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ABSTRACT: 
There are several approaches for Radio Resource Management (RRM) in multicarrier cellular systems. This work 
analyzes and compares two of them: rate-adaptive resource allocation (sub-carriers and power) based on instantaneous 
data rates, and utility-based packet scheduling based on average data rates. A fundamental RRM problem in wireless 
cellular networks was chosen as a background to evaluate the aforementioned approaches: the trade-off between 
system spectral efficiency and fairness among the users when opportunistic allocation is used. Extensive system-level 
simulations were performed and important network metrics such as total cell throughput, mean user throughput, 
system fairness index and user satisfaction were assessed. It was concluded from the simulation results that it is 
possible to achieve an efficient trade-off between resource efficiency and fairness using any of the two RRM 
approaches. However, utility-based packet scheduling algorithms based on average data rates have the advantage of 
presenting higher user satisfaction with less computational complexity. 
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1.  INTRODUCTION 

The wireless shared channel in cellular networks is 
a medium over which many Mobile Terminals (MTs) 
compete for resources. In such a scenario, resource 
efficiency and user fairness are crucial aspects for 
resource allocation. 

From a cellular operator perspective, it is very 
important to use the limited radio resources efficiently 
in order to maximize the revenue. From the users' point 
of view, it is more important to have a fair resource 
allocation so that they can meet their Quality of Service 
(QoS) requirements and maximize their satisfaction. 

1The time-varying nature of the wireless 
environment, coupled with different channel conditions 
for different MTs, poses significant challenges to 
accomplishing these goals. In general, these objectives 
cannot be achieved simultaneously and an efficient 
trade-off must be achieved. In recent years Radio 
Resource Management (RRM) has been envisaged as 
                                                           
1 The authors wish to acknowledge the activity of the Network 
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motivated this work. Emanuel B. Rodrigues has a Ph.D. 
scholarship support by the Improvement Co-ordination of 
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one of the most efficient techniques to achieve a 
desirable trade-off among these two conflicting 
objectives in cellular multi-carrier systems. 

On the other hand, several next generation wireless 
systems are based on Orthogonal Frequency Division 
Multiple Access (OFDMA), which provides a high 
degree of flexibility that can be exploited by RRM 
algorithms. There are different sources of diversity in 
an OFDMA-based system, such as time, frequency and 
multi-user diversities. Many Radio Resource Allocation 
(RRA) algorithms have been proposed to take 
advantage of these kinds of diversity, such as Dynamic 
Sub-carrier Assignment (DSA), Adaptive Power 
Allocation (APA), and adaptation of the Modulation 
and Coding Scheme (MCS) according to the 
instantaneous channel conditions (bit loading). 
Furthermore, Packet Scheduling (PSC) algorithms are 
responsible for deciding when the MTs will access the 
shared channel and with which transport format 
depending on the Channel State Information (CSI). 

A significant number of separate or joint RRA 
solutions including DSA, APA and bit loading were 
based on combinatorial optimization. Most of the 
works in literature follow either the margin adaptive 
approach, which was initially proposed by [1] and 
formulates the dynamic resource allocation with the 
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In order to illustrate that, a scenario is considered 
where user 1 has better channel conditions than user 2. 
Region 1 would be the result of an opportunistic RRA 
policy that gave importance only to the efficiency in 
the resource usage. In the considered scenario, the 
majority of the resources were allocated to user 1, 
while user 2 would starve, causing an unfair situation. 
On the other hand, region 2 characterizes an RRA 
policy that provides absolute fairness but causes a 
significant loss in efficiency since it has to deal with 
the bad channel conditions of user 2. Finally, region 3 
is an example of how an RRA policy can balance these 
two opposing factors. 

The compromise between efficiency and fairness 
was conceptually studied in [9, 10, 11, 12]. Among the 
works that have proposed RRA algorithms to cope with 
this trade-off  in a NRT scenario, three main 
approaches can be highlighted: optimization-based rate 
adaptive resource allocation [4, 5, 13, 14, 15, 16, 17], 
cross-layer PSC [18, 19, 20, 21, 22, 23, 24, 25] and 
utility theory-based resource allocation [26, 27, 28, 29, 
30, 31, 32, 6, 7, 33]. 

