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Wireless baseband processing, which is characterized by high computational complexity and high data throughput, is
regarded as the most challenging issue for software radio (SR) systems, especially for the General Purpose Processor
(GPP)-based SR systems. To overcome this implementation difficulty in SR systems, the multicore architecture has
been proposed as the GPP-based SR platform, for example, multicore Central Processing Unit (CPU), Graphic
Processing Unit (GPU) and Cell processors. In this paper, the Cell processor is considered as the core component in
the GPP-based SR platform. The channel decoding modules for convolutional, Turbo and Low-density parity-check
(LDPC) codes of WiMAX systems are investigated and efficiently implemented on Cell processor. With a single
Synergistic Processor Element (SPE) running at 3.2GHz, the implemented channel decoders can throughput up to
30Mbps, 1.36Mbps and 1.71Mbps for the above three codes, respectively. Moreover, the decoding modules can be
easily integrated to the SR system and provide a highly integrated SR solution.

KEYWORDS: Software Radio, Convolutional codes, Turbo code, LDPC codes, WiMAX, Multi-Core.

1. INTRODUCTION'

Software Radio (SR) technology brings the
flexibility, cost efficiency and lower power to drive
communications forward. SR has wide-reaching
benefits that are realized by service providers, product
developers, and through to end users. However the SR
application is always restricted by the performance of
the hardware platform. In recent years, the multi-core
technology has developed rapidly and is currently the
trend of the microprocessor development. Multi-core
processor, with high-frequency and low-power
consumption, is able to provide a whole wireless
system SR solution with high performance and good
adaptability [1, 2], which is also called General Purpose
Processor (GPP)-based SR systems.

WiMAX, stands for Worldwide Interoperability for
Microwave Access, is a metropolitan wireless standard
ratified by the IEEE, the Institute of Electrical and
Electronics Engineers, under the name IEEE-802.16. It
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can be used in many applications, including the "last
mile" broadband connections and offering the mobile
client machines with the internet connections, and
WiMAX has been approved as a 4G standard recently
by ITU[3].
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In this paper, a basic WiMAX baseband SR system
based on Cell Broadband Engine (B.E.) is considered
[2][4], which is also based on the multi-core
technology. The block diagram of the WiMAX Base
Sation (BS) physical layer baseband transceiver
(Orthogonal Frequency-Division Multiple Access
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(OFDMA) mode) is illustrated in Fig.1. In Fig.1, The
downlink of the system consists of randomization,
channel coding, interleaving, modulation, map
constellation, space-frequency block coding (SFBC),
IFFT, cyclic prefix(CP) insertion and duplex framing;
the uplink consists of deframing, timing frequency
correction, CP remove, FFT, channel estimation, space-
frequency block decoding, demodulation,
deinterleaving, channel decoding, derandomization. We
use Synergistic Processor Element (SPE) decrementers
to evaluate the computation complexity of each
module. And the decrementers performance of each
module is provided in Table 1. But in [2], only the
Convolutional Codes (CC) with tail-biting is adopted,
which can't meet all the system requirements especially
in the multi-path fading channels from the performance
point of view.

Table 1. WIMAX modules computational complexity

Component Decrementers
Channel coding(CC) 666
Interleave 1225
IFFT 1551
Channel Estimation 783
SFBC 1484
De-Interleaving 1287

Viterbi Decoding 3204

Moreover, from Table 1, it can be noticed that the
Viterbi decoding is the most computation intensive
module in the whole SR baseband system. Even when
some other powerful channel coding schemes are
considered (for example, Turbo and Low-density
parity-check (LDPC) codes), the computational
complexity will be much higher. Actually, in the
conventional radio system, channel decoding is usually
implemented with ASIC chips, FPGA or optimized
hardware accelerators. However, under the concept of
GPP-based SR systems, the channel decoding module
is preferred to be implemented with software and it is
the most challenging part in the SR baseband system.
On the other hand, only when the channel decoding
module (CC, Turbo or LDPC codes) can support the
system requirements for throughput, the baseband
processing can totally handle with software and a
highly integrated SR system solution can be achieved.

In this paper, we will study the channel decoding
algorithms for CC, Turbo and LDPC codes of WiMAX
baseband system. For each type of channel coding
schemes (CC, Turbo or LDPC codes), we will firstly
analyze the computational complexity of different
decoding algorithms in detail for efficient and parallel
implementations on Cell B.E. At the same time, we
will emphasis on the optimization methodology for
different decoding algorithms on Cell B.E., which can
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also be used as references for other modules
optimization on Cell platform.

