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ABSTRACT: 
The number of attacks in computer networks has grown extensively, and many new intrusive methods have been 
appeared. Intrusion detection is known as an effective method to secure the information and communication systems. 
In this paper, the performance of Elman and partial-connected dynamic neural network (PCDNN) architectures are 
investigated for misuse detection in computer networks. To select the most significant features, logistic regression is 
also used to rank the input features of mentioned neural networks (NNs) based on the Chi-square values for different 
selected subsets in this work. In addition, genetic algorithm (GA) is used as an optimization search scheme to 
determine the sub-optimal architecture of investigated NNs with selected input features. International knowledge 
discovery and data mining group (KDD) dataset is used for training and test of the mentioned models in this study. 
The features of KDD data are categorized as basic, content, time-based traffic, and host-based traffic features. 
Empirical results show that PCDNN with selected input features and categorized input connections offers better 
detection rate (DR) among the investigated models. The mentioned NN also performs better in terms of cost per 
example (CPE) when compared to other proposed models in this study. False alarm rate (FAR) of the PCDNN with 
selected input features and categorized input connections is better than other proposed models, as well.  
 
KEYWORDS: Feature categorization, feature ranking, misuse detection, dynamic neural networks. 
 
1.  INTRODUCTION 

One way of dealing with suspicious activities within 
a network is based on using intrusion detection system 
(IDS). An IDS monitors the activities of environment 
and decides on its anomaly. Based on the information 
source, there are two kinds of IDS: network-based [1] 
and host-based [2]. Monitoring the data exchanged 
between computers is performed in network-based IDS, 
and host-based intrusion detection systems are served 
on host computer. Based on the type of analyzing 
events, two kinds of IDS have been developed: 
anomaly-based [3, 4] and misuse-based [5, 6]. In 
anomaly-based IDS, the activities that vary from 
established patterns for users are detected. On the other 
hand, in misuse-based IDS user's activities with the 
known behaviors of attackers are compared. 

The classification of anomaly-based detection 
techniques are as: knowledge-based [3], statistical-
based [7], and machine learning (e.g. artificial neural 
networks (ANNs) [1, 4], Bayesian networks [8], 

Markov models [2], genetic algorithms [9], clustering 
and outlier detection [10], fuzzy logic [11, 12] and 
hybrid systems [13]). 

Similarly, the detection techniques in misuse-based 
IDS are as: knowledge-based [14, 15], statistical-based 
[16], and machine learning (e.g. ANNs [6, 16-22], 
Bayesian networks [23], genetic algorithms [24], fuzzy 
logic [11], decision trees [25, 26], clustering [27] and 
hybrid systems [6, 28-32]). 

In this paper, the performance of different structures 
of dynamic neural models (such as Elman with one and 
two hidden layers and partial-connected dynamic 
neural network (PCDNN) architectures) are 
investigated for misuse detection in computer 
networks. Since, feature selection and ranking is an 
important issue in intrusion detection, logistic 
regression is used in this work to rank the features 
based on the Chi-square values for different selected 
subsets using best subset selection model [22, 33]. The 
effects of feature reduction on classification rate and 
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training time of mentioned attack recognizers are 
investigated in this paper when employing genetic 
algorithm (GA)-optimized structures.  

International knowledge discovery and data mining 
group (KDD) dataset [34] is used for training and test 
of the mentioned models in this study. Each connection 
in KDD is characterized by 41 features and a label 
which specifies the status of connection records 
(normal or a specific attack type). These features can be 
grouped into four categories: basic features, content 
features, time-based traffic features, and host-based 
traffic features. To reduce the size and computational 
complexity of Elman and PCDNN-based IDS, the 
connections to hidden layer are connected partially 
based on the mentioned four feature categories.  

The remainder of this paper is organized as follows. 
Section 2 provides the KDD dataset details. The 
preprocessing procedure of features is discussed in 
Section 3. As part of the feature selection experiments, 
the statistical analysis is presented in Section 4. The 
application of GA in optimization of NN's architecture 
is reviewed in Section 5. The simulations and 
experimental results are reported in Section 6. 
Conclusions are also drawn in Section 7.  