Among the rate adaptive-based papers, the notion of 
fairness criteria was determined by maximization of 
minimum user rate [4], proportional rate constraints [5, 
13, 14, 15], or the maximization of the sum of the 
logarithm of user rates [16, 17]. The logarithm function 
was used in [16, 17] because it was proved in [26] that 
this function is intimately associated with the concept 
of proportional fairness. 

Most of the works that proposed PSC algorithms to 
effect a compromise between efficiency and fairness 
among NRT flows, for example [18, 19, 20, 21] are 
based on the Proportional Fairness (PF) PSC algorithm 
proposed in [34] for High Data Rate (HDR) Code-
Division Multiple Access (CDMA) systems. 

However, there are some works like [22, 23] that 
used different approaches. The former introduced a 
PSC algorithm with a fairness controlling parameter 
that accounts for any intermediate policy between the 
instantaneous throughput fairness and the opportunistic 
policies, while the latter evaluated a scheduling 
algorithm whose priority function is a linear 
combination between instantaneous channel capacity 
and the average throughput. As a generalization of the 
PF criterion, we can highlight the weighted  
α-proportional fairness PSC algorithm, which is also 
known as the alpha-rule and was initially proposed by 
[24] and later used in [25]. The idea behind this 
algorithm is to embody a number of fairness concepts, 
such as rate maximization, proportional fairness and 
max-min fairness, by varying the values of parameter α 
and the weight parameter. 

A more general class of RRA algorithms is based 
on utility fairness. Utility fairness is defined with a 
utility function that composes the optimization 

problem, where the objective is to find a feasible 
resource allocation that maximizes the utility function 
specific to the fairness concept used. Some examples of 
utility functions can be found in [26, 27, 28]. There is a 
general family of utility functions that were presented 
and/or evaluated in [29, 30, 31, 32] that includes the 
weighted  α-proportional fairness algorithm as a special 
case. 

In this paper, the derived RRA policy will be called 
utility-based alpha-rule. Some works followed a similar 
approach, but using utility functions that did not suit 
the utility-based alpha-rule exactly, e.g. [6, 7, 33]. To 
the best of our knowledge, the present work is the first 
one to make an explicit comparison between rate 
adaptive RRA algorithms based on instantaneous data 
rates and utility-based RRA algorithms based on 
average data rates regarding the trade-off 
 between resource efficiency and user fairness in 
opportunistic wireless networks. 

 
3.  SYSTEM MODEL 

The considered scenario is a single cell with 
hexagonal shape. We consider a network with one 
transmitter (base-station) and M receivers (mobile 
terminals). The transmitted Orthogonal Frequency 
Division Multiplexing (OFDM) signal is time-slotted, 
where in every time slot at most one user can be served 
over each sub-carrier. The considered environment is 
Typical Urban (TU) [35] where each user experiences 
independent transmit conditions. The channel is a 
frequency-selective Rayleigh fading channel, with the 
coherence time such that each sub-carrier experiences 
only flat fading. It is assumed that the channel fading 
rate is slow enough so that the frequency response does 
not change during a TTI interval. Each user also 
experiences shadowing with log-normal distribution. A 
perfect knowledge of the CSI at the transmitter side is 
assumed, with no signaling overhead transmitted. The 
signal strength at the receiver side depends on the 
pathloss calculated by: ܮ = 128.1 + 37.6 logଵ଴ ݀ (1) 
where d is the distance to the base station in km. 