The rest of this paper is organized as follows.
Sections 2 briefly introduce the structure of Cell B.E.
processor. From Section 3 to Section 5, the Viterbi
decoding for tail-biting CC, the MAX-Log-MAP
decoding algorithm for Turbo codes and the offset-
Belief Propagation (BP) algorithm for LDPC codes are
investigated and implemented on Cell B.E. platform.
Then in Section 6, the implementation results on Cell
B.E. are given to verify the efficient design on these
three types of channel decoders for SR WiMAX
baseband systems. Section 7 concludes the paper.

2. STRUCTURE OF CELL B.E. PROCESSOR

In this section, we will firstly review the structure of
Cell B.E. processor.

The Cell B.E. processor is the result of
collaboration between Sony, Toshiba, and IBM known
as STI [4]. As depicted in Fig.2, the Cell B.E.
Processor is a heterogeneous processor with one
PowerPC Processor Element (PPE) and eight
Synergistic Processor Elements (SPEs). The PPE which
contains a 64-bit PowerPC Architecture core runs the
operating system and is mainly responsible for
controlling the behavior of all the SPEs. The eight
SPEs are in-order single-instruction, multiple-data
(SIMD) processor elements optimized for compute-
intensive work. Each SPE has 256KB local memory for
instructions and data, and 128 128-bit register file.
Each SPE has two pipelines and can issue and complete
up to two instructions each cycle. At 3.2GHz each SPE
can give a theoretical 25.6 GFLOPS of single precision
performance. All these processor elements are
connected by the element interconnect bus (EIB). The
EIB transfers data between these processor elements,
the main memory and the IO interface. At 3.2GHz it
could offer a theoretical peak bandwidth up to 204.8
GB/s.
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Fig. 2. Block diagram of Cell B.E. processor

Data transactions between the SPE’s local memory
and the main memory are via DMA operations. The
DMA operation supports aligned transfer size of 1, 2, 4,
8, and 16 bytes and multiple of 16 bytes and can move
up to 16KB at a time. With the double-buffer
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techniques, the DMA transfer latency could be covered
by the application execution.

Due to the powerful computational capability and
abundant SIMP resources of the Cell B.E. processor, it
has been considered as one of the candidates of GPP-
based SR platform [2] for WiMAX systems. Therefore,
in the following three sections, we will focus on the
implementation of channel decoding algorithms for CC,
Turbo and LDPC codes over this multi-core platform.

3. VITERBI DECODING ALGORITHM AND
IMPLEMENTATION FOR TAIL-BITING
CONVOLUTIONAL CODES

Viterbi algorithm is the optimal solution for
Convolutional encoding. The tail-biting convolutional
encoding method can eliminate the transfer data rate
loss by the extra tail bits introduced by the
conventional convolutional code. And tail-biting
convolutional encoding, which has the rate of 1/2, a
constraint length of 7, is the mandatory channel coding
scheme used in WiMAX systems [3]. Two generator
polynomials codes are specified as, G1=171 (OCT) and
G2=133 (OCT) .

In this section, we will study the Viterbi decoding
algorithm for WiMAX baseband system. Firstly,
Subsection 3.1 will briefly introduce the algorithm for
the tail-biting convolutional codes. Subsection 3.2 will
describe our considerations and techniques to achieve
the peak performance of the Viterbi decoding algorithm
on the Cell processor.

3.1. Viterbi Decoding Algorithm

Tail-biting convolutional encoding can avoid
transferring additional data bits, but it slightly increases
the decoding complexity. There are many ways to
decode the tail-biting convolutional codes. Some
methods have iterative structures which cannot
guarantee a fixed delay. The basic algorithm used here
is introduced by Wonjin Sung and In-Kyung Kim,
called a fixed delay decoding scheme for tail-biting
convolutional codes [5].

The decoding algorithm, which we have changed a
little to match the architecture of the system, is
illustrated in Fig.3.
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TBO ata output data

Fig. 3. Tail-biting code Viterbi decoding

The data block which need to be decoded is
separated into smaller blocks, as Block 0, Block 1, ...,
Block N.
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Firstly, Block 0 and Block 1 are attached at the end
of Block N and we get a new data vector VN.