 
2.  KDD DATASET 

In 1999, recorded network traffic from the Defense 
Advanced Research Project Agency (DARPA) dataset 
was summarized into network connections with 41 
features per connection. This formed the benchmark 
provided by the International knowledge discovery and 
data mining group (KDD). The KDD dataset consists 
of three components: “10% KDD”, “Corrected KDD” 
and “Whole KDD” [34]. There are four main categories 
of attacks given in the KDD 99: denial-of-service 
(DoS), probe, remote-to-local (R2L) and user-to-root 
(U2R). There are multiple attack types for each main 
attack category, as well (Table 1). 
  

Table 1. Attack types and number of their samples in 
10% KDD dataset 

Category Type (Number of samples) 
DoS smurf (280790), neptune (107201), back (2203), 

teardrop (979), pod (264), land (21)  
Probe satan (1589), ipsweep (1247), portsweep (1040), 

nmap (231) 

U2R buffer_overflow (30), rootkit (10), loadmodule (9), 
perl (3) 

R2L warezclient (1020), guess_passwd (53), 
warezmaster (20), imap (12), ftp_write (8), 
multihop (7), phf (4), spy (2) 

 
The analysis in this paper is performed on the "10% 

KDD" dataset. It is reminded that each connection in 
KDD is characterized by 41 features. As mentioned 
earlier, these features are grouped into four categories: 

basic features, content features, time-based traffic 
features and host-based traffic features. 
 
Table 2. Description of basic features in KDD dataset 
Feature Description 

duration Duration of the connection (in seconds)  

protocol_type Type of the connection protocol 

service Service on the destination 

flag Status flag of the connection 

src_bytes 
Number of bytes sent from source to 

destination 

dst_bytes 
Number of bytes sent from destination to 

source 

land 
1 if connection is from/to the same 

host/port; 0 otherwise 

wrong_fragment Number of wrong fragments 

urgent Number of urgent packets 

 
Table 3. Description of content features in KDD 

dataset 
Feature Description 

hot Number of “hot” indicators 

num_failed_logins Number of failed logins 

logged_in 
1 if successfully logged in; 0 

otherwise 

num_compromised 
Number of “compromised” 

conditions 

root_shell 1 if root shell is obtained; 0 otherwise

su_attempted 
1 if “su root” command attempted; 0 

otherwise 

num_root Number of “root” accesses 

num_file_creations Number of file creation operations 

num_shells Number of shell prompts 

num_access_files 
Number of operations on access 

control files 

num_outbound_cmds 
Number of outbound commands in a 

FTP session 

is_host_login 
1 if the login belongs to the “hot” list; 

0 otherwise 

is_guest_login 
1 if the login is a “guest” login; 0 

otherwise 

 
Basic features can be derived from packet headers 

without inspecting the payload (Table 2). In the content 
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features, domain knowledge is used to assess the 
payload of the original transmission control protocol 
(TCP) packets (Table 3). Time-based traffic features 
are designed to capture properties that mature over a 
two-second temporal window (Table 4). Host-based 
traffic features utilize a historical window estimated 
over the number of connections, instead of time. 
Therefore, they are designed to assess attacks which 
span in intervals longer than 2 seconds (Table 5). 

 
Table 4. Description of time-based traffic features in 

KDD dataset 
Feature Description 

count Number of connections to the same host 

as the current connection in the past two 

seconds 

srv_count Number of connections to the same 

service as the current connection in the 

past two seconds 

serror_rate Percent of connections that have “SYN” 

errors (same-host connections) 

srv_serror_rate Percent of connections that have “SYN” 

errors (same-service connections) 

rerror_rate Percent of connections that have “REJ” 

errors (same-host connections) 

srv_rerror_rate Percent of connections that have “REJ” 

errors (same-service connections) 

same_srv_rate Percent of connections to the same 

service 

diff_srv_rate Percent of connections to different 

services 

srv_diff_host_rate Percent of connections to different hosts

 
3.  PREPROCESSING PROCEDURE 

It is noted that features in the KDD datasets have 
different forms: discrete, continuous and symbolic, 
with significantly varying resolution and ranges. Most 
pattern classification methods are not able to process 
data in such a format. Hence, preprocessing is required. 