The bit allocation on each sub-carrier is determined 
using the Shannon's capacity model shown in (2) below 
[6, 7]: 

௝ܿ,௞ = logଶ
ۈۉ
1ۇۈ + ௝,௞݌ ⋅ หℎ௝,௞หଶ

଴ܰ ⋅ ߁ܭܤ ۋی
 ۊۋ

      
      = logଶ൫1 + ௝,௞݌ ⋅  ௝,௞൯ߛ

(2) 

 
where ݌௝,௞ is the power of the ݇th sub-carrier assigned 
to the ݆th MT; ℎ௝,௞ is the channel gain of the ݇th sub-



Majlesi Journal of Electrical Engineering                                                                            Vol. 5, No. 1, March 2011 
 

41 
 

carrier assigned to the ݆th MT; N0 is the power spectral 
density of additive white Gaussian noise; B is the 
overall available bandwidth; and ܭ is the total number 
of sub-carriers. The constant Γ is called Signal-to-Noise 
Ratio (SNR) gap, which indicates the difference 
between the theoretical limit and the SNR needed to 
achieve a certain data transmission rate for a practical 
system [6]. This constant is dependent on the target Bit 
Error Rate (BER) and, considering an M-level 
Quadrature Amplitude Modulation (QAM), its value is 
given by Γ = −[݈݊ (5.  The channel quality .1.5/[(ܴܧܤ
is characterized by the effective Channel-to-Noise 

Ratio (CNR) given by ߛ௝,௞ = ห௛ೕ,ೖหమேబ.ಳ಼.୻ 

Once the achievable transmission rate per Hertz of 
each sub-carrier is known following expression (2), the 
data transmission rate of each MT can be calculated. In 
the sub-carrier allocation process, we assume that each 
sub-carrier can only be assigned to one single MT. 
Assuming that a sub-carrier set Kj is assigned to the ݆th 
MT, its transmission rate is calculated as ௝ܴ = ෍ ௝,௞௞∈ࣥೕݎ = ෍ ௝ܿ,௞௞∈ࣥೕ ⋅ Δ݂ (3) 

where ௝ܿ,௞ is the channel capacity per Hertz of the ݇th 
sub-carrier assigned to the ݆th MT and Δ݂ is the sub-
carrier bandwidth. 

The throughput (average data rate) is calculated 
using a low-pass Simple Exponential Smoothing (SES) 
filtering as indicated in (4) below [6, 7]. ௝ܶ[݊] = (1 − ୲݂) ⋅ ௝ܶ[݊ − 1] + ୲݂ ⋅ ௝ܴ[݊]             (4) 
where ௝ܴ  [݊] is the instantaneous data rate of the ݆th 
MT calculated by (3) and ௧݂ is a filtering constant. 

In order to perform fairness evaluations, we define 
two kinds of User Fairness Index (UFI): rate-based and 
throughput based: ߶௝୰ୟ୲ୣ = ௝ܴ[݊]               (5) ߶௝୲୦୰୳ = ௝ܶ[݊ − 1]               (6) 
which are given by (3) and (4), respectively. The rate-
based UFI is used when performing rate adaptive 
optimization based on instantaneous data rates, while 
the throughput-based UFI is used when performing 
utility-based optimization based on average data rates. 

In order to measure the fairness in the rate or 
throughput distribution among all MTs in the cell, a 
Cell Fairness Index (CFI) is calculated by (7) [36]. Φ = ൫∑ ߶௝ெ௝ୀଵ ൯ଶܯ ⋅ ∑ ൫߶௝൯ଶெ௝ୀଵ  (7) 

where M is the number of MTs in the cell and ߮௝ is the 
UFI of the ݆th MT given by (5) or (6), depending if rate 
adaptive or utility-based RRA is being considered. 
Notice that 1/M ≤ Φ ≤ 1. A perfect fair allocation is 
achieved when Φ = 1, which means that the rates or 
throughputs allocated to all MTs are equal (all UFIs are 

equal). The worst allocation occurs when Φ = 1/M, 
which means that all resources were allocated to only 
one MT. 

It was assumed that the MTs remained stationary, 
hence there is no need to implement any handover 
scheme. All users are assumed to have an in infinite 
amount of data to transmit during the whole simulation 
run (full-buffer model). 

