constructed and distributed the
first standard dataset for evaluation of computer
network IDS [53]. Afterward knowledge discovery

and data mining group (KDD) collected and generated
TCP dump data provided by the aforementioned
DARPA in the form of train-and-test sets whose 41
features are defined for the connection records [54].
The attacks of KDD fall into one of four categories:
a. Denial of Service (DoS): Attacker tries to prevent
legitimate users from using a service.
b. Remote to Local (R2L): Attacker does not have an
account on the victim machine, hence tries to gain
access.
c. User to Root (U2R): Attacker has local access to the
victim machine and tries to gain super user privileges.

Probe: Attacker tries to gain information about the
target host.

The KDD dataset consists of three components:
"10% KDD", "Corrected KDD", and "Whole KDD"
(Table 1).

There are multiple attack types for each main
attack category. Table 2 lists the attack categories
along with the 22 attack types in the "10% KDD"
dataset.

In this work, 49402 records from "10% KDD" are
chosen as the training data. This dataset has the same
distribution of attacks as "10% KDD" dataset (Table
3). The "Corrected KDD" consists of 14 new unknown
attack types. In this work, 31103 records are chosen
from "Corrected KDD" with the same distribution of
attacks (Table 3).

As mentioned before, each connection in KDD is
characterized by 41 features [55] and a label that
determines the main category (attacks/normal
connection). The description, type, and range of 19
sample features are listed in Table 4.

As shown in Table 4, the features in KDD have
different forms (continuous, discrete, and symbolic)
with significantly varying resolution and ranges. Most
pattern classification methods are not able to process
data in such a format. Hence, preprocessing is
required.

The preprocessing is performed in two steps:
a. Mapping symbolic valued features, such as

protocol_type, service, and flag, to integer values.
b. Normalization of feature values.

However, logarithmic scaling (base 10) is applied
to three features spanned over a very large integer
range, namely duration [0,58329], src_bytes
[0,1.3billion] and dst_bytes [0,1.3billion], to reduce
the ranges to [0,4.77] and [0,9.11], respectively. Other
features are either Boolean, like logged_in, having
binary values, or continuous, like diff_srv_rate, in the
range of [0,1] and no scaling is needed for these
features. So, each of the mapped features are linearly
scaled to the range [0,1].

The preprocessed features are the inputs of MLP
neural classifier. There are five nodes at the output
layer of this classifier. The target values of these nodes

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

27

are as follow: 00001 (for Normal pattern), 00010 (for
DoS attack), 00100 (for R2L attack), 01000 (for U2R
attack), and 10000 (for Probe attack).

6. IMPROVED TRAINING ALGORITHM FOR
MLP

To compare the performance of the proposed
system with other machine learning algorithms, MLP
with OWO-HWO training algorithm is employed with
selected input features based on the results of a feature
relevance analysis. In this section, the details of
OWO- HWO training algorithm and feature ranking
method are discussed.

A critical problem in MLP neural networks has
been the long training time required. Several fast
training techniques, that require the solution of sets of
linear equations, have been devised [56, 57].

In output weight optimization-backpropagation
(OWO-BP), linear equations are solved to find output
weights and backpropagation is used to find hidden
weights [58]. Unfortunately, backpropagation is not a
very effective method for updating hidden weights
[59]. The idea of minimizing a separate error function
for each hidden unit is adapted to find the hidden
weights and have termed as hidden weight
optimization (HWO) [58].

It is noted that in a MLP, if the jth unit is a hidden
unit, then the net input netp(j) and the output activation
Op(j) for the pth training pattern are:

() (,). () p p
i

net j w j i x i (3)

))(()(jnetfjO pp  (4)

where the ith unit is in any previous layer and w(j,i)
denotes the weight connecting the ith unit to the jth
unit. For the kth output unit, the net input netop(k) for
the pth training pattern and the output activation
Oop(k), with the linear property assumption of the
output units, are:

op o p
i

net (k) = w (k, i).O (i) (5)

op opO (k) = net (k) (6)

where wo(k,i) denotes the output weight connecting the
ith unit to the kth output unit.