Symbolic–valued features, such as protocol_type 
(with 3 different symbols), service (with 70 different 
symbols), and flag (with 11 different symbols) are 
mapped to integer values ranging from 0 to N-1, where 
N is the number of symbols. Continuous features 
having smaller integer value ranges like 
wrong_fragment [0,3], urgent [0,14], hot [0,101], 
num_failed_logins [0,5], num_compromised [0,9], 
num_root [0,7468], num_file_creations [0,100], 

num_shells [0,5], num_access files [0,9], count [0,511], 
srv_count [0,511], dst_host_count [0,255], 
dst_host_srv_count [0,255] are also scaled linearly to 
the [0,1] range. 

Logarithmic scaling (base 10) is applied to three 
features spanned over a very large integer range, 
namely duration [0,58329], src_bytes [0,1.3billion] and 
dst_bytes [0,1.3billion], to reduce the ranges to [0,4.77] 
and [0,9.11], respectively. Other features are either  
 

Table 5. Description of host-based traffic features in 
KDD dataset 

Feature Description 

dst_host_count 
Number of connections having 

the same destination host 

dst_host_srv_count 

Number of connections having 

the same destination host and 

using the same service 

dst_host_same_srv_rate 

Percent of connections having 

the same destination host and 

using the same service 

dst_host_diff_srv_rate 
Percent of different services on 

the current host 

dst_host_same_src_port_rate

Percent of connections to the 

current host having the same src 

port 

dst_host_srv_diff_host_ rate

Percent of connections to the 

same service coming from 

different hosts 

dst_host_serror_rate 

Percent of connections to the 

current host that have an S0 

error 

dst_host_srv_serror_rate 

Percent of connections to the 

current host and specified 

service that have an S0 error 

dst_host_rerror_rate 

Percent of connections to the 

current host that have an RST 

error 

dst_host_srv_rerror_rate 

Percent of connections to the 

current host and specified 

service that have an RST error 

 
Boolean, like logged_in, having binary values, or 
continuous, like diff_srv_rate, in the range of [0,1] and 
no scaling is needed for these features. So, each of the 
mapped features are linearly scaled to the [0,1] range. 
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4.  FEATURE RANKING BASED ON 
STATISTICAL ANALYSIS 

In this paper, logistic regression is used to rank the 
features based on the Chi-square values for different 
selected subsets using best subset selection model [33]. 

It is noted that logistic regression is a generalized 
linear statistical model. Logistic regression allows one 
to predict a discrete outcome, such as group 
membership, from a set of variables that may be 
continuous, discrete, or mix of them. Logistic 
regression method is used for bivariate analysis of data 
[33]. 

Also, Chi-square is a non-parametric test of 
statistical significance for bivariate tabular analysis. In 
this way, consider a set of k measurements {x1,x2,…,xk}. 
If they are normally distributed and their mean and 
standard deviation are  and , respectively then the 
Chi-square value is calculated as follows: 







k

1i
2

2)ix(2




                  (1) 

In this way, higher values of Chi-square results in 
higher ranking. The 41 features are ranked for different 
subsets with the subset size ranging from 1 to 41. The 
subset selection model gives us a complete analysis for 
the ranking of features. For example, the ranking 
results of the Chi-square test on KDD dataset are 
reported for the 15 most significant features in Table 6. 
 