 
4.  RESOURCE ALLOCATION ALGORITHMS 
4.1.  Rate adaptive sub-carrier and power allocation 
based on instantaneous data rates 

RRA often leads to algorithms whose 
implementation is very complex. In fact the allocation 
problem is in general not convex since the allocation 
variable is integer and can assume only two values: 1 
when the channel is allocated to a specific user and 0 
otherwise. In most cases the optimal solution can be 
found only evaluating all possible allocations and the 
complexity grows exponentially in the number of users 
and sub-carriers. Therefore, most of the literature has 
been focused on the development of sub-optimal 
heuristics that have a lower computational complexity 
but that still yield good results. Many algorithms make 
the problem convex by relaxing the integer constraint 
on the allocation variable. 

Unfortunately, non-integer solutions are hardly 
applicable in many scenarios where a sub-carrier 
should be actually allocated or not to a user. In the 
following we will focus on the rate adaptive RRA 
problem outlining its most common formulations and 
solutions. 

 
4.1.1. Sum Rate Maximization 

The mathematical formulation of the Sum Rate 
Maximization (SRM) RRA problem is: max௣ೕ,ೖ,ఘೕ,ೖ ෍ ෍ ௝,௞௄௞ୀଵெ௝ୀଵߩ ⋅ logଶ ൫1 + ௝,௞݌ ⋅ .ݏ ௝,௞൯ (8)ߛ ݐ ෍ ෍ ௝,௞௄௞ୀଵெ௝ୀଵ݌ ≤ ୲ܲ୭୲ୟ୪ (9) ݌௝,௞ ≥ 0, ∀݆, ௝,௞ߩ (10) ݇ = {0,1}, ∀݆, ݇ (11) ෍ ௝,௞ெ௝ୀଵߩ = 1, ∀݇ (12) 

where M is the total number of MTs; K is the total 
number of sub-carriers; ݌௝,௞ is the power and ߛ௝,௞ is the 
CNR of the ݇th sub-carrier assigned to the ݆th MT, 
respectively; Γ is the SNR gap; Ptotal is the Base Station 
(BS) total transmit power; and ߩ௝,௞ is the connection 
indicator, whose value 0 or 1 indicates whether sub-
carrier ݇ is assigned to MT ݆ or not. On one hand, 
constraints (9) and (10) state that the sub-carriers' 
powers must be non-negative and the sum of powers 
among all sub-carriers must be lower or equal to the BS 
total transmit power. One the other hand, constraints 
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(11) and (12) say that each sub-carrier must be assigned 
to only one user at any instant of time. 

In its original formulation the problem (8) has been 
solved in [3] by assigning each sub-carrier to the user 
that maximizes its gain on it and then performing 
waterfilling power allocation over all sub-carriers. On 
one hand, such a solution maximizes the cell 
throughput but on the other hand is extremely unfair 
tending to privilege the users that are closest to the BS 
and neglecting all the others. 

 
4.1.2. Max-Min Rate 

The RRA allocation (8) tends to starve the users 
with the worse channel gains, i.e. the users that are 
more distant from the BS. Thus, in [4] the RRA 
problem has been formulated with the goal of 
maximizing the minimum capacity offered to each user, 
thus introducing fairness among the users. In general, 
fairness among the MTs comes at the cost of a 
decreased overall throughput of the cell. The Max-Min 
Rate (MMR) RRA problem is formulated as follows: max௣ೕ,ೖ,ఘೕ,ೖ min௝ ෍ ௝,௞௄௞ୀଵߩ  ⋅ logଶ(1 + ௝,௞݌ ⋅ (௝,௞ߛ .ݏ (13)  ෍ ݐ ෍ ௝,௞௄௞ୀଵெ௝ୀଵ݌ ≤ ୲ܲ୭୲ୟ୪ (14) ݌௝,௞ ≥ 0, ∀݆, ௝,௞ߩ (15) ݇ = {0,1}, ∀݆, ݇ (16) ෍ ௝,௞ெ௝ୀଵߩ = 1, ∀݇ (17) 

where K is the total number of sub-carriers; ݌௝,௞ is the 
power and ߛ௝,௞ is the CNR of the ݇th sub-carrier 
assigned to the ݆th MT, respectively; Γ is the SNR gap; 
Ptotal is the BS total transmit power; ߩ௝,௞ is the 
connection indicator, whose value 0 or 1 indicates 
whether sub-carrier ݇ is assigned to MT ݆ or not; and ܯ 
is the set of MTs. Constraints (14)-(17) are the same of 
the SRM problem given by (9)-(12). 