In order to train a neural network in batch mode,
the error for the kth output unit is defined as:


vN

2
p op

v p=1

1
E(k) = [T (k) - O (k)]

N
 (7)

in which Nv is the number of training patterns.
In this paper, the conjugate gradient approach is

used to minimize E(k) [58]. For hidden weight
changes, it is desirable to optimize the hidden weights
by minimizing separate error functions for each hidden
unit. By minimizing many simple error functions,
instead of a large one, it is hoped that the training

speed and convergence can be improved. The desired
hidden net function can be approximated by a current
net function plus a net change. That is, for jth unit and
pth pattern, a desired net function can be constructed
as [60]:

pd p pnet (j) = net (j) + Zδ (j) (8)

where Z is the learning factor and δp(j) for output units
and hidden units are as follows, respectively:

p j p pδ (j) = f (net).[T (j) - O (j)] (9)

 p j p
n

δ (j) = f (net). δ (n)w(n, j) (10)

Similarly, the hidden weights can be updated as:
w(j, i) w(j, i) + Z.e(j, i) (11)

where e(j,i) is the weight change and serves the same
purpose as the negative gradient in backpropagation.

By defining an objective function in terms of mean
squared error (MSE) for the jth unit as:

 
vN

2
δ p p

p=1 i

E (j) = [δ (j) - e(j, i).O (i)] (12)

and taking the gradient of E(j) with respect to the
weight changes, and setting it to zero, the following
linear equations are achieved:


 oo

i

- E
e(j, i).R (i, m) =

w(j, m)
 (13)

where


vN

oo p p
p=1

R (i,m) = O (i).O (m) (14)

The steps of OWO-HWO algorithm are listed as
follow:

1. Initialize all weights and thresholds.
2. Increase n by 1 and stop if n>Nit

.
(Nit=Number of iterations)

3. Apply training pattern and calculate the
output activation.

4. Use the conjugate gradient approach to
minimize error.

5. If MSE(n) > MSE(n-1)
Z Z  % Reduce the value of Z (learning
factor)
Reload the previous best hidden weights
Go to step 9

6. If () (1)MSE n MSE n 

Accumulate the cross-correlation Ro(m)
and auto-correlation Roo(m) for hidden
units:

 
vN

δo p p
p=1

R (m) = δ (j).O (m)

 
vN

oo p p
p=1

R (m) = O (i).O (m)

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

28

7. Solve linear equations for hidden weight
changes:

  oo δo
i

e(j, i).R (i, m) = R (m)

8. Calculate the learning factor as:

 
 

  
 

j i

-0.05E
Z =

E
.e(j, i)

w(j, i)

9. Update the hidden weights as:
w(j, i) w(j, i) + Z.e(j, i)

10. Go to step 2

Also, feature ranking is an important issue in
intrusion detection. Elimination of less significant
features lowers the size of ANN and speeds up the
computations. The results of using logistic regression
to rank the features based on the Chi-square values for
different subsets are used in this paper [61]. In this
way, the higher the Chi-square value, the higher is the
ranking. In Table 5, the ranking results of the Chi-
square test on KDD dataset are listed for the 25 most
significant features.

7. EMPIRICAL RESULTS

The performance of DCS-based neural IDS is
investigated in this section and is compared to MLP
with OWO-HWO training algorithm and selected
input features.

Based on the results of feature ranking, three
experiments are performed by selecting 25, 20 and 15
features as the input vector of MLP, respectively. The
MLP in each of these experiments has five linear
output neurons (representing 4 attack categories, and 1
normal category). The number of MLP hidden nodes
in each of these experiments is selected as 33, 30 and
25, respectively. This selection is based on monitoring
the MSE on test data for different values of hidden
nodes, e.g. as shown in Table 6 for the case of 20 input
features.

The effect of the input feature-vector size
reduction on the performance of MLP, when using
OWO-HWO as training algorithm, is shown in Fig. 4
for each of the mentioned experiments along with no-
feature selection condition. The structure of MLP is
shown as [x y z] in the legend of figure, representing
the number of input, hidden and output nodes,
respectively.

