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(OFDMA) mode) is illustrated in Fig.1. In Fig.1, The 
downlink of the system consists of randomization, 
channel coding, interleaving, modulation, map 
constellation, space-frequency block coding (SFBC), 
IFFT, cyclic prefix(CP) insertion and duplex framing; 
the uplink consists of deframing, timing frequency 
correction, CP remove, FFT, channel estimation, space-
frequency block decoding, demodulation, 
deinterleaving, channel decoding, derandomization. We 
use Synergistic Processor Element (SPE) decrementers 
to evaluate the computation complexity of each 
module. And the decrementers performance of each 
module is provided in Table 1. But in [2], only the 
Convolutional Codes (CC) with tail-biting is adopted, 
which can't meet all the system requirements especially 
in the multi-path fading channels from the performance 
point of view. 

 
Table 1. WiMAX modules computational complexity 

Component Decrementers 

Channel coding(CC)  666 
Interleave 1225 
IFFT 1551 
Channel Estimation 783 
SFBC 1484 
De-Interleaving 1287 
Viterbi Decoding 3204 

 
Moreover, from Table 1, it can be noticed that the 

Viterbi decoding is the most computation intensive 
module in the whole SR baseband system. Even when 
some other powerful channel coding schemes are 
considered (for example, Turbo and Low-density 
parity-check (LDPC) codes), the computational 
complexity will be much higher. Actually, in the 
conventional radio system, channel decoding is usually 
implemented with ASIC chips, FPGA or optimized 
hardware accelerators. However, under the concept of 
GPP-based SR systems, the channel decoding module 
is preferred to be implemented with software and it is 
the most challenging part in the SR baseband system.  
On the other hand, only when the channel decoding 
module (CC, Turbo or LDPC codes) can support the 
system requirements for throughput, the baseband 
processing can totally handle with software and a 
highly integrated SR system solution can be achieved. 

In this paper, we will study the channel decoding 
algorithms for CC, Turbo and LDPC codes of WiMAX 
baseband system. For each type of channel coding 
schemes (CC, Turbo or LDPC codes), we will firstly 
analyze the computational complexity of different 
decoding algorithms in detail for efficient and parallel 
implementations on Cell B.E.  At the same time, we 
will emphasis on the optimization methodology for 
different decoding algorithms on Cell B.E., which can 

also be used as references for other modules 
optimization on Cell platform.  

The rest of this paper is organized as follows. 
Sections 2 briefly introduce the structure of Cell B.E. 
processor. From Section 3 to Section 5, the Viterbi 
decoding for tail-biting CC, the MAX-Log-MAP 
decoding algorithm for Turbo codes and the offset- 
Belief Propagation (BP) algorithm for LDPC codes are 
investigated and implemented on Cell B.E. platform. 
Then in Section 6, the implementation results on Cell 
B.E. are given to verify the efficient design on these 
three types of channel decoders for SR WiMAX 
baseband systems. Section 7 concludes the paper. 
 
2.  STRUCTURE OF CELL B.E. PROCESSOR 

In this section, we will firstly review the structure of 
Cell B.E. processor.  

The Cell B.E. processor is the result of 
collaboration between Sony, Toshiba, and IBM known 
as STI [4]. As depicted in Fig.2, the Cell B.E. 
Processor is a heterogeneous processor with one 
PowerPC Processor Element (PPE) and eight 
Synergistic Processor Elements (SPEs). The PPE which 
contains a 64-bit PowerPC Architecture core runs the 
operating system and is mainly responsible for 
controlling the behavior of all the SPEs. The eight 
SPEs are in-order single-instruction, multiple-data 
(SIMD) processor elements optimized for compute-
intensive work. Each SPE has 256KB local memory for 
instructions and data, and 128 128-bit register file. 
Each SPE has two pipelines and can issue and complete 
up to two instructions each cycle. At 3.2GHz each SPE 
can give a theoretical 25.6 GFLOPS of single precision 
performance. All these processor elements are 
connected by the element interconnect bus (EIB). The 
EIB transfers data between these processor elements, 
the main memory and the IO interface. At 3.2GHz it 
could offer a theoretical peak bandwidth up to 204.8 
GB/s. 