Secondly, decode VN wusing the conventional
Viterbi algorithm and find the minimum path metric at
the end of VN.

Finally, trace from the end of VN back to the
original Block 1 by the path with the best path metric.
At this procedure, discard the decoded bits of the Block
1 on the tail, and reorganize the bits decoded from the
attached Block 0 to the beginning.

To get a negligible degradation from maximum
likelihood decoding, the size of the block should be
greater than 4K, where K is the constraint length [5]. In
our system, the value 72 is selected as the constraint
length.

3.2. Parallelize the Viterbi Decoding on Cell

To get the best throughput performance, we
manually tune highly parallel code in the following
ways.

A. General Considerations of Using One SPE

In order to get the best performance, the application
code needs to comply with the architecture and features
of the SPE.

Firstly, SPE’s natural operand type is 128-bit
quadword or vector. A vector is an instruction operand
containing a set of data elements packed into a one-
dimensional array [7]. SPE’s scalar operation
performance is very poor because in order to
accomplish a scalar operation, the SPE has to pack the
scalar data into a vector, and after the operation,
unpack the vector data to get the final scalar result.
Therefore we need to use vector data type if possible,
and sometimes we even need to change the algorithm
or the data memory layout to use vector operations.

Secondly, SPE is an in-order processor element, and
SPE issues all instructions in program order. If there is
dependency between two adjacent instructions, the later
one has to wait to be issued until the former one
completes. And this could lead to a huge performance
loss. Thus we need to diminish the branch operations
and decrease the dependency among the nearby
instructions.

Thirdly, each SPE has two dual-issue execution
pipelines, referred to as even pipeline and odd pipeline.
Each of SPE’s six execution units belongs to one of the
two pipelines. A doubleword-aligned instruction pair
called a fetch group. A fetch group can have one or two
valid instructions. The SPE processes fetch groups one
at a time [7]. So the SPE can complete up to two
instructions per cycle. If the first instruction of a fetch
group can be issued while the second one cannot, the
first instruction is issued to the proper execution
pipeline and the second instruction is held. We need to
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put instructions issuable to different pipelines together,
then after compiling, they could be dual issued.

B.  Computation Data Type Choice for CC

The SPE hardware supports the following data
types:

* Byte—38 bits

* Halfword—16 bits

* Word—32 bits

* Doubleword—64 bits

* Quadword—128 bits

The SPE can finish one vector operation per
instruction. Since one vector comprises 4 word type
elements, we can finish four word type data operations
per instruction. Similarly, we can handle 8 halfword
type data operations or 16 byte type data operations per
instruction.

The main calculation in the Viterbi algorithm is the
Add-Compare-Select (ACS) operation [9]. Comparing
the decoder input with the recreated encoder output, we
have the number of disagreements, as the branch
metric. Then we accumulate the branch metrics as path
metrics, and make decisions to select the most likely
state transition sequence.

The input of the Viterbi decoder is 3 or 4 bits, so
every branch metric is 4 or 5 bits long in a 1/2 encoding
rate. Thus we could represent the branch metrics and
the path metrics with one byte. However, after the
accumulation operations, there could be overflows. So
we need overflow control scheme in the
implementation as described in Part F.

The theoretical peak byte operations per second
could be 3.2G*16*2=102.4G due to the SIMD
optimization and the dual pipelines.

C. Data Memroy Layout and Vectorization

In get the decoder output, we need to trace the best
path back to the beginning. The best path is decided by
choosing the final state which has the least path
metrics. Then obtain the input sequence by placing a 0
at the decoder output each time we choose an upper
transition, and a 1 output each time we choose the
lower transition.

So during the ACS operations, the decisions at
every transition and the final path metrics need to be
stored. With a constraint length of 7, we have 64
different encoding register states. Then the dimension
of the decision matrix is 64*L, where L is the length of
the length of the ACS input sequence. The dimension
of the input is 2*L and the branch table which contains
the recreated encoding output is 2*32, due to the 1/2
encoding rate.

The 64 decision in each stage can be stored in 4
vectors. We need 4 vectors to store the branch table and
need to splat the input scalar data pair to form 4 vectors
to compare with the recreated encoding output vector to
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get the branch metric. The data of the branch table and
the decision matrix should be 128-bit aligned.
Otherwise segmentation fault will occur while loading
the data in local memory to the registers. Here, we can
also call it the full-state-parallel algorithm for the
Viterbi decoding.