Before discussing about the results of experiments,
it seems necessary to mention the standard metrics that
have been developed for evaluating IDS. Detection
rate (DR) and false alarm rate (FAR) are the two most
common metrics. DR is computed as the ratio between
the number of correctly detected attacks and the total
number of attacks, while FAR is computed as the ratio
between the number of normal connections that is

incorrectly misclassified as attacks and the total
number of normal connections.

For the purpose of classifier algorithm evaluation,
another comparative measure is cost per example
(CPE) [62]. CPE is calculated using the following
formula:


m m

i =1 j =1

1
CPE = CM(i, j).C(i, j)

N
 (15)

Where CM and C are confusion matrix and cost
matrix, respectively. In Eq. (15), N represents the total
number of test instances, and m is the number of
classes in classification. CM is a square matrix in
which each column corresponds to the predicted class,
while rows correspond to the actual classes. An entry
at row i and column j, CM(i,j), represents the number
of misclassified instances that originally belong to
class i, although incorrectly identified as a member of
class j. The entries of the primary diagonal, CM(i,i),
stand for the number of properly detected instances.
Cost matrix is similarly defined, as well, and entry
C(i,j) represents the cost penalty for misclassifying an
instance belonging to class i into class j. Cost matrix
values employed for the KDD 99 classifier learning
contest are shown in Table 7 [54].

The procedure of performance evaluation of the
proposed IDS models is depicted in Fig. 3.

The confusion matrices for rule extraction-based
approach and also three mentioned MLP classifiers are
reported in Table 8 to Table 11, respectively.

The performance of the proposed IDS models is
compared with some other machine learning methods,
as well (Table 12).

As shown in Table 12, the classification rates of
DoS, Probe, and R2L attacks for MLP with 25
selected input-features are better than other reported
models. However, DCS offers better classification rate
for U2R attack as compared to others. It should be
noted that most of the machine learning algorithms
have offered an acceptable level of classification rate
for DoS and Probe attack categories and demonstrated
poor performance on the R2L and U2R categories
[65].

DR and CPE of MLP classifier with 25 selected
input-features are better than other models, too.
However, FAR of the DCS model is competitive as
compared to other models.

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

29

Table 1. Number of samples in KDD 99 datasets

KDD dataset Normal Probe DoS U2R R2L
10% 97277 4107 391458 52 1126

Corrected 60593 4166 229853 70 16347
Whole 972780 41102 3883370 52 1126

Table 2. Attack types and number of their samples in 10% KDD dataset

Category Type (Number of samples)
Probe satan (1589), ipsweep (1247), portsweep (1040), nmap (231)
DoS smurf (280790), neptune (107201), back (2203), teardrop (979), pod (264), land (21)
U2R buffer_overflow (30), rootkit (10), loadmodule (9), perl (3)

R2L
warezclient (1020), guess_passwd (53), warezmaster (20), imap (12), ftp_write (8),
multihop (7), phf (4), spy (2)

Table 3. Size of the training and test datasets

Class Training samples Test samples
Number Distribution (%) Number Distribution (%)

Normal 9727 19.69 6059 19.48
Probe 411 0.83 417 1.34
DoS 39145 79.24 22985 73.90
U2R 6 0.01 7 0.02
R2L 113 0.23 1635 5.26
Total 49402 100 31103 100