Fig. 2. Block diagram of Cell B.E. processor 
 
Data transactions between the SPE’s local memory 

and the main memory are via DMA operations. The 
DMA operation supports aligned transfer size of 1, 2, 4, 
8, and 16 bytes and multiple of 16 bytes and can move 
up to 16KB at a time. With the double-buffer 
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techniques, the DMA transfer latency could be covered 
by the application execution. 

Due to the powerful computational capability and 
abundant SIMP resources of the Cell B.E. processor, it 
has been considered as one of the candidates of GPP-
based SR platform [2] for WiMAX systems. Therefore, 
in the following three sections, we will focus on the 
implementation of channel decoding algorithms for CC, 
Turbo and LDPC codes over this multi-core platform. 
 
3.  VITERBI DECODING ALGORITHM AND 
IMPLEMENTATION FOR TAIL-BITING 
CONVOLUTIONAL CODES 

Viterbi algorithm is the optimal solution for 
Convolutional encoding. The tail-biting convolutional 
encoding method can eliminate the transfer data rate 
loss by the extra tail bits introduced by the 
conventional convolutional code. And tail-biting 
convolutional encoding, which has the rate of 1/2, a 
constraint length of 7, is the mandatory channel coding 
scheme used in WiMAX systems [3]. Two generator 
polynomials codes are specified as, G1=171 (OCT) and 
G2=133 (OCT) . 

In this section, we will study the Viterbi decoding 
algorithm for WiMAX baseband system. Firstly,  
Subsection 3.1 will briefly introduce the algorithm for 
the tail-biting convolutional codes. Subsection 3.2 will 
describe our considerations and techniques to achieve 
the peak performance of the Viterbi decoding algorithm 
on the Cell processor. 
 
3.1.  Viterbi Decoding Algorithm 

Tail-biting convolutional encoding can avoid 
transferring additional data bits, but it slightly increases 
the decoding complexity. There are many ways to 
decode the tail-biting convolutional codes. Some 
methods have iterative structures which cannot 
guarantee a fixed delay. The basic algorithm used here 
is introduced by Wonjin Sung and In-Kyung Kim, 
called a fixed delay decoding scheme for tail-biting 
convolutional codes [5].  

The decoding algorithm, which we have changed a 
little to match the architecture of the system, is 
illustrated in Fig.3.  

 

 
Fig. 3. Tail-biting code Viterbi decoding 

 
The data block which need to be decoded is 

separated into smaller blocks, as Block 0, Block 1, ..., 
Block N.  

Firstly, Block 0 and Block 1 are attached at the end 
of Block N and we get a new data vector VN.  

Secondly, decode VN using the conventional 
Viterbi algorithm and find the minimum path metric at 
the end of VN. 

Finally, trace from the end of VN back to the 
original Block 1 by the path with the best path metric. 
At this procedure, discard the decoded bits of the Block 
1 on the tail, and reorganize the bits decoded from the 
attached Block 0 to the beginning. 

To get a negligible degradation from maximum 
likelihood decoding, the size of the block should be 
greater than 4K, where K is the constraint length [5]. In 
our system, the value 72 is selected as the constraint 
length. 

 
3.2.  Parallelize the Viterbi Decoding on Cell 

To get the best throughput performance, we 
manually tune highly parallel code in the following 
ways. 

 
A. General Considerations of Using One SPE 

In order to get the best performance, the application 
code needs to comply with the architecture and features 
of the SPE. 

Firstly, SPE’s natural operand type is 128-bit 
quadword or vector. A vector is an instruction operand 
containing a set of data elements packed into a one-
dimensional array [7]. SPE’s scalar operation 
performance is very poor because in order to 
accomplish a scalar operation, the SPE has to pack the 
scalar data into a vector, and after the operation, 
unpack the vector data to get the final scalar result. 
Therefore we need to use vector data type if possible, 
and sometimes we even need to change the algorithm 
or the data memory layout to use vector operations. 

Secondly, SPE is an in-order processor element, and 
SPE issues all instructions in program order. If there is 
dependency between two adjacent instructions, the later 
one has to wait to be issued until the former one 
completes. And this could lead to a huge performance 
loss. Thus we need to diminish the branch operations 
and decrease the dependency among the nearby 
instructions. 