Unfortunately, the problem in the formulation (13) 
is not convex and the authors in [4] study a heuristic 
that is based on: a) transmitting the same amount of 
power (Pmax/K) on each channel; b) implementing an 
assignment strategy that iteratively assigns each sub-
carrier to the user with the smallest rate. 

 
4.1.3. Sum Rate Maximization with Proportional 
Rate Constraints 

The solution of the MMR RRA problem (13) 
guarantees that all users achieve a similar data rate. 
However, different users may require different data 
rates. In this case the max-min solution is not able to 
comply with the different user requirements. The RRA 
algorithm presented in [5], which is called Sum Rate 
Maximization with Proportional Rate Constraints 
(SRM-P) in the present work, is designed to allocate 
radio resources proportionally to different rate 

constraints that reflect different levels of service. The 
SRM-P RRA problem is formulated as follows: max௣ೕ,ೖ,ఘೕ,ೖ ෍ ෍ ௝,௞௄௞ୀଵெ௝ୀଵߩ ⋅ logଶ൫1 + ௝,௞݌ ⋅  ௝,௞൯ (18)ߛ

            ෍ ෍ ௝,௞௄௞ୀଵெ௝ୀଵ݌ ≤ ୲ܲ୭୲ୟ୪, (19) ݌௝,௞ ≥ 0, ∀݆, ௝,௞ߩ (20) ݇ = {0,1}, ∀݆, ݇ (21) ෍ ௝,௞ெ௝ୀଵߩ = 1, ∀݇ (22) ܴ௜: ௝ܴ = :௜ߣ ,௝ߣ ∀݅, ݆ ∈ ℳ, ݅ ≠ ݆. (23) 
where K is the total number of sub-carriers; ݌௝,௞ is the 
power and ߛ௝,௞ is the CNR of the ݇th sub-carrier 
assigned to the ݆th MT, respectively; Γ is the SNR gap; 
Ptotal is the BS total transmit power; ߩ௝,௞ is the 
connection indicator, whose value 0 or 1 indicates 
whether sub-carrier ݇ is assigned to MT ݆ or not; ߣ௝ is 
the proportional rate requirement of the ݆th MT; and ܯ 
is the set of MTs. Constraints (19)-(22) are the same of 
the SRM and MMR problems. Constraint (23) states 
that the user rates must follow the proportional rate 
requirements. 

The optimization in (18) is a mixed binary integer 
programming problem and as such is in general very 
hard to solve. Thus, also in this case the problem is 
solved using a suboptimal heuristic and the 
optimization (18) is performed in two steps. In the first 
step, following the approach taken in [4], the sub-
carriers are allocated trying to comply as much as 
possible with the proportional rate constraints and 
assuming a uniform power distribution. In the second 
step, having fixed the sub-carrier allocation, the power 
is distributed to the users so that the proportional rate 
constraints are met exactly. 

Notice that the SRM-P problem is a combination of 
the SRM and MMR problems, because it combines the 
rate maximization of the objective function (18) with 
the proportional rate constraints given by (23). In the 
particular case where the proportional rate requirements 
are all equal to one, we have that the sub-carrier 
assignment algorithm is the same of the MMR problem 
described in [4]. In this way, the SRM-P RRA 
algorithm can achieve a kind of trade-off between 
resource efficiency (rate maximization) and user 
fairness (proportional rate requirements). 