Table 4. Description and value ranges of 19 sample features in KDD dataset
Feature Description Type Value ranges

duration Duration of the connection (in seconds) continuous [0,58329]

protocol_type Type of the connection protocol discrete 3 different symbols

service Service on the destination discrete 70 different symbols

flag Status flag of the connection discrete 11 different symbols

src_bytes Number of bytes sent from source to destination continuous [0,1.3e+9]

dst_bytes Number of bytes sent from destination to source continuous [0,1.3e+9]

wrong_fragment Number of wrong fragments continuous [0,3]

urgent Number of urgent packets continuous [0,14]

hot Number of "hot" indicators continuous 0,101]

num_failed_logins Number of failed logins continuous [0,5]

num_compromised Number of "compromised" conditions continuous [0,9]

num_root Number of "root" accesses continuous [0,7468]

num_file_creations Number of file creation operations continuous [0,100]

num_shells Number of shell prompts continuous [0,5]

num_access_files Number of operations on access control files continuous [0,9]

count
Number of connections to the same host as the current connection in the past two

seconds
continuous [0,511]

srv_count
Number of connections to the same service as the current connection in the past two

seconds
continuous [0,511]

dst_host_count Number of connections having the same destination host continuous [0,255]

dst_host_srv_count Number of connections having the same destination host and using the same service continuous [0,255]

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

30

Table 5. Chi-square values of the 25 most significant features
Attack type

Feature
Probe DoS U2R R2L

dst_host_diff_srv_rate 3686.3 1334.8 2532.0 1114.1
rerror_rate 2734.5 1016.3 613.4 1016.5
dst_host_srv_rerror_rate 2707.7 967.9 301.1 586.2
srv_rerror_rate 2515.7 805.5 244.9 583.3
dst_ host_rerror_rate 2252.0 732.8 207.8 560.6
diff_srv_rate 1228.3 551.7 39.9 350.1
dst_host_same_srv_rate 793.3 449.2 39.2 311.1
service 588.7 438.8 36.7 249.5
dst_host_srv_count 546.1 433.0 32.6 239.2
logged_in 427.2 363.6 25.1 141.8
dst_host_srv_diff_host_rate 422.3 353.5 25.0 141.3
srv_count 123.4 344.9 15.5 141.2
same_srv_rate 91.8 336.9 15.3 126.1
protocol_type 84.6 328.7 10.7 125.0
num_compromised 70.4 308.4 10.3 116.0
wrong_fragment 68.6 275.6 6.4 99.8
dst_host_same_src_port_rate 65.4 274.0 6.3 78.3
hot 33.9 240.3 6.2 53.1
srv_serror_rate 20.3 188.9 6.2 46.8
dst_host_srv_serror_rate 19.6 129.1 6.2 45.5
is_guest_login 18.2 121.4 3.8 37.1
serror_rate 17.7 102.2 3.4 33.9
src_bytes 8.3 101.5 3.4 27.7
duration 7.6 52.4 2.9 26.1
dst_host_serror_rate 7.4 45.4 2.7 26.0

Table 6. Performance of MLP-based IDS with 20 input features after 50 training epochs

Number of hidden
nodes

MSE-training samples MSE-test samples Detection rate (%)

10 0.0044 0.0447 97.42
15 0.0038 0.0406 97.75
20 0.0031 0.0407 97.96
25 0.0020 0.0350 99.20
30 0.0020 0.0284 99.58
35 0.0018 0.0291 99.52

Table 7. Cost matrix values for KDD dataset
Predicted

Actual
Normal Probe DoS U2R R2L

Normal 0 1 2 2 2
Probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Table 8. Confusion matrix of DCS-based IDS
Predicted

Actual
Normal Probe DoS U2R R2L

Normal 6031 18 10 0 0
Probe 44 325 48 0 0
DoS 59 33 22893 0 0
U2R 2 2 1 1 1
R2L 657 5 0 1 972

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

31

Fig. 2. Performance of MLP-based IDS, using OWO-HWO training algorithm and feature-selection method.

Fig. 3. Performance comparison procedure of ANN and rule extraction modules.