Thirdly, each SPE has two dual-issue execution 
pipelines, referred to as even pipeline and odd pipeline. 
Each of SPE’s six execution units belongs to one of the 
two pipelines. A doubleword-aligned instruction pair 
called a fetch group. A fetch group can have one or two 
valid instructions. The SPE processes fetch groups one 
at a time [7]. So the SPE can complete up to two 
instructions per cycle. If the first instruction of a fetch 
group can be issued while the second one cannot, the 
first instruction is issued to the proper execution 
pipeline and the second instruction is held. We need to 

Get the proper start state 
Start from 
arbitrary 
state 

This block is just for 
training, Ignore the 
output data 

Output the decoding 
data TB1 

Ignore the 
output data 
TB0 

TB0 TB1 TB2 TBN TB0 TB1 
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threshold. After the experimental test, we finally 
choose 128 for 4-bit soft input with 2 times of unrolling 
and 128 for 3-bit soft input with 4 times of unrolling as 
the thresholds  

 
F. Considerations of Using the Resource of a Full 

Cell Chip 
As mentioned in Section 2, the Cell B.E. processor 

has 8 SPEs and 1 PPE. Use each SPE to perform part of 
the process necessary for WiMAX system, with only 
one SPE core actually running the tail-biting Viterbi 
decoding. This is a type of multi-core operation on Cell 
platform to implement the WiMAX baseband system. 
The advantage of this approach is that each SPE has 
part of the processing codes and there are more 
memory left on the local store for the data buffer. The 
disadvantage is that we need to do some more work to 
achieve a better load balance on 8 SPEs [6]. 

Another type of multi-core operation could be that 
each SPE perform a whole processing task of one 
frame and PPE is in charge of distributing the data 
frames to different SPEs. The advantage of this 
approach is that the load on every SPE is symmetrical 
and the disadvantage is that code size of each SPE 
program could be very large. 

 
4.  MAX-LOG-MAP DECODING ALGORITHM 
AND IMPLEMENTATION FOR TURBO CODES 

In this section, the Turbo decoder on Cell B.E. will 
be studied. Two parallel decoding methods, referred to 
as Parallel Block Decoding (PBD) and Parallel State 
Decoding (PSD), are presented to achieve high 
throughput and high performance based on the Cell B.E. 
platform. In addition, the decoder is also optimized 
based on the programming characteristic of SPE. 
 
4.1.  MAX-log-MAP Decoding Algorithm 

The iterative Turbo decoder consists of two 
component Soft-Input Soft-Output (SISO) decoders 
serially concatenated via an interleaver, identical to the 
one in the Turbo encoder, as shown in Fig. 5 [9]. 

 

Fig. 5. Structure of the Turbo decoder 
 

When the Maximum A Posteriori (MAP) algorithm 
is applied to each SISO decoder, the Log-Likelihood 
Ratio (LLR) for each double-binary pair can be 
expressed as follows: 
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where (a,b) are (0,1), (1,0) or (1,1). 
However, the MAP decoding algorithm requires 

large memory and a large number of operations 
involving exponentiations and multiplications, which is 
likely to be considered too difficult for implementation, 
especially in the SR system on Cell B.E. Thereby here 
we choose the MAX-log-MAP algorithm to replace the 
MAP algorithm, which has acceptable performance 
with much lower computational complexity and 
memory consumption [9].  

In the MAX-log-MAP algorithm, the output of each 
SISO decoder, representing the extrinsic LLR, is 
expressed as follows: 
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 1s is the set of states at time k-1 connected to 

the state ks . 2s  is the set of states at time k+1 

connected to the state ks .  

 z }11,10,01,00{ . 

 ),( kk BA  is the input symbol consisting of two 

bits. ),( kk BAP  is a priori probability of 

),( kk BA .  

 kx and ky  are the transmitted and received 

codewords respectively associated with 

),( kk BA .  

 Superscripts p  and s  respectively denote the 
parity bits and systematic bits.  

 )(

,

z

INe
L  is the priori information obtained from the 

other SISO decoder.  

The code is assumed to be modulated by BPSK and 
transmitted through an AWGN channel with noise 

variance 2 . In this case, the Turbo decoding based on 
the Max-log-MAP algorithm is independent of SNR, 

therefore 2/2 cL can usually be set to a constant 

value. 
 