 
4.2.  Packet Scheduling Based on Utility Theory and 
Average Data Rates 

In this section we formulate PSC algorithms that 
use Utility Theory in order to find an efficient trade-off 
between resource efficiency and fairness among the 
users. The considered optimization problem is the 
maximization of the total utility with respect to the 
throughput (average data rate), which is calculated 
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using a low-pass SES filtering as indicated in (4). max௣ೕ,ೖ,ࣥೕ ෍ ௝ܷெ௝ୀଵ ൫ ௝ܶ[݊]൯ (24) ݏ. ෍ ݐ ෍ ௝,௞௄௞ୀଵெ௝ୀଵ݌ ≤ ୲ܲ୭୲ୟ୪ (25) ݌௝,௞ ≥ 0, ∀݆, ݇ (26) ራ ௝ࣥ௝∈ℳ ⊆ ࣥ, (27) 

௜ࣥ ሩ ௝ࣥ = ∅, ∀݅, ݆ ∈ ℳ, ݅ ≠ ݆. (28) 

where ܭ௝ is the subset of sub-carriers assigned to the ݆th MT, ܭ is the set of all sub-carriers in the system, ܯ 
is the set of all MTs in the system, ݌௝,௞ is the power of 
the ݇th sub-carrier assigned to the ݆th MT, Ptotal is total 
transmit power of the cell, and ௝ܷ ( ௝ܶ  [݊]) is a concave 
and increasing utility function based on the current 
throughput ௝ܶ  [݊] of the ݆th MT. On one hand, 
constraints (25) and (26) state that the sub-carriers' 
powers must be non-negative and the sum of powers 
among all sub-carriers must be lower or equal to the BS 
total transmit power. One the other hand, constraints 
(27) and (28) say that there is a limited number of sub-
carriers and that each one of them must be assigned to 
only one user at any instant of time. 

The optimum solution for the joint optimization 
problem (24)-(28) is still an open problem. The 
majority of the sub-optimum solutions proposed in the 
literature are based on the problem-splitting technique, 
which splits problem (24)-(28) in two stages: DSA and 
APA. In the present work, we also use this technique, 
as explained in the following. 

Evaluating the objective function in (24) and the 
throughput expression in (4), the derivative of ௝ܷ( ௝ܶ) 
with respect to the transmission rate ௝ܴ is given by: ߲ ௝ܷ߲ ௝ܴ = ߲ ௝ܷ߲ ௝ܶ ⋅ ߲ ௝߲ܶ ௝ܴ = ୲݂ ⋅ ߲ ௝ܷ߲ ௝ܶ |்ೕୀ(ଵି௙౪)்ೕ[௡ିଵ]ା௙౪ோೕ[௡] 
where ௧݂ is the filtering constant in the throughput 
calculation. In the case that ௧݂ is sufficiently small, the 
expression above can be further simplified, as indicated 
below [7]. ߲ ௝ܷ൫ ௝ܶ[݊]൯߲ ௝ܴ[݊] ≈ ୲݂ ⋅ ߲ ௝ܷ߲ ௝ܶ |்ೕୀ்ೕ[௡ିଵ] 
where the previous resource allocation totally 
determines the current values of the marginal utilities. 
Using the one-order Taylor formula, the following 
expression can be derived [7]: ෍ ௝ܷ௝∈ℳ ൫ ௝ܶ[݊]൯ − ෍ ௝ܷ௝∈ℳ ൫ ௝ܶ[݊ − 1]൯ ≈ ෍ ߲ ௝ܷ߲ ௝ܶ௝∈ℳ |்ೕୀ்ೕ[௡ିଵ] ⋅ ൫ ୲݂ ⋅ ௝ܴ[݊] − ୲݂ ⋅ ௝ܶ[݊ − 1]൯ 

The maximization of the expression above leads to 
the maximization of (24). Since ௧݂ is a constant and ௝ܶ[݊ − 1] is fixed at the current TTI n, the objective 
function of our simplified optimization problem 

becomes linear, as can be seen in the following. max௣ೕ,ೖ,ࣥೕ ෍ ௝ܷᇱ௝∈ℳ ൫ ௝ܶ[݊ − 1]൯ ⋅ ௝ܴ[݊] (29) 

where ௝ܷ,  ( ௝ܶ[݊ − 1]) = డ௎ೕడ்ೕ ฬ ௝ܶ = ௝ܶ[݊ − 1] is the 

marginal utility of the ݆th MT with respect to his 
throughput in the previous TTI. The optimization 
problem (29) is a weighted sum rate maximization 
problem [37], whose weights are adaptively controlled 
by the marginal utilities. The mathematical 
development presented above shows that the 
instantaneous optimization maximizing (29) leads to a 
long-term optimization that maximizes (24). 