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

32

Table 9. Confusion matrix of MLP-based IDS with 25 input features

Predicted
Actual

Normal Probe DoS U2R R2L

Normal 6027 8 10 0 14
Probe 7 374 32 0 4
DoS 12 1 22964 0 8
U2R 2 3 1 0 1
R2L 31 2 4 0 1598

Table10. Confusion matrix of MLP-based IDS with 20 input features

Predicted
Actual

Normal Probe DoS U2R R2L

Normal 6015 7 16 0 21
Probe 8 371 30 0 8
DoS 5 5 22956 0 19
U2R 2 2 2 0 1
R2L 33 2 15 0 1585

Table 11. Confusion matrix of MLP-based IDS with 15 input features

Predicted
Actual

Normal Probe DoS U2R R2L

Normal 6041 10 7 0 1
Probe 9 362 21 0 25
DoS 8 8 22899 0 70
U2R 3 1 2 0 1
R2L 21 0 25 0 1589

Table 12. Performance comparison of different models for intrusion detection

Model
Classification rate

DR FAR CPE
DoS Probe R2L U2R Normal

Winner of KDD in 2000 [46] 97.1 83.3 8.4 13.2 99.5 91.8 0.6 0.2331
Runner up of KDD in 2000 [63] 97.5 84.5 7.3 11.8 99.4 91.5 0.6 0.2356
PNrule [62] 96.9 73.2 10.7 6.6 99.5 91.1 0.4 0.2371
ESC-IDS [64] 99.5 84.1 31.5 14.1 98.2 95.3 1.9 0.1579
DCS (proposed) 99.6 77.9 59.4 14.3 99.5 92.7 0.46 0.0959
MLP-25 features (OWO-HWO) 99.9 89.7 97.7 0.0 99.5 99.6 0.53 0.0105
MLP-20 features (OWO-HWO) 99.9 89.0 96.9 0.0 99.3 99.5 0.73 0.0129
MLP-15 features (OWO-HWO) 99.6 86.8 97.2 0.0 99.7 99.2 0.30 0.0142

8. CONCLUSION
In this paper, the performance of rule extracting

module from a dynamic cell structure neural network
has been investigated in intrusion detection application
and compared with fast MLP-based IDS which has
used OWO-HWO training algorithm and selected
input features.

In this way, a modified version of LERX algorithm
has been used for rule extraction from the DCS. The
proposed DCS model performs successfully in
recognizing hard detectable attacks, such as U2R. The
FAR of DCS model is competitive, as compared to
other models, too.

The MLP with OWO-HWO training algorithm and

25 selected input features has offered better
performance in classifying other attack categories. The
DR of this model is higher and its CPE is lower than
other models, as well.

REFERENCES

[1] R. Andrews, J. Diederich, and A.B. Tickle, “A survey
and critique of techniques for extracting rules from
trained artificial neural networks”, Knowledge-Based
Systems, 8, pp. 373-389, (1995)

[2] F. Behloul, B.P.F. Lelieveldt, A. Boudraa, and J.H.C.
Reiber, “Optimal design of radial basis function
neural networks for fuzzy-rule extraction in high
dimensional data”, Pattern Recognition, 35, pp. 659-
675, (2002).

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

33

[3] C.J. Mantas, J.M. Puche, and J.M. Mantas, “Extraction
of similarity based fuzzy rules from artificial neural
networks”, International Journal of Approximate
Reasoning, 43, pp. 202-221, (2006)

[4] G. Towell, and J. Shavlik, “The extraction of refined
rules from knowledge based neural networks”,
Machine Learning, 13, pp. 71-101, (1993)

[5] C.W. Omlin, and C.L. Giles, “Extraction of rules from
discrete-time recurrent neural networks”, Neural
Networks, 9, pp. 41-52, (1996)

[6] S.H. Huang, and H. Xing, “Extract intelligible and
concise fuzzy rules from neural networks”, Fuzzy Sets
and Systems, 132, pp. 233-243, (2002)

[7] G. Bologna, “Is it worth generating rules from neural
network ensembles?”, Journal of Applied Logic, 2, pp.
325-348, (2004)

[8] G. Leng, T.M. McGinnity, and G. Prasad, “An approach
for on-line extraction of fuzzy rules using a self-
organizing fuzzy neural network”, Fuzzy Sets and
Systems, 150, pp. 211-243, (2005)