Table 6. Chi-square values of 15 most significant 
features with respect to the attack class 

Feature DoS Probe U2R R2L 
dst_host_diff_srv 
_rate 1334.8 3686.3 2532.0 1114.1 

rerror_rate 1016.3 2734.5 613.4 1016.5 

dst_host_srv_rerror_rate967. 9 2707.7 301.1 586.2 

srv_rerror_rate 805.5 2515.7 244.9 583.3 
dst_host_rerror 
_rate 732.8 2251.0 207.8 560.6 

diff_srv_rate 551.7 1228.3 39. 9 350.1 

dst_host_same_srv_rate 449.2 793.3 39.2 311.1 

service 438.8 588.7 36.7 249.5 

dst_host_srv_count 433.0 546.1 32.6 239.2 

logged in 363.6 427.2 25.1 141.8 
dst_host_srv_diff 
_host_rate 353.5 422.3 25.0 141.3 

srv_count 344.9 123.4 15. 5 141.2 

same_srv_rate 336.9 91.8 15.3 126.1 

protocol type 328.7 84.6 10.7 125.0 

num_compromised 308.4 70.4 10.3 116.0 

 
5.  GENETIC ALGORITHM OPTIMIZATION 
PROCESS 

Genetic algorithm can be used as an optimization 
search scheme to determine the optimal or sub-optimal 
architecture and parameters of a neural network [35]. 

Genetic algorithm improves the performance of 
NNs by selecting the best input features, optimization 
of network parameters (e.g. learning rate, momentum 
coefficient, number of hidden layers, number of nodes 
in hidden layer, and initial weights), modification of 
nodes’ activation function, and determination of 
weights. In this work, GA is used for determining the 
optimum number of hidden layer nodes of Elman with 
selected input features [36]. 

The genetic algorithm optimization process is 
described in the following procedure: 

1. Randomize population. 
2. Evaluate the fitness function (1/(1+MSE)) for 

each individual in the population. 
3. Select the first two individuals with the 

highest fitness values and copy directly to the 
next generation without any genetic operation. 

4. Select the remaining individuals in the current 
generation and apply crossover and mutation 
genetic operations accordingly to reproduce 
the individuals in the next generation. 

5. Repeat from the second step until all 
individuals in population meet the 
convergence criteria. 

6. Decode the converged individuals in the final 
generation and obtain the optimized 
parameters. 

 
6.  SIMULATION AND EXPERIMENTAL 
RESULTS  

As mentioned earlier, the performance of different 
structures of dynamic neural models (such as Elman 
with one and two hidden layers and partial-connected 
dynamic neural network (PCDNN) architectures) as 
misuse-based IDSs are investigated in this paper (Fig. 1 
to Fig. 3). As shown in Figs. 1 and 2, the numbers of 
nodes at different layers of Elman models with one and 
two hidden layers are set to 41-10-5 and 41-20-10-5 
arrangements, through various try and error 
experiments, respectively. Each model has five output 
neurons (representing four attack types and normal 
class). 

As it can be seen in Fig. 3, the connections between 
41 input nodes and hidden layer nodes in PCDNN are 
based on the categorization of features. It is noted that 
in our simulations the same categorization is applied to 
the inputs of Elman NNs, depicted in Figs. 1 and 2. 

Also, the effects of feature reduction on the 
performance of Elman and PCDNN attack recognizers 
are investigated in this paper by applying only the 15 
selected features, listed in Table 6, to the mentioned 
NNs. Genetic algorithm (GA) is employed to determine 
the optimum number of hidden layer nodes.  

In this work, 49402 records from "10% KDD" 
dataset and 31104 records from "Corrected KDD" 
dataset are used as training and test datasets, 
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Table 7. Size of the training and test datasets 

Class 
Number of 
training 
samples 

Number of test 
samples 

Normal 9727 6059 

DoS 39145 22985 

Probe 411 417 
U2R 6 24 

R2L 113 1619 

 
Another comparative measure is cost per example 

(CPE) [37]. CPE is calculated using the following 
formula: ܧܲܥ = 1ܶ෍෍ܯܥ(݅, ݆). ,݅)ܥ ݆)௠

௝ୀଵ
௠
௜ୀଵ  (2) 

where CM and C are confusion matrix and cost matrix, 
respectively. T represents the total number of test 
instances and m is the number of classes in 
classification. CM is a square matrix in which each 
column corresponds to the predicted class, while rows 
correspond to the actual classes. An entry at row i and 
column j, CM(i,j), represents the number of 
misclassified instances that originally belong to class i, 
although incorrectly identified as a member of class j. 
The entries of the primary diagonal, CM(i,i), stand for 
the number of properly detected instances. Cost matrix 
is similarly defined, as well and entry C(i,j) represents 
the cost penalty for misclassifying an instance 
belonging to class i into class j. Cost matrix values 
employed for the KDD 99 classifier learning contest 
are shown in Table 8 [34].  