The linear objective function greatly simplifies the 
corresponding algorithms. The DSA problem, which is 
the optimization problem (24)-(28) with equal power 
allocation, has a closed form solution [7, 38]. The MT ݆∗ is chosen to transmit on the kth sub-carrier in the ݊th 
TTI if it satisfies the condition given by (30): ݆∗ = arg max௝ ൛ ௝ܷ ᇲ൫ ௝ܶ[݊ − 1]൯ ⋅ ௝ܿ,௞[݊]ൟ , ∀݆ (30) 

where ௝ܷ,(. ) is the marginal utility of the ݆th MT, ௝ܶ[݊ − 1] is the throughput of the ݆th MT up to TTI ݊ − 1, and ௝ܿ,௞ [݊] denotes the instantaneous achievable 
transmission efficiency of the ݆th MT on the ݇th sub-
carrier. 

In this paper we will consider a family of utility 
functions of the form presented in (31) below [32]. 

௝ܷ൫ ௝ܶ[݊]൯ = ௝ܶ[݊]ଵିఈ1 − ߙ  (31) 

where α is a non-negative parameter that determines 
the degree of fairness. The fairness of the utility 
function becomes stricter as α increases. In the present 
work we call the RRA policy derived from the use of 
this particular utility function as utility-based alpha-
rule, which is a generalization of the original alpha-rule 
proposed in [24]. 

According to (30), this is equivalent to consider a 
priority function of the PSC algorithm given by: 

௝ܲ,௞௉ௌ஼ = ௝ܿ,௞[݊]௝ܶ[݊ − 1]ఈ , ∀݆, ݇; ߙ  ∈ [0, ∞) (32) 

For each of the ܭ sub-carriers in the system, a 
multi-carrier PSC algorithm calculates the priority 
functions for all ܬ MTs according to (32) and assign it 
to the MT that has the highest priority value. 

We will show in sections 4.2.1, 4.2.2 and 4.2.3 that, 
depending on the value of the parameter α, the general 
utility framework presented above can be designed to 
work as any of three well-known classical PSC 
algorithms: Max-Rate (MR), Max-Min Fairness 
(MMF) and Proportional Fairness (PF). Furthermore, in 
section 4.2.4 we present the Adaptive Throughput-
Based Fairness (ATF) PSC algorithm, which can 
achieve an adaptive trade-off between resource 
efficiency and fairness according to the cellular 



Majlesi Journal of Electrical Engineering                                                                            Vol. 5, No. 1, March 2011 
 

44 
 

operator's objectives. 
 

4.2.1. Max-Rate 
The MR PSC algorithm is able to maximize the 

system spectral efficiency because it considers a linear 
utility function ௝ܷ  ( ௝ܶ [݊])  =  ௝ܶ [݊], which yields a 
constant marginal utility ௝ܷ,  ( ௝ܶ[݊]) = 1 [6, 7]. One can 
notice that this can be achieved setting  
 α=0 in (31). According to (32), this is equivalent to 
consider a priority function related to the MR algorithm 
given by (33) below. ௝ܲ,௞MR = ௝ܿ,௞[݊], ∀݆, ݇ (33) 

As the final result, each sub-carrier will be assigned 
to the MT that has the highest channel gain on it. The 
MR criterion maximizes the system capacity at the cost 
of unfairness among the MTs, because those with poor 
radio link quality probably will not have chance to 
transmit. 

 
4.2.2. Max-Min Fairness 

The utility function of the MMF algorithm is the 
limit of the function in (31), when ߙ → ∞ [30]. 

According to (30) and (32), the priority function is 
dependent on the marginal utility ௝ܷ,  ( ௝ܶ[݊]) and the 
achievable instantaneous transmission efficiency ௝ܿ,௞ [݊]. However, in the case of the MMF criteria and 
when considering MTs with lower data rates, the 
influence of the marginal utility when ߙ → ∞ is so high 
that the influence of the channel quality becomes 
negligible. Taking this fact into account, we can 
assume a more simplified priority function for the 
MMF algorithm given in (34), which is also known in 
the literature as the “Fair Throughput” criterion [39]. 