After the data arrangement described, all the ACS
operations can be achieved in vector format except the
loop control and the overflow control, and high data
level parallelism can be obtained.

D. Butterfly operations

The butterfly operations, as depicted in Fig.4, can
change the relative memory positions of those variables
which store the path metrics and the transfer decisions.
In order to have the uniform processing pattern, we have
to rearrange the data each time that we have processed
one decoder input pair.

S(i)

S(i+1) A S(if2+ 2%1)

Fig. 4. Butterfly operation in Viterbi decoding

S(if2)

The reorganizing operations can easily be
implemented by the shuffle operations of the SPE. The
shuffle operations select bytes from two source
registers and place selected bytes in a target register,
and the byte selection operations are controlled by a
third source register [8].

Therefore, the reorganizing in the Viterbi butterfly
operations can be implemented with two types of
shuffle operations and total 8 instructions each stage for
both the path metrics and the decisions reorganizing.

E.  Loop-unrolling and Overflow Control

Loop-unrolling is an effective way to decrease the
jumping operations and the dependency between
instructions and gives the compiler more chance to
optimize the code. Because the SPE is in-order
processor element, the effect of loop-unrolling is more
obvious than other out-of-order processors.

Since the path metric is stored in one byte and each
branch metric could be 3 or 4 bits, we need to add
overflow control to prevent the path metric values from
saturation. The method of the overflow control used
here is to check the path metric of state 0, and if the
metric exceeds a threshold, we check all the 64 path
metrics and find the minimum metric, and then subtract
the minimum metric from all the path metrics.
Similarly, all the overflow control operations here are
implemented with vector instructions except the
exceeding judgment.

However, to use the loop-unrolling optimization
method can affect the choice of the exceeding



Majlesi Journal of Electrical Engineering

threshold. After the experimental test, we finally
choose 128 for 4-bit soft input with 2 times of unrolling
and 128 for 3-bit soft input with 4 times of unrolling as
the thresholds

F.  Considerations of Using the Resource of a Full
Cell Chip

As mentioned in Section 2, the Cell B.E. processor
has 8 SPEs and 1 PPE. Use each SPE to perform part of
the process necessary for WiMAX system, with only
one SPE core actually running the tail-biting Viterbi
decoding. This is a type of multi-core operation on Cell
platform to implement the WiMAX baseband system.
The advantage of this approach is that each SPE has
part of the processing codes and there are more
memory left on the local store for the data buffer. The
disadvantage is that we need to do some more work to
achieve a better load balance on 8 SPEs [6].

Another type of multi-core operation could be that
each SPE perform a whole processing task of one
frame and PPE is in charge of distributing the data
frames to different SPEs. The advantage of this
approach is that the load on every SPE is symmetrical
and the disadvantage is that code size of each SPE
program could be very large.

4. MAX-LOG-MAP DECODING ALGORITHM
AND IMPLEMENTATION FOR TURBO CODES
In this section, the Turbo decoder on Cell B.E. will
be studied. Two parallel decoding methods, referred to
as Parallel Block Decoding (PBD) and Parallel State
Decoding (PSD), are presented to achieve high

throughput and high performance based on the Cell B.E.

platform. In addition, the decoder is also optimized
based on the programming characteristic of SPE.

4.1. MAX-log-MAP Decoding Algorithm

The iterative Turbo decoder consists of two
component Soft-Input Soft-Output (SISO) decoders
serially concatenated via an interleaver, identical to the
one in the Turbo encoder, as shown in Fig. 5 [9].

Deinterleaver

extrinsic
aritv bits Interleaver
parity bits
i St |
SISO parity bits SISO

systematic bits | Decoderl Decoder2

T
softouput

Fig. 5. Structure of the Turbo decoder

When the Maximum A Posteriori (MAP) algorithm
is applied to each SISO decoder, the Log-Likelihood
Ratio (LLR) for each double-binary pair can be
expressed as follows:
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P(A,=a,B,=bly)
P(4,=0,B,=0]|y)

Zak (5 * 71 (8158000) "B (841)

— [ Ae=aBish

Zak (Sk) * rk+l (Skﬂsk-H) *ﬁlﬁ—l (Sk+l)

4, =0,B, =0

where (a,b) are (0,1), (1,0) or (1,1).