The confusion matrix of the PCDNN model with 
categorized input features is reported in Table 9. The 
confusion matrices of single-hidden layer and two-
hidden layers Elman-based neural classifiers with 41 
categorized input features are reported in Tables 10 and 
11, respectively. The confusion matrices of single-
hidden layer and two-hidden layers Elman-based neural 
classifiers with the 15 most important selected input 
features are reported in Tables 12 and 13, as well. 
Finally, the confusion matrix of the PCDNN model 
with 15 selected features and categorized input 
connections is reported in Table 14.  

The number of hidden-layer neurons for PCDNN 
model in the experiments with selected input features is 
determined by using the genetic algorithm (GA) and 
obtained as 10. The training times of the investigated 
classifiers are reported in Table 15. 

For the selected input features experiments, the 
error performance in terms of mean squared error 
(MSE) is shown in Fig. 4. As shown in Fig. 4, PCDNN 
offers better error performance when compared to 
Elman neural classifier. 

The performance of the proposed models has been 
compared with some other machine learning methods, 
in terms of detection rate (DR), false alarm rate (FAR) 
and cost per example (CPE), as well (Table 16). As 
shown in Table 16, PCDNN with 15 selected input 
features and categorized input connections offers better 
detection rate (DR) among the investigated models. 
The mentioned model also performs better in terms of 
cost per example (CPE) when compared to other 
proposed models in this study. False alarm rate (FAR) 
of the PCDNN with selected input features is better 
than other proposed models, as well.  

Also, the classification rate (CR) of different attacks 
and FAR of the PCDNN model, as the superior one 
among the investigated models in this work, and some 
other IDS algorithms developed in recent years are 
reported in Table 17. As can be seen, the DoS and R2L 
classification rates of PCDNN with selected input 
features and categorized input connections have high 
ranks, as compared to other models. It is noted that 
R2L is a hard-detectable attack [48] and the mentioned 
ANN model offers this performance with a reduced-
size of neural net connections and computational 
complexity.  
 
7.   CONCLUSION  

In this paper, the performance of different structures 
of Elman and partial-connected dynamic neural 
network (PCDNN) models has been investigated for 
misuse detection. The most significant features have 
been selected by using logistic regression to rank the 
input features of NNs based on the Chi-square values 
for different selected subsets. In addition, genetic 
algorithm (GA) has been used to determine the sub-
optimal architecture of Elman NN with selected input 
features. Empirical results have shown that PCDNN 
with selected input features and categorized input 
features offers better detection rate (DR) among the 
investigated models. The mentioned model also 
performs better in terms of cost per example (CPE) 
when compared to other proposed models in this study. 
False alarm rate (FAR) of PCDNN is better than other 
proposed models, as well.  
 

Table 8. Cost matrix values for KDD  

Predicted 
 
 

 
Actual 

D
oS

 

P
robe 

R
2L

 

U
2R

 

N
orm

al 

DoS 0 1 2 2 2 

Probe 2 0 2 2 1 

R2L 2 2 0 2 4 

U2R 2 2 2 0 3 

Normal 2 1 2 2 0 
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Table 9. Confusion matrix of PCDNN model with 41 categorized input features  

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 19073 9 0 0 3903 
Probe 43 250 0 0 124 
R2L 0 4 10 0 1605 
U2R 4 1 0 0 19 
Normal 96 15 0 0 5948 

 
Table 10. Confusion matrix of single-hidden layer Elman model with 41 categorized input features  

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 18939 0 0 0 4046 
Probe 63 200 0 0 154 
R2L 0 0 4 0 1615 
U2R 4 0 0 0 20 
Normal 101 7 0 0 5951 