௝ܲ,௞MMF = 1௝ܶ[݊ − 1] , ∀݆, ݇ (34) 

which gives priority to the MT that has experienced the 
worst throughput so far. In this way, in terms of 
throughput distribution, it is the fairest criterion 
possible, since all MTs will have approximately the 
same throughput in the long-term. However, since this 
criterion maximizes the throughput of the worst MTs, it 
will provide low aggregate system throughput. 

 
4.2.3. Proportional Fairness 

A trade-off between resource efficiency and 
fairness can be achieved by means of the PF PSC 
algorithm [26]. In utility theory, the logarithmic utility 
function is associated with the proportional fairness [6, 
7]. In the general family of utility functions presented 
in (31), the logarithmic function can be achieved when  
ߙ  → 1 (see proof on [30]). Therefore, according to 
(32), the priority function of the PF algorithm is given 
by (35). 

௝ܲ,௞PF = ௝ܿ,௞[݊]௝ܶ[݊ − 1] , ∀݆, ݇ (35) 

4.2.4. Adaptive Throughput-Based Fairness 
The ATF PSC algorithm, which was proposed in 

[40], joins in a unified framework the three 
aforementioned classical PSC algorithms (MR, MMF 
and PF). In the light of utility theory, it was shown that 
a general PSC algorithm based on (31) is able to 
provide several degrees of fairness. The ATF algorithm 
adaptively explores this flexibility in order to achieve 
an efficient trade-off between resource efficiency and 
fairness planned by the network operator. However, it 
is difficult to design an adaptive control of the α 
 parameter because it is defined over a large range of 
values. Instead of that, the ATF algorithm transforms 
the priority function of (32) into another priority 
function that is based on a parameter β, which is 
defined over a controlled range and provides the 
possibility of a stable and simple adaptive control. The 
priority function of the ATF algorithm is presented in 
(36) below. 

௝ܲ,௞ATF = ௝ܿ,௞[݊]ଵିఉ
௝ܶ[݊ − 1]ఉ , ∀݆, ݇; ߚ  ∈ [0,1] (36) 

Notice that in a conceptual point of view, the 
priority functions on (32) and (36) perform in the same 
way. The ATF algorithm is able to work as the classical 
PSC algorithms by means of the adaptation of the β 
parameter. The values of  ߚ = {0,0.5,1} corresponds to 
the MR, PF and MMF, respectively. 

The ATF algorithm uses the User Fairness Index 
(UFI) Φ௝௧௛௥௨ and the Cell Fairness Index (CFI) Φ, 
which are given by (6) and (7), respectively. 

The objective of the ATF algorithm is to assure a 
strict fairness distribution among the MTs, i.e. the CFI Φ must be kept around a planned value Φ௧௔௥௚௘௧. 
Therefore, the ATF algorithm adapts the parameter β in 
the scheduling policy presented in (36) in order to 
achieve the desired operation point. In order to do that, 
the new value of the parameter β is calculated using a 
feedback control loop of the form: ߚ[݊] = ݊]ߚ − 1] − ߟ ⋅ ൫Φ୤୧୪୲[݊] − Φ୲ୟ୰୥ୣ୲൯ (37) 
where Φ௙௜௟௧[݊] is a filtered version of the CFI using a 
SES filtering, Φ௧௔௥௚௘௧ target is the desired value for the 
index, and the parameter ߟ is a step size that controls 
the adaptation speed of the parameter β. Notice that a 
SES filter, which is suitable for time series with slowly 
varying trends, was used to suppresses short-run 
fluctuations and smooth the time series Φ[݊]. 

 
5.  SIMULATION RESULTS 

In this section the simulation parameters as well as 
the simulation results are presented. The main 
simulation parameters are presented in Table 1. 

The metrics used for evaluation and comparison of 
the investigated resource allocation algorithms were: 

 Total cell throughput (resource allocation 
efficiency factor); 
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