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ABSTRACT: 
In a permanent magnet (PM) linear motor, there is a force ripple which is detrimental to positioning. This force 
ripple is mainly due to a cogging force and a mutual force ripple. These forces are affected by the geometric 
parameters of a brushless PM motor, such as the width of the magnet, the height of the magnet, the shifted length 
of the magnetic pole, the length and height of the armature and the slot width. The optimal design can be found by 
considering force ripple as a cost function and the geometric parameters as design variables. In this paper, we 
calculate the flux density distribution in the air gap  using the analytic solution of Laplace and Possion equations 
in the function of geometric parameters. The cogging force is obtained by integrating the Maxwell stress tensor, 
which is described by the flux density distribution on the slot face and end face of the iron core of an armature. 
Finally, a finite element method is presented in order to compare with the previous method. 
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1.  INTRODUCTION

   In a brushless permanent magnet (PM) motor with 
salient-poles, there is a force ripple which is 
detrimental to positioning. This force ripple is mainly 
due to a cogging force and a mutual force ripple. In a 
rotary PM motor, the cogging force is generated by the 
interaction of the rotor magnetic field with the stator 
magnetic reluctance. On the other hand the mutual 
force ripple is generated by the interaction of an 
excitation current MMF (Magneto-Motive Force) with 
the magnetic field or rotor magnetic reluctance [1, 2]. 
In a linear PM motor, there are two components of the 
cogging force. One is a tooth ripple component, which 
also exists in a rotary motor.  The other one is an end-
effect component, which exists only in a linear motor 
and is caused by the finite length of the armature. The 
method for minimizing the force ripple has been 
studied by many researchers. The tooth ripple 
component of the cogging force can be reduced by 
skewing the magnet or armature [3]. Optimizing the 
shifted length of the magnet pole and the ratio of the 
magnet width to pole pitch also reduce the tooth ripple 
[4]. The end-effect component of the cogging force can 
be minimized by optimizing the armature length [5]. 
The mutual force ripple can be reduced by matching 

the current waveform with the magnetic field 
distribution [6]. These methods use data from a finite 
element analysis (FEA) to reduce force ripple [1, 4, 5]. 
The flux density distribution can be described by 
geometric parameters that are related to the force 
ripple. The force ripple is also described by the flux 
density distribution. Therefore the optimal design can 
be found by considering force ripple as a cost function 
and the geometric parameters as design variables. The 
cogging force is obtained by integrating the Maxwell 
stress tensor, which is described by the flux density 
distribution on the slot face and the end face of the iron 
core of armature. 
 
2. GEOMETRICAL STRUCTURE AND 

ANALYTICAL MODEL 
   Figure 1 shows the basic geometrical structure of a 
linear brushless PM motor. The iron core of the 
armature is wound by a coil with three phases. The 
stator is attached to permanent magnets and it is faced 
with an armature winding with N and S poles. The 
parameters of the linear brushless PM motor are 
listed in Table 1. Among these parameters, the 
geometric parameters, used as design variables, are 
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width of magnet ( Mω ), height of magnet ( Mh ), length 

of armature ( Al ), height of armature ( Ah ) and slot 

width ( Sω ). In order to simplify the field analysis, a 

two-dimensional model is adapted to include an air gap 
and a magnet. The permeability of the iron core and the 
stator is assumed to be infinite. Therefore the flux 
density has only the normal component at the surface 
of the iron core and stator. Figure 2 shows the 
simplified model for the analysis of the magnet and air 
gap fields [7]. 
 

Table 1. Geometric parameters of the motor 
Parameter Symbol Value (unit) 
Slot pitch  

sτ  
8 [mm] 

Slot width  
sω  

4 [mm] 

Armature height 
Ah  

14-22 [mm] 

Armature length 
Al  

140-148 [mm] 

Pole pitch  τ  24 [mm] 
Magnet height 

Mh  
10 [mm] 

Magnet width 
Mω  

14.4-24 [mm] 

Air gap length δ  1 [mm] 
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Fig. 1. Geometrical structure of linear brushless PM 

motor 
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Fig. 2. Simplified analytical model 

3. ANALYTICAL REPRESENTATION OF 

COGGING FORCE 
   In order to obtain the cogging force, an analytical 
method is presented as follows. The simplified 
analytical model of Figure 2 can be expressed in terms 
of magnetic vector potential. In the air gap region, the 
Laplace equation is 
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   In the magnet region, the Possion equation is  
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Where IA and IIA are the magnetic vector potential of 

the each region, Mμ is the permeability of the magnet 

and MJ is the distribution of current density in the 
current sheet model, which generates a magnetic field 
equivalent to the magnets [8]. The current density can 
be expressed as a function of magnet geometry and 
properties as follows.  
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Where rB is the permanent magnetic flux density, τ is 
the pole pitch and α is the ratio of width of the magnet 
to the pole pitch.  
The corresponding general solutions of equations (1), 
(2) are given by [9] 
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   From the assumption that the permeability of the iron 
core and stator is infinite, the boundary conditions must 
be satisfied by equations (4) and (5). 
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From these boundary conditions, the constants of 
equations (4) and (5) can be determined by: 
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Where Mh  is the height of the magnet and δ is the air 