[9] E.R. Hruschka, and N.F.F. Ebecken, “Extracting rules
from multilayer perceptrons in classification
problems: a clustering-based approach”,
Neurocomputing, 70, pp. 384-397, (2006)

[10] K. Odajima, Y. Hayashi, G. Tianxia, and R. Setiono,
“Greedy rule generation from discrete data and its
use in neural network rule extraction”, Neural
Networks, 21, pp. 1020-1028, (2008)

[11] L.E. Zárate, S.M. Dias, and M.A.J. Song, “FCANN: A
new approach for extraction and representation of
knowledge from ANN trained via formal concept
analysis”, Neurocomputing, 71, pp. 2670-2684, (2008)

[12] R. Setiono, B. Baesens, and C. Mues, “A note on
knowledge discovery using neural networks and its
application to credit card screening”, European
Journal of Operational Research, 192, pp. 326-332,
(2009)

[13] E. Kolman, and M. Margaliot, “Extracting symbolic
knowledge from recurrent neural networks-a fuzzy
logic approach”, Fuzzy Sets and Systems, 160, pp. 145-
161, (2009)

[14] H. Kahramanli, and N. Allahverdi, “Rule extraction
from trained adaptive neural networks using artificial
immune systems”, Expert Systems with Applications, 36,
pp. 1513-1522, (2009)

[15] S. Yu, X. Guo, K. Zhu, and J. Du, “A neuro-fuzzy-GA-
BP method of seismic reservoir fuzzy rules
extraction”, Expert Systems with Applications, 37, pp.
2037-2042, (2010)

[16] Y. Hayashi, “A neural expert system with automated
extraction of fuzzy if-then rules”, Advances in Neural
Information Processing Systems, vol. 3, pp. 1263-1268,
(1991)

[17] C.L. Giles, and C.W. Omlin, “Extraction, insertion, and
refinement of symbolic rules in dynamically driven
recurrent networks”, Connection Science, 5, pp. 307-
328, (1993)

[18] L.M. Fu, “Rule generation from neural networks”,
IEEE Transactions on System, Man and Cybernetics, 28,
pp. 1114-1124, (1994)

[19] D.W. Optiz, and J.W. Shavlik, “Dynamically adding
symbolically meaningful nodes to knowledge-based

neural networks”, Knowledge-Based Systems, 8, pp.
301-311, (1995)

[20] K. Saito, and P. Nakano, “Medical diagnosis expert
system based on PDP model”, Proc. Int. Conf. Neural
Networks, Vol. 1, pp. 255-262, (1988)

[21] E. Keedwell, A. Narayanan, and D. Savic, “Creating
rules from trained neural networks using genetic
algorithms”, International Journal of Computers,
Systeming Signals, 1, pp. 30-42, (2000)

[22] R. Andrews, and S. Geva, Rule extraction from local
cluster neural nets, Neurocomputing, 47, pp. 1-20,
(2002)

[23] K. McGarry, J. Tait, S. Wermter, and J. McIntyre, “Rule-
extraction from radial basis function networks”, Proc.
Int. Conf. Artificial Neural Networks, Vol. 1, pp. 613-
618, (1999)

[24] K. McGarry, S. Wermter, and J. McIntyre, The
extraction and comparison of knowledge from local
function networks, International Journal of
Computational Intelligence and Applications, 1, pp. 369-
382, (2001)

[25] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-
Fernandez, and E. Vazquez, “Anomaly-base network
intrusion detection: techniques, systems and
challenges”, Computers & Security, 28, pp. 18-28,
(2009)

[26] P. Kabiri, and A.A. Ghorbani, “Research in intrusion
detection and response-a survey”, International
Journal of Network Security, 1, pp. 84-102, (2005)

[27] T. Shon, and J. Moon, “A hybrid machine learning
approach to network anomaly detection”, Information
Sciences, 177, pp. 3799-3821, (2007)

[28] Z. Chen, H. Wang, B. Yang, L. Wang, and R. Sun, “A
FDRS-based data classification method used for
abnormal network intrusion detection”, Proc. IEEE 3rd
Int. Conf. Natural Computation, Vol. 2, pp. 375-380,
(2007)