However, the MAP decoding algorithm requires
large memory and a large number of operations
involving exponentiations and multiplications, which is
likely to be considered too difficult for implementation,
especially in the SR system on Cell B.E. Thereby here
we choose the MAX-log-MAP algorithm to replace the
MAP algorithm, which has acceptable performance
with much lower computational complexity and
memory consumption [9].

In the MAX-log-MAP algorithm, the output of each
SISO decoder, representing the extrinsic LLR, is
expressed as follows:

A4 B,) =
max){ak(sk)+7/k+1(sk7sk+1)+ﬂk+l(sk+1)} M

(St 5854152

- maXO 1 (5 )+ 70 (S8, + B (5,0

(S 5S40

L(4,,B,)=In

where zE€ ¢={01,10,11}.
The extrinsic LLR A(4, , B, ) of SISO decoder is
interleaved or de-interleaved and then fed to the next

SISO decoder as the priori information L(Z,),v .

The computation of the LLR can be broken into
calculation of three metrics: the forward state metric

a,(s,), the branch metric 7,,,(S,,S,,,) , and the
backward state metric f,,,(s,,,) . Denote S, and
S, as the start and the end states, respectively. Then

a,(s,), B.(s,)and 7,(s,,S,,,) can be defined as
follows:
a,(s,)=max{e, (s, ) +7(s,,5,)}

Sk-1€51 s (2)
Bi(s)=max{B (s,.)+7(s,8,,.)}
Ste1 €5, , 3)

Vi(sis, ) =In[P(y, [x,)* P(4;,B, = z)]
L S1 1,51 Sy .8 1 1 7 7 z
:f(x‘k'yk X2V Xyl Py + L)
, @

where:
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e 5, is the set of states at time k-1 connected to
the state S, . §, is the set of states at time k+1

connected to the state §, .
e ze¢=1{00,01,10,11}.

e (4,,B,) is the input symbol consisting of two
bits. P(A,,B,) is a priori probability of
(4, By) .

e X, and y, are the transmitted and received

codewords associated  with

(4;,B,) -

respectively

e Superscripts p and § respectively denote the
parity bits and systematic bits.

. L(ZI)M is the priori information obtained from the
other SISO decoder.

The code is assumed to be modulated by BPSK and
transmitted through an AWGN channel with noise

variance ¢ . In this case, the Turbo decoding based on
the Max-log-MAP algorithm is independent of SNR,

therefore L, =2/ o’ can usually be set to a constant

value.

4.2. Turbo Decoder Implementation on Cell

In this part, we will describe the implementation
methods of MAX-log-MAP decoding algorithms on a
single SPE. To make good use of this SIMD feature,
we present two parallel decoding methods on the
implementation of the SISO decoder, which are Parallel
Block Decoding (PBD) and Parallel State Decoding
(PSD), respectively.

A. PBD Implementation

Firstly, we will introduce the PBD implementation
method. In PBD method, the frame size is assumed to
be M bits, which can be divided into N sub-blocks with
equal length. Each sub-block of the frame can be
decoded in parallel structure independently [10].

As for the implementation, without loss of
generality, the soft-input data is quantized by 8 bits and
occupies two bytes. So one 128-bits wide vector can
contain eight soft-input data at maximum. The above
data mapping method of PBD algorithm is shown in
Fig. 6, where data[i] denotes the soft-input of the
decoder, i=0,1,...,2*M/N. Thus, data[i] of each sub-
block is read into one vector and dealt with in parallel.
Simultaneously, values of a and B for each sub-block
are calculated according to (2), (3) and (4) in Section
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IT. At last, the LLR is obtained by (1) in parallel and
independently.

Since the calculations of a and B metrics may be
started somewhere in the middle of the frame, they
must be initialized. Fig. 7 shows the initialization value
passing scheme for PBD algorithm. For simplicity, we
only demonstrate two iterations in Fig.7. In practice,
the number of iterations is chosen by the trade-off
between the Bit Error Ratio (BER) performance and
decoding throughput.