4.2.  Turbo Decoder Implementation on Cell 
In this part, we will describe the implementation 

methods of MAX-log-MAP decoding algorithms on a 
single SPE. To make good use of this SIMD feature, 
we present two parallel decoding methods on the 
implementation of the SISO decoder, which are Parallel 
Block Decoding (PBD) and Parallel State Decoding 
(PSD), respectively.  

  
A. PBD Implementation 

Firstly, we will introduce the PBD implementation 
method. In PBD method, the frame size is assumed to 
be M bits, which can be divided into N sub-blocks with 
equal length. Each sub-block of the frame can be 
decoded in parallel structure independently [10]. 

As for the implementation, without loss of 
generality, the soft-input data is quantized by 8 bits and 
occupies two bytes. So one 128-bits wide vector can 
contain eight soft-input data at maximum. The above 
data mapping method of PBD algorithm is shown in 
Fig. 6, where data[i] denotes the soft-input of the 
decoder, i=0,1,…,2*M/N. Thus, data[i] of each sub-
block is read into one vector and dealt with in parallel. 
Simultaneously, values of α and β for each sub-block 
are calculated according to (2), (3) and (4) in Section 

Ⅱ. At last, the LLR is obtained by (1) in parallel and 
independently. 

Since the calculations of α and β metrics may be 
started somewhere in the middle of the frame, they 
must be initialized. Fig. 7 shows the initialization value 
passing scheme for PBD algorithm. For simplicity, we 
only demonstrate two iterations in Fig.7. In practice, 
the number of iterations is chosen by the trade-off 
between the Bit Error Ratio (BER) performance and 
decoding throughput. 

 

 

Fig. 6. Data mapping for the PBD algorithm 
 

Assuming k bits couples are contained in each sub-
block. As shown in Fig.7, during the parallel decoding, 
αk of the sub-block n (n=1, 2,…, N-1) is saved as α0 of 
the sub-block n+1 for the next iteration. For the last 
sub-block N, αk is saved as α0 of the sub-block 1 for the 
next iteration. Similarly, β0 of the sub-block n (n=2, 
3,…, N) is saved as βk of the sub-block n-1 for the next 
iteration, and for the sub-block 1, β0 is saved as  βk of 
the sub-block N for the next iteration. 

 

Fig. 7. Metric initialization value passing scheme for 
PBD algorithm 

 
B. PSD Implementation 

Except the parallel decoding structure of PBD 
algorithm according to the sub-blocks in one frame, 
another parallel structure based on the decoding states, 
referred to as PSD algorithm, is presented in this 
subsection. Assuming the state number of the Turbo 
encoder is D, in the PSD algorithm, all states of α and β 
are calculated in parallel. Since the CTC encoder used 
in WiMAX system has three registers [3], there are 
eight states in total, i.e., D=8. The state transition 
diagram of this CTC is given in Fig.8 [9]. 

In Fig.8, we can see that, for each specific time k, 
both of α and β have eight states. With each α or β 
corresponding to each state represented by 16 bits, one 
128-bits-wide vector can contain all the values of α or β 
corresponding to all the eight states. The data mapping 
scheme for α in the PSD algorithm be shown in the 
following Fig. 9. The mapping scheme for β is also 
similar to that for α. 
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Then the values of α and β for eight states are 
calculated in parallel structure simultaneously, 
according to (2), (3) and (4) in Section Ⅱ. In order to 
calculate the α and β in parallel, the SPE shuttle 
instruction should be used frequently, to adjust the 
positions of the eight elements in one vector in each 
iteration. 

Since the local store, i.e., local memory of one 
single SPE is limited to 256K Bytes (KB), the extrinsic 
LLR can be calculated during the calculation of α to 
save the memory usage. Consequently, with the frame 
length 2*N, the memory usage for metric α is reduced 
from (N+1)*8*2 bytes to 8*2 bytes. 