[29] Y. Chen, A. Abraham, and B. Yang, “Hybrid flexible
neural-tree-based intrusion detection systems”,
International Journal of Intelligent Systems, 22, pp. 337-
352, (2007)

[30] R. Chang, L. Lai, W. Su, J. Wang, and J. Kouh,
“Intrusion detection by backpropagation neural
networks with sample-query and attribute-query”,
International Journal of Computational Intelligence
Research, 3, pp. 6-10, (2007)

[31] N. Ye, S.M. Emran, Q. Chen, and S. Vilbert,
“Multivariate statistical analysis of audit trials for
host-based intrusion detection”, IEEE Transactions on
Computers, 51, pp. 810-820, (2002)

[32] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur,
“Bayesian event classification for intrusion detection”,
Proceedings 19th Ann. Computer Security Applications
Conf., pp. 14-23, (2003)

[33] M.V. Mahoney, and P.K. Chan, “Learning
nonstationary models of normal network traffic for
detecting novel attacks”, Proc. 8th ACM SIGKDD, pp.
376-385, (2002)

[34] R. Beghdad, “Training all the KDD data set to classify
and detect attacks”, Neural Network World, 17, pp. 81-
91, (2007)

[35] J. Gomez, and D. Dasgupta, “Evolving fuzzy classifiers

Majlesi Journal of Electrical Engineering Vol. 4, No. 4, December 2010

34

for intrusion detection”, Proc. IEEE Workshop
Information Assurance, pp. 68-75, (2002)

[36] D. Song, M.I. Heywood, and A.N. Zincir-Heywood,
“Training genetic programming on half a million
patterns: an example from anomaly detection”, IEEE
Transactions on Evolutionary Computation, 9, pp. 225-
239, (2005).

[37] Y. Liao, and V.R. Vemuri, “Use of K-nearest neighbor
classifier for intrusion detection”, Computers &
Security, 21, pp. 439-448, (2002)

[38] D. Novikov, R.V. Yampolskiy, and L. Reznik,
“Artificial intelligence approaches for intrusion
detection”, Proc. IEEE Conf. Systems, Applications and
Technology, pp. 1-8, (2006)

[39] M.V. Joshi, R.C. Agrawal, and V. Kumar, “Mining
needless in a haystack: classifying rare classes via two-
phase rule induction”, Proc. ACM SIGMOD Conf.
Management of Data, pp. 91-102, (2001)

[40] V. Golovko, and L. Vaitsekhovich, “Neural network
techniques for intrusion detection”, Proc. Int. Conf.
Neural Networks and Artificial Intelligence, pp. 65-69,
(2006)

[41] A. Herrero, E. Corchado, P. Gastaldo, F. Picasso, and R.
Zunino, “Auto-association neural techniques for
intrusion detection systems”, Proc. IEEE Int. Symp.
Industrial Electronics, pp. 1905-1910, (2007)

[42] R. Beghdad, “Critical study of neural networks in
detecting intrusions”, Computers & Security, 27, pp.
168-175, (2008)

[43] M. Sheikhan, Z. Jadidi, and M. Beheshti, “Effects of
feature reduction on the performance of attack
recognition by static and dynamic neural networks”,
World Applied Sciences Journal, 8, pp. 302-308, (2010)

[44] J.E. Dickerson, J. Juslin, J. Koukousoula, and J.A.
Dickerson, “Fuzzy intrusion detection”, Proc. IFSA
World Congress and 20th North American Fuzzy
Information Processing Society (NAFIPS) Int. Conf., Vol.
3, pp. 1506-1510, (2001)

[45] Y. Lin, K. Chen, and X. Liao, “A genetic clustering
method for intrusion detection”, Pattern Recognition,
37, pp. 924-927, (2004)

[46] B. Pfahringer, “Winning the KDD 99 classification
cup: bagged boosting”, SIGKDD Explorations, 1, pp.
65-66, (2000)