< 128 bits

Data[i] of
sub-block 1

Datal[i] of
sub-block 2

Data[i] of
sub-block 8

Fig. 6. Data mapping for the PBD algorithm

Assuming k bits couples are contained in each sub-
block. As shown in Fig.7, during the parallel decoding,
oy of the sub-block n (n=1, 2,..., N-1) is saved as o, of
the sub-block n+1 for the next iteration. For the last
sub-block N, oy is saved as o, of the sub-block 1 for the
next iteration. Similarly, By of the sub-block n (n=2,
3,..., N) is saved as By of the sub-block n-1 for the next
iteration, and for the sub-block 1, Byis saved as Py of
the sub-block N for the next iteration.

| Sub-block N M

—| Sub-block 1
¢ o /P o /B The first iteration

Sub-block 2

:I Sub-block 1 | | Sub-block 2

I | Sub-block N }1—‘ The second
iteration
f

Fig. 7. Metric initialization value passing scheme for
PBD algorithm

B.  PSD Implementation

Except the parallel decoding structure of PBD
algorithm according to the sub-blocks in one frame,
another parallel structure based on the decoding states,
referred to as PSD algorithm, is presented in this
subsection. Assuming the state number of the Turbo
encoder is D, in the PSD algorithm, all states of a and 3
are calculated in parallel. Since the CTC encoder used
in WiIMAX system has three registers [3], there are
eight states in total, i.e., D=8. The state transition
diagram of this CTC is given in Fig.8 [9].

In Fig.8, we can see that, for each specific time k,
both of a and B have eight states. With each a or 8
corresponding to each state represented by 16 bits, one
128-bits-wide vector can contain all the values of a or
corresponding to all the eight states. The data mapping
scheme for a in the PSD algorithm be shown in the
following Fig. 9. The mapping scheme for B is also
similar to that for a.
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Then the values of a and P for eight states are
calculated in parallel structure simultaneously,
according to (2), (3) and (4) in Section II. In order to
calculate the o and B in parallel, the SPE shuttle
instruction should be used frequently, to adjust the
positions of the eight elements in one vector in each
iteration.

Since the local store, i.e., local memory of one
single SPE is limited to 256K Bytes (KB), the extrinsic
LLR can be calculated during the calculation of a to
save the memory usage. Consequently, with the frame
length 2*N, the memory usage for metric a is reduced
from (N+1)*8*2 bytes to 8*2 bytes.

End State

Start State

Fig. 8. State transition diagram of CTC in WiIMAX
system

- 128 bits >

all] af2] al8]

Fig. 9. Data mapping for the PSD algorithm

C. Turbo Decoder Optimization on Cell B.E.

To achieve the best throughput performance, the
application programming codes are also optimized as
Subsection 3.2. Moreover, for Turbo decoder on Cell
B.E, last but not least, we use more memory to help to
speed up the calculations. The local store of the SPE is
only 256KB, which contains the program, stack, local
data structures, and the DMA buffers. During our
implementation in one single SPE, the memory
occupation of the program and global data for the
Turbo decoder is about 135KB, then the remainder
121KB can be used for memory spending (stack
allocation etc.) during the program running. It is
confirmed that, when the frame size is equal or less
than 4800 bits, the maximum SPE local sore
consumption during the program execution will not
exceed 256KB.

As for the use of a full Cell chip for Turbo decoder,
we also consider the methodology as mentioned in
Subsection 3.2.F.

Vol. 5, No. 1, March 2011

5. OFFSET BP-BASED DECODING
ALGORITHM AND IMPLEMENTATION FOR
LDPC CODES

In this section, the LDPC decoder on Cell will be
studied, which is also optimized based on the
programming characteristic of SPE.

5.1. Offset BP-based Decoding Algorithm

In this part, the Offset BP-based [11] decoding
Algorithm is applied to the LDPC decoding. In the
following depiction, H represents the check matrix. n

represents the length of codeword. C =(c,,¢,,...,C,
C=(c,c,,....C,)

represents the codeword after decoding. L(c;)

represents  the  codeword,

represents the soft initial information for variable node
i. L(r;) represents the information transmitted from
check node j to variable node i. L(q,;) represents the
information t transmitted from variable node i to check
node j. L(q,) represents the collected information by
the variable node i. a; and bi,j are expressed as
follows:
a; = Sign(L(Qg/ ))
,Bi'j = abS(L(qu )

The steps of Offset BP-based decoding algorithm

are listed as follows:
1. Set the original information

L(q;’/) = L(Ci) (6)
Set the Iteration variable Iter=0
2. Update Check Node information

L(Tji) = < 1_[ ai:j> max[ min ,Bi/j — offset,0 (7)
i"€Rj\i

'R\

(&)

3. Update Variable Node information
L(g,)=L(c)+ D L(ry) ®)

J'€C\j
4. Iter=Iter+1. If variable Iter is bigger than the max
Iterations, go to Step 6. Otherwise go to Step 2.