 

 

Fig. 8. State transition diagram of CTC in WiMAX 
system 

 

 
Fig. 9. Data mapping for the PSD algorithm 

 

C. Turbo Decoder Optimization on Cell B.E. 
To achieve the best throughput performance, the 

application programming codes are also optimized as 
Subsection 3.2. Moreover, for Turbo decoder on Cell 
B.E, last but not least, we use more memory to help to 
speed up the calculations. The local store of the SPE is 
only 256KB, which contains the program, stack, local 
data structures, and the DMA buffers. During our 
implementation in one single SPE, the memory 
occupation of the program and global data for the 
Turbo decoder is about 135KB, then the remainder 
121KB can be used for memory spending (stack 
allocation etc.) during the program running. It is 
confirmed that, when the frame size is equal or less 
than 4800 bits, the maximum SPE local sore 
consumption during the program execution will not 
exceed 256KB. 

As for the use of a full Cell chip for Turbo decoder, 
we also consider the methodology as mentioned in 
Subsection 3.2.F. 

5.  OFFSET BP-BASED DECODING 
ALGORITHM AND IMPLEMENTATION FOR 
LDPC CODES 

In this section, the LDPC decoder on Cell will be 
studied, which is also optimized based on the 
programming characteristic of SPE. 

 
5.1.  Offset BP-based Decoding Algorithm 

In this part, the Offset BP-based [11] decoding 
Algorithm is applied to the LDPC decoding. In the 
following depiction, H represents the check matrix. n 

represents the length of codeword. 1 2( , ,..., )nC c c c

represents the codeword, 1 2( , ,..., )nC c c c
   

represents the codeword after decoding. ( )iL c
represents the soft initial information for variable node 

i. ( )jiL r represents the information transmitted from 

check node j to variable node i. ( )ijL q  represents the 

information t transmitted from variable node i to check 

node j. ( )iL q represents the collected information by 

the variable node i. ija and 'i jb are expressed as 

follows:  

))((

))((

' ijji

ijij

qLabs

qLsign








                (5) 

The steps of Offset BP-based decoding algorithm 
are listed as follows: 
1. Set the original information 

( ) ( )ij iL q L c=                         (6) 

Set the Iteration variable Iter=0 
2. Update Check Node information  ܮ൫ݎ௝௜൯ = ቌ ෑ ௜ᇲ௝௜ᇲ∈ோೕ\௜ߙ ቍmax ൤ min௜ᇲ∈ோೕ\௜ ௜ᇲ௝ߚ − ,ݐ݁ݏ݂݂݋ 0൨   (7)

3. Update Variable Node information  





jCj

ijiij

i

rLcLqL
\'

' )()()(                 (8) 

4. Iter=Iter+1. If variable Iter is bigger than the max 
Iterations, go to Step 6. Otherwise go to Step 2. 

5. Output 1 2( , ,..., )nC c c c
   

 
 
5.2.  Parallelize the Offset BP-based LDPC 
Decoding on Cell 

In this section, we will describe considerations and 
techniques of the implementation methods of Offset 
BP-based decoding algorithm on Cell B.E. 

 
A. Computation Data Type Choice for LDPC 

Since the smaller bit width of data type is, the faster 
decoding speed is along with more information loss, 
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it’s important to choose the quantization scheme to 
maximize the decoding speed and guarantee the BER 
performance. We contrast the BER performance with 
LDPC codes in WiMAX systems between different 
quantization schemes: char (8 bits), short (16bits) and 
float (32bits). The answer is illustrated in Fig.10.  
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Fig. 10. BER performance comparison for different 
quantization schemes 

 
The frame length of the LDPC code is 960 bits, the 

coding rate is ½, and the iteration number of decoding 
is 15.The LDPC decoding is implemented on the CPU 
using the Offset BP-based decoding algorithm. The 
code is assumed to be modulated by BPSK and 
transmitted through an AWGN channel.  

According to Fig.10, we can see that the BER 
performance between char type and float type is quite 
small. So we decide to choose the char type. 

 
B. Parallel Mode Considerations for LDPC 

The main operations of LDPC decoding are 
Updating Check Node information and Updating 
Variable Node information which are equivalent to the 
row and column operations of the check matrix H [11]. 
It’s naturally to choose the parallel mode in which 
updates 16 rows or columns at a time. However this 
method is proved to be failed in implementation on 
Cell. As the check matrix is a sparse matrix, we only 
store the non-zero elements and the elements are stored 
in the vector mode which means every vector stores 16 
elements and every vector operates 16 elements. If we 
update 16 rows or columns at a time, for each vector 
operation there will be 16 scalar operations to find the 
16 elements in different vectors which will be a disaster 
for the decoding speed. 