[47] K. Shah, N. Dave, S. Chavon, S. Mukherjee, A.
Abraham, and S. Sanyal, “Adaptive neuro-fuzzy
intrusion detection system”, Proc. IEEE Int. Conf.
Information Technology: Coding and Computing, Vol. 1,
pp. 70-74, (2004)

[48] M.S. Abadeh, J. Habibi, and C. Lucas, “Intrusion
detection using a fuzzy genetic–based learning
algorithm”, Journal of Network and Computer
Applications, 30, pp. 414-428, (2005)

[49] J. Bruske, and G. Sommer, “Dynamic cell structures”,
Proc. Neural Information Processing Systems, pp. 497-
504, (1994)

[50] B. Fritzke, “Growing cell-structures-a self-organizing
network for unsupervised and supervised learning”,
Neural Networks, 7, pp. 1441-1460, (1994)

[51] T.M. Martinez, “Competitive Hebbian learning rule
forms perfectly topology preserving maps”, Proc. Int.
Conf. Artificial Neural Networks, pp. 427-434, (1993)

[52] M. Darrah, B. Taylor, and M. Webb, “A geometric rule
extraction approach used for verification and
validation of a safety critical application”, Proc. 18th
Annual Florida Artificial Intelligence Research Society
Conf., Vol. 3, pp. 624-627, (2005)

[53] MIT Lincoln Lab., Information Systems Technology
Group, “The 1998 intrusion detection off-line
evaluation plan”
(http://www.11.mit.edu/IST/ideval/docs/1998/id98-eval-
11.txt, Mar. 1998).

[54] “1999 KDD cup competition”
(http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htm
l, 2007).

[55] W. Lee, S.J. Stolfo, and K.W. Mok, “Mining in a data-
flow environment: experience in network intrusion
detection”, Proc. 5th ACM SIGKDD, pp. 114-124, (1999)

[56] M.A. Sartori, and P.J. Antsaklis, “A Simple method to
derive bounds on the size and to train multilayer
neural networks”, IEEE Transactions on Neural
Networks, 2, pp. 467-471, (1991)

[57] K. Rohani, M.S. Chen, and M.T. Manry, “Neural subnet
design by direct polynomial mapping”, IEEE
Transactions on Neural Networks, 3, pp. 1024-1026,
(1992)

[58] H.H. Chen, M.T. Manry, and H. Chandrasekaran, “A
neural network training algorithm utilizing multiple
sets of linear equations”, Conference Record of the 30th
Asilomar Conference on Signals, Systems and
Computers, pp. 1166-1170, (1996)

[59] P. Werbos, “Backpropagation: past and future”, Proc.
Int. Conf. Neural Networks, pp. 343-353, (1988)

[60] R.S. Scalero, and N. Tepedelenlioglu, “A fast new
algorithm for training feedforward neural networks”,
IEEE Transactions on Signal Processing, 40, pp. 202–
210, (1992)

[61] A. Tamilarasan, S. Mukkamala, A.H. Sung, and K.
Yendrapalli, “Feature ranking and selection for
intrusion detection using artificial neural networks
and statistical methods”, Proc. Int. Joint Conf. Neural
Networks, pp. 4754-4761, (2006)

[62] R. Agrawal, and M.V. Joshi, “PNrule: a new
framework for learning classifier models in data
mining (a case-study in network intrusion detection)”,
IBM Research Division Report No. RC-21719, (2000)

[63] I. Levin, “KDD classifier learning contest: LLSoft's
results overview”, SIGKDD Explorations, 1, pp. 67-75,
(2000)

[64] A. Nadjaran Toosi, and M. Kahani, “A novel soft
computing model using adaptive neuro-fuzzy
inference system for intrusion detection”, Proc. IEEE
Int. Conf. Networking, Sensing and Control, pp. 834-839,
(2007)

[65] M. Sabhnani, and G. Serpen, “Why machine learning
algorithms fail in misuse detection on KDD intrusion
detection data set”, Journal of Intelligent Data Analysis,
6, pp. 1-13, (2004)