5. output C = (¢,,C,....,C, )

5.2. Parallelize the Offset BP-based LDPC
Decoding on Cell

In this section, we will describe considerations and
techniques of the implementation methods of Offset
BP-based decoding algorithm on Cell B.E.

A.  Computation Data Type Choice for LDPC

Since the smaller bit width of data type is, the faster
decoding speed is along with more information loss,
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it’s important to choose the quantization scheme to
maximize the decoding speed and guarantee the BER
performance. We contrast the BER performance with
LDPC codes in WiMAX systems between different
quantization schemes: char (8 bits), short (16bits) and
float (32bits). The answer is illustrated in Fig.10.
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Fig. 10. BER performance comparison for different
quantization schemes

The frame length of the LDPC code is 960 bits, the
coding rate is ', and the iteration number of decoding
is 15.The LDPC decoding is implemented on the CPU
using the Offset BP-based decoding algorithm. The
code is assumed to be modulated by BPSK and
transmitted through an AWGN channel.

According to Fig.10, we can see that the BER
performance between char type and float type is quite
small. So we decide to choose the char type.

B. Parallel Mode Considerations for LDPC

The main operations of LDPC decoding are
Updating Check Node information and Updating
Variable Node information which are equivalent to the
row and column operations of the check matrix H [11].
It’s naturally to choose the parallel mode in which
updates 16 rows or columns at a time. However this
method is proved to be failed in implementation on
Cell. As the check matrix is a sparse matrix, we only
store the non-zero elements and the elements are stored
in the vector mode which means every vector stores 16
elements and every vector operates 16 elements. If we
update 16 rows or columns at a time, for each vector
operation there will be 16 scalar operations to find the
16 elements in different vectors which will be a disaster
for the decoding speed.

So different parallel strategies used in Viterbi and
Turbo decoders, we consider another parallel mode, in
which 16 LDPC blocks are decoded at the same time as
in Fig.11. In this parallel mode, the operations will all
be vector operations and the computation ability of SPE
can be sufficiently used.
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Fig.11. LDPC decoder parallel mode

C. Memory Options and Other Issues for LDPC

As we have chosen the above parallel mode and
computation data type, we can compute the maximum
used memory in SPE. We find that if the code length n
is not bigger than 1248, the memory usage including
the program, stack, local data structures, and the DMA
buffers is less than 256KB, which is enough in one
SPE.

When using each SPE to perform part of the process
necessary for WiMAX system, with only one SPE core
actually running the LDPC decoding. We consider a
parallel mode similarly with what we use in one SPE.
For now, every SPE decodes 16 LDPC blocks at a time.
When we use the full 8 SPEs, we can decode 128
LDPC blocks at a time.

The application programming codes can also be
further optimized as Subsection 3.2.

6. BER AND THROUGH PERFORMANCE

In this section, we will present some results,
including BER and throughput performance, to justify
the efficacy of the proposed parallel decoding
algorithms for different channel coding schemes of
WiMAX systems on Cell B.E.

6.1. Performance Results of Viterbi Decoding

The BER performance of CC is illustrated in Fig.12
for 3-bit and 4-bit soft input, respectively. And the peak
throughput with 3-bit soft input is 32.5 Mbps and
31Mbps for 4-bit soft input on a single SPE.
Additionally, the throughput of the Viterbi decoder can
increase linearly with the increase of the SPE number.

[EEERpI|

BER performace

1 2 3
Eb/NO (dB)

Fig. 12. BER performance for the Viterbi Decoding
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6.2. Performance Results of Turbo Decoding
A.  Throughput and Latency Results

Fig. 13 shows the throughput of the two parallel
Turbo decoding methods for different frame length. For
the tradeoff between BER performance and throughput,
when the frame length is equal or shorter than 192 bits,
the iteration number is set to be 6; otherwise, the
iteration number is set to be 5.