So different parallel strategies used in Viterbi and 
Turbo decoders, we consider another parallel mode, in 
which 16 LDPC blocks are decoded at the same time as 
in Fig.11. In this parallel mode, the operations will all 
be vector operations and the computation ability of SPE 
can be sufficiently used. 

 

 
Fig.11. LDPC decoder parallel mode 

 
C. Memory Options and Other Issues for LDPC 

As we have chosen the above parallel mode and 
computation data type, we can compute the maximum 
used memory in SPE. We find that if the code length n 
is not bigger than 1248, the memory usage including 
the program, stack, local data structures, and the DMA 
buffers is less than 256KB, which is enough in one 
SPE. 

When using each SPE to perform part of the process 
necessary for WiMAX system, with only one SPE core 
actually running the LDPC decoding. We consider a 
parallel mode similarly with what we use in one SPE. 
For now, every SPE decodes 16 LDPC blocks at a time. 
When we use the full 8 SPEs, we can decode 128 
LDPC blocks at a time. 

The application programming codes can also be 
further optimized as Subsection 3.2. 

 
6.  BER AND THROUGH PERFORMANCE 

In this section, we will present some results, 
including BER and throughput performance, to justify 
the efficacy of the proposed parallel decoding 
algorithms for different channel coding schemes of 
WiMAX systems on Cell B.E. 
 
6.1.  Performance Results of Viterbi Decoding 

The BER performance of CC is illustrated in Fig.12 
for 3-bit and 4-bit soft input, respectively. And the peak 
throughput with 3-bit soft input is 32.5 Mbps and 
31Mbps for 4-bit soft input on a single SPE. 
Additionally, the throughput of the Viterbi decoder can 
increase linearly with the increase of the SPE number. 

 

 
Fig. 12. BER performance for the Viterbi Decoding 
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6.2.  Performance Results of Turbo Decoding 
A. Throughput and Latency Results 

Fig. 13 shows the throughput of the two parallel 
Turbo decoding methods for different frame length. For 
the tradeoff between BER performance and throughput, 
when the frame length is equal or shorter than 192 bits, 
the iteration number is set to be 6; otherwise, the 
iteration number is set to be 5. 

As shown in Fig. 13, we can find that when the 
frame length is equal or longer than 192 bits, the PBD 
algorithm has obviously higher throughput than the 
PSD algorithm. However, as the frame length 
decreases, the throughput gap between these two 
algorithms is getting smaller. That is because the PBD 
algorithm is constrained by the BER performance. 
When the frame length gets shorter, to keep the 
acceptable BER performance, the number of sub-
blocks has to be smaller, which deduces the efficiency 
of the SIMD operation and thus deduces the 
throughput.  

Therefore, when the frame length is less than 192 
bits, the PSD algorithm will be preferred; otherwise, 
the PBD is preferred [13]. 

 

Fig. 13. Throughput comparison of the two parallel 
methods 

 
Without loss of generality, the decoding latency of 

frame length 480 bits is given. The iteration number is 
5. For PSD, the decoding latency is 0.52 ms. For PBD, 
the decoding latency is 0.36 ms. 

 
B. BER Proformance of Turbo Decoding 

In this part, some BER and Frame Error Ratio 
(FER) results of the PBD algorithm will be shown. The 
results of the PSD algorithm are omitted due to the 
same BER performance as the non-block algorithm.  

Firstly, Fig. 14 and Fig. 15 show the BER and FER 
performance of different frame and block length for the 
PBD algorithm and non-block algorithm respectively. 

From Fig. 14 and Fig. 15, we can find that for the 
same frame length, as the block length becomes 
shorter, the BER and FER performance gets worse. The 
PBD algorithm offers the similar BER and FER 
performance with the non-block algorithm when the 
frame length is equal or longer than 192 bits.  

Fig. 14. BER performance for the PBD algorithm 
 

Fig. 15. FER performance for the PBD algorithm 
 

Fig. 16. WiMAX BER performance on Cell B.E. 
 

Furthermore, the PBD Turbo decoder with BPSK 
modulation is concatenated into the WiMAX SR 
system as shown in Fig.1. Fig. 16 shows the system 
BER performance comparisons in AWGN channel 
between the CC and CTC. The CTC is decoded by the 
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