 
Table 11. Confusion matrix of two-hidden layer Elman model with 41 categorized input features   

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 21734 0 0 0 1251 
Probe 18 240 2 0 157 
R2L 0 3 45 0 1571 
U2R 0 0 1 0 23 
Normal 88 7 0 0 5964 

 
Table 12. Confusion matrix of single-hidden layer Elman model with 15 selected input features  

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 19615 0 0 0 3370 
Probe 55 236 0 0 126 
R2L 0 3 23 0 1593 
U2R 11 4 0 0 9 
Normal 101 6 0 0 5952 

 
Table 13. Confusion matrix of two-hidden layer Elman model with 15 selected input features  

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 19497 3 0 0 3458 
Probe 87 274 0 0 56 
R2L 0 7 129 0 1483 
U2R 4 0 3 0 17 
Normal 87 3 0 0 5969 

 
Table 14. Confusion matrix of PCDNN model with 15 selected input features and categorized input connections   

                    Predicted 
Actual 

DoS Probe R2L U2R Normal 

DoS 22973 12 0 0 0 
Probe 141 267 0 0 9 
R2L 0 11 1607 0 1 
U2R 9 15 0 0 0 
Normal 0 10 0 0 6049 
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Table 17. Performance of proposed model and other machine learning methods in terms of CR and FAR 
Method Metric (%) DoS Probe U2R R2L 

MLP ANN [15] 
CR 97.2 88.7 13.2 5.6 

FAR 0.3 0.4 0.1 0.1 

Gaussian Bayes decision algorithm [15] 
CR 82.4 90.2 22.8 0.1 

FAR 0.9 11.3 0.5 0.1 

K-means clustering algorithm [15] 
CR 97.3 87.6 29.8 6.4 

FAR 0.4 2.6 0.4 0.1 

Nearest clustering algorithm [15, 38] 
CR 97.1 88.8 2.2 3.4 

FAR 0.3 0.5 0.1 0.1 

Incremental RBF ANN [15, 39] 
CR 73.0 93.2 6.1 5.9 

FAR 0.2 18.8 0.4 0.3 

Leader algorithm [15, 40] 
CR 97.2 83.8 8.3 1.0 

FAR 0.3 0.3 0.3 0.1 

Hyper sphere algorithm [15, 41] 
CR 97.2 83.8 8.3 1.0 

FAR 0.3 0.3 0.3 0.1 

Fuzzy ARTMAP ANN [15, 42] 
CR 97.0 77.2 6.1 3.7 

FAR 0.3 0.2 0.1 0.1 

C4.5 decision tree algorithm [15] 
CR 97.0 80.8 1.8 4.6 

FAR 0.3 0.7 0.1 0.1 

Boosted modified probabilistic neural network (BMPNN) [43] 
CR 96.8 96.1 38.6 48.5 

FAR 0.3 0.2 0.0 0.1 

Hybrid flexible neural tree [44] 
CR 98.8 98.4 99.7 99.1 

FAR 0.6 1.4 0.2 0.8 

Back-propagation neural network (BPN) [45] 
CR 99.6 91.1 0.0 0.0 

FAR 0.4 9.0 0.0 0.0 

Gaussian mixture [46] 
CR 88.2 93.0 22.8 9.6 

FAR 0.2 72.3 45.8 1.0 

RBF ANN [46] 
CR 75.1 91.3 7.0 5.6 

FAR 0.3 88.1 61.9 0.9 

Binary tree algorithm [46] 
CR 96.5 77.9 13.6 0.4 

FAR 3.6 52.4 35.4 7.7 

LAMSTAR neural network [46] 
CR 99.2 98.5 28.9 41.2 

FAR 0.5 25.0 10.0 0.1 

Wavelet neural network [47] 
CR 95.5 91.3 54.7 80.0 

FAR 4.5 8.7 45.3 20.0 

PCDNN with selected input features and categorized input connections 
CR 99.9 64.0 0.0 99.3 

FAR 0.0 0.2 0.0 0.0 
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