As shown in Fig. 13, we can find that when the
frame length is equal or longer than 192 bits, the PBD
algorithm has obviously higher throughput than the
PSD algorithm. However, as the frame length
decreases, the throughput gap between these two
algorithms is getting smaller. That is because the PBD
algorithm is constrained by the BER performance.
When the frame length gets shorter, to keep the
acceptable BER performance, the number of sub-
blocks has to be smaller, which deduces the efficiency
of the SIMD operation and thus deduces the
throughput.

Therefore, when the frame length is less than 192
bits, the PSD algorithm will be preferred; otherwise,
the PBD is preferred [13].
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Fig. 13. Throughput comparison of the two parallel
methods

Without loss of generality, the decoding latency of
frame length 480 bits is given. The iteration number is
5. For PSD, the decoding latency is 0.52 ms. For PBD,
the decoding latency is 0.36 ms.

B.  BER Proformance of Turbo Decoding

In this part, some BER and Frame Error Ratio
(FER) results of the PBD algorithm will be shown. The
results of the PSD algorithm are omitted due to the
same BER performance as the non-block algorithm.

Firstly, Fig. 14 and Fig. 15 show the BER and FER
performance of different frame and block length for the
PBD algorithm and non-block algorithm respectively.

From Fig. 14 and Fig. 15, we can find that for the
same frame length, as the block length becomes
shorter, the BER and FER performance gets worse. The
PBD algorithm offers the similar BER and FER
performance with the non-block algorithm when the
frame length is equal or longer than 192 bits.
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Fig. 14. BER performance for the PBD algorithm
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Fig. 15. FER performance for the PBD algorithm
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Fig. 16. WiMAX BER performance on Cell B.E.

Furthermore, the PBD Turbo decoder with BPSK
modulation is concatenated into the WiMAX SR
system as shown in Fig.1. Fig. 16 shows the system
BER performance comparisons in AWGN channel
between the CC and CTC. The CTC is decoded by the
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PBD algorithm. The frame length of the CTC code is
480 bits, the coding rate is %2, and the iteration number
of decoding is 5. From Fig.16, we can see that the
coding gain of the CTC compared to the CC is about
4dB at the BER 10~

6.3. Performance Results of LDPC Decoding

The BER performance of LDPC codes on Cell B.E.
is illustrated in Fig.17 for float and char input,
respectively. The frame length of the LDPC code is 960
bits, the coding rate is ', and the iteration number of
decoding is 15. The LDPC decoding is based on the
Offset BP-based algorithm. BPSK modulation and
AWGN channel are assumed.

The peak throughput with float input is 0.53Mbps
and 1.71Mbps for char input on a single SPE in
contrast with the 0.08Mbps’ peak throughput on CPU.
The CPU is Intel(R) Pentium(R) Dual E2180 with two
cores both working at 2.0GHZ. When we use a whole
Cell chip, the throughput for char input will be greater
than 13Mbps. If we use the decoding strategy described
above, the minimum decoding time delay is 0.59us,
while the maximum decoding time delay depends on
the queuing model of arriving service.
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Fig. 17. BER performance of LDPC codes on Cell
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7. CONCLUSIONGS

In this paper, the channel decoding algorithms are
investigated on multi-core Cell B.E. platform for
WiMAX SR systems. Three types of channel coding
schemes, including CC, Turbo and LDPC codes, are all
implemented on Cell B.E. processor according to their
different characters.

For the Viterbi decoding of CC, based on the full-
state-parallel algorithm, the decoding throughput can
reach up to 30Mb/s on single SPE running at 3.2GHz.
For the MAX-log-MAP decoding of Turbo codes, two
parallel decoding algorithms, so-called the PSD and
PBD, are presented. The testing results show that, the
throughput of the Turbo decoder can reach up to
1.36Mbps. For the offset BP-based algorithm of LDPC

30

Vol. 5, No. 1, March 2011

coes, we decode 16 LDPC blocks simultaneity on a
single SPE and the throughput can achieve 1.71Mbps.

Moreover, the channel decoders, which are all
optimized in parallel on Cell B.E. platform, can be
easily integrated to the whole SR WiMAX system and
can provide a highly integrated SR solution. The
related optimization methodology in this module design
can be extended to other modules on Cell platform.

All of these channel decoder modules have be
packaged to an open channel coding library for SR
systems on Cell platform [12], which provides a novel
idea to implement a whole GPP-based SR wireless
baseband system over multi-core platform.
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