gap length.  
   Flux density distribution can be derived by curling 
the magnetic vector potential. As the direction of the 

magnetic vector potential is normal to the XY plane, 
the flux density distribution is  
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(6) 
In equation (6),  the flux density distribution on the iron 
core of the armature is interfaced with the air gap and 
since it  has only a normal component, it is given by  
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   The slot on the iron core of the armature changes the 
length of the gap with the equivalent radius [10]. So the 
flux density distribution is modified by the slot which 
is given by 
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Where Sτ is the slot pitch, Sω is the slot width, Sr is 

the function of x and SQ is the number of slots. 

The cogging force is obtained by integrating the 
Maxwell stress tensor along the slot face on the iron 
core of the armature [11]. By assumption, the flux 
density distribution has only the normal component at 
the surface of the iron core as in Figure 3. From the 
flux density distribution, the normal and tangential 
forces acting on each surface of the armature are given 
by  
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Where L is the effective length of the armature coil and 
l is an integral path along the surface.  
   The tooth ripple component of the cogging force is 
calculated by summation of the normal forces at each 
slot area. In equation (11), K1F is the rightward force 

component and K2F  is the leftward force component 

in k-th slot. The waveform of this cogging force has a 
period of the slot pitch and can be reduced by changing 
the ratio of magnet width to the pole pitch as in Figure 
4. 
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MagnetMagnet

Armature
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2F  1F⇒

 
Fig. 3. Assumed flux density distribution 

 

 
Fig. 4. Tooth ripple cogging by changing the ratio of 

the magnet width to the pole pitch 
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where 0x is an armature position relative to the magnet 

poles. 
 
 

1F  ⇒2F  

 
Fig. 5. Flux density distribution at the two end surfaces. 

 

 
Fig. 6. End effect cogging by changing the total 

armature length of the iron core. 
 

 
Fig. 7. End effect cogging by changing the height of 

the iron core. 
 

 
Fig. 8. Comparison of cogging force with two 

components of tooth ripples and end effect. 
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The end effect component of the cogging force is 
calculated by summation of the normal force at the two 
ends of  iron core in the equation (12). The flux density 
distribution at the two end surfaces is shown in Figure 
5. This force is related to height and total length of the 
iron core and it has the period of the pole pitch. So a 
reduction of this force can be achieved by changing the 

total length of the iron core and the height of the iron 

core according to Sτ)ηn(lA += and SγτAh = ,where n 

is an integer, η is the ratio of increase of length to slot 
pitch  and γ is the ratio of  height of the iron core to the 
slot pitch as seen in Figures 6 and  7. In addition, this 
force can be changed by shifting the magnet pole and 
by changing the ratio of  magnet width to pole pitch. 

Where Ah  is the height of  iron core and td is the 
increase in the total length of iron core. Figure 8 shows 
a comparison of the end-effect cogging and the cogging 
force with two components at the one pole pitch. 
 
4. FINITE ELEMENT METHOD 
   Here a PM linear motor three dimensional model is 
presented. The model was designed by using the 
existing characteristics in Table 1. The designed model 
is shown in Figure 9.  

 
Fig. 9. The designed model by using ANSYS software 

 
   In Figure 10, the flux density before current injection 
in the system is shown. The flux density  is high at 
certain points including the distance between the slot 
head and the magnet which is located over the stator. 
 

 

 
Fig. 10. Flux density before current injection in designed model. 



Majlesi Journal of Electrical Engineering                                                                     Vol. 4, No. 4, December 2010 
 

47 
 

 
   Figure 11 shows the cogging force obtained with 
attention to the changing of  movement 0X between -

18 to 6 at a one pole pitch. 
 

 
Fig. 11. The cogging force with attention to the 

changing of movement 
 
   Figure 12 shows the comparison between two 
aforesaid methods.  The deviation of the presented 
methods is almost 12%. 

 

 
Fig. 12. The Comparison of the obtained cogging force 

by the two mentioned methods 
 
5. CONCLUSIONS 
   The flux density distribution in the air gap is 
represented by an analytic solution of Laplace’s 
equation and Possion equation. This flux density 
distribution is described as a function of the motor 
geometric parameters, such as the width of the magnet, 
the height of the magnet, the length of the armature, the 
height of the armature and the slot width. The cogging 
force is obtained by integrating the Maxwell stress 
tensor, which is calculated from the flux density 
distribution on the slot face and the end face of the iron 
core of the armature.  
   From the developed analytical model, the optimal 
design for reducing the cogging force in a linear 

brushless PM motor can be determined. In the optimal 
design, the geometric parameters of  motor can be 
considered as design variables. 
It is found that the cogging force determined by 
analytical method agrees fairly well with those 
obtained by finite element analysis, although minor 
deviation (12%) exist. 
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