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ABSTRACT:

There are several approaches for Radio Resource Management (RRM) in multicarrier cellular systems. This work
analyzes and compares two of them: rate-adaptive resource allocation (sub-carriers and power) based on instantaneous
data rates, and utility-based packet scheduling based on average data rates. A fundamental RRM problem in wireless
cellular networks was chosen as a background to evaluate the aforementioned approaches: the trade-off between
system spectral efficiency and fairness among the users when opportunistic allocation is used. Extensive system-level
simulations were performed and important network metrics such as total cell throughput, mean user throughput,
system fairness index and user satisfaction were assessed. It was concluded from the simulation results that it is
possible to achieve an efficient trade-off between resource efficiency and fairness using any of the two RRM
approaches. However, utility-based packet scheduling algorithms based on average data rates have the advantage of
presenting higher user satisfaction with less computational complexity.
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1. INTRODUCTION

The wireless shared channel in cellular networks is
a medium over which many Mobile Terminals (MTs)
compete for resources. In such a scenario, resource
efficiency and user fairness are crucial aspects for
resource allocation.

From a cellular operator perspective, it is very
important to use the limited radio resources efficiently
in order to maximize the revenue. From the users' point
of view, it is more important to have a fair resource
allocation so that they can meet their Quality of Service
(QoS) requirements and maximize their satisfaction.

The time-varying nature of the wireless
environment, coupled with different channel conditions
for different MTs, poses significant challenges to
accomplishing these goals. In general, these objectives
cannot be achieved simultaneously and an efficient
trade-off must be achieved. In recent years Radio
Resource Management (RRM) has been envisaged as
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one of the most efficient techniques to achieve a
desirable trade-off among these two conflicting
objectives in cellular multi-carrier systems.

On the other hand, several next generation wireless
systems are based on Orthogonal Frequency Division
Multiple Access (OFDMA), which provides a high
degree of flexibility that can be exploited by RRM
algorithms. There are different sources of diversity in
an OFDMA-based system, such as time, frequency and
multi-user diversities. Many Radio Resource Allocation
(RRA) algorithms have been proposed to take
advantage of these kinds of diversity, such as Dynamic
Sub-carrier Assignment (DSA), Adaptive Power
Allocation (APA), and adaptation of the Modulation
and Coding Scheme (MCS) according to the
instantaneous channel conditions (bit loading).
Furthermore, Packet Scheduling (PSC) algorithms are
responsible for deciding when the MTs will access the
shared channel and with which transport format
depending on the Channel State Information (CSI).

A significant number of separate or joint RRA
solutions including DSA, APA and bit loading were
based on combinatorial optimization. Most of the
works in literature follow either the margin adaptive
approach, which was initially proposed by [1] and
formulates the dynamic resource allocation with the
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goal of minimizing the transmitted power with a rate
constraint for each user [2], or the rate adaptive
approach aiming at maximizing the rate with a power
constraint [3, 4, 5].

On the other hand, many works have been using
Utility Theory to propose solutions for all the
aforementioned RRA algorithms, including also multi-
carrier PSC. The issues of efficiency, fairness and
satisfaction of resource allocation have been well
studied in economics, where utility functions are used
to quantify the level of customers' satisfaction when the
system allocates certain resources to them. Utility
theory performs the optimization of a utility-pricing
system, which is established based on the mapping of
some performance criteria (e.g. rate, delay) or resource
usage (e.g. sub-carriers, power) into the corresponding
pricing values [6, 7].

In this work, we will focus on the provision of Non-
Real Time (NRT) services, such as World Wide Web
(WWW) browsing, File Transfer Protocol (FTP) and e-
mail. For these kind of services, the data rate is the
most important QoS metric. The optimization problem
can be formulated based on instantaneous or average
data rates. The former case is stricter because QoS and
fairness has to be guaranteed in each Transmission
Time Interval (TTI), while the time window considered
in the optimization problem based on average data rates
adds a time diversity that relax the requirements on
QoS and fairness.

The present work will be divided in two parts. In
the first part, we will study rate adaptive sub-carrier
and power allocation using optimization based on
instantaneous data rates. In the second part, we will
study multi-carrier packet scheduling using utility
functions based on average data rates. The objective of
the paper is to study the trade-off between resource
efficiency and fairness among the users when the RRM
algorithms mentioned above are used.

The paper is organized as follows. Section 2
presents the state-of-the-art revision while section 3
describes the system model. Sections 4.1 and 4.2
present the mathematical formulation of the rate
adaptive resource allocation based on instantaneous
data rate and the packet scheduling based on utility
theory and average data rates, respectively. The
simulation results are depicted in Section 5, while the
conclusions are drawn in Section 6.

2. RELATED WORK

The objective of this work is to evaluate the trade-
off between system resource efficiency and user
fairness when using rate adaptive resource allocation or
utility-based PSC algorithms. In order to do that, first
of all the concept of fairness must be properly clarified.

There are two main fairness definitions: resource or
QoS-based [8]. In the former, fairness is related to the
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opportunity to use network resources, e.g. amount of
time during which a MT is permitted to transmit. In the
latter, fairness is associated with the utility derived
from the network, e.g. flow throughput. In the present
work, the assumed concept of fairness is based on QoS.
QoS-based fairness is related to the notion of how
similar is the QoS experienced by the flows. If all flows
in a given instant perceive more or less the same QoS
level, we can say that the system provides a high
fairness. On the contrary, if few flows experience a
very good QoS while the others are unsatisfied, the
resource allocation can be considered unfair.

Fig. 1 depicts a conceptual view of the trade-off
between resource efficiency and QoS-based user
fairness in a simplified scenario of two users in a
wireless system. The axes present the QoS experienced
by the two users after the resource allocation. One can
notice that there are two main lines on the figure:
fairness and efficiency. The fairness line indicates that
the QoS of the users are the same in any point along
this line, i.e. the fairness is maximum. Since the radio
resources in the wireless system are limited, the
efficiency line delimits a capacity region. The crossing
between these lines is the optimal network operation
point, which characterizes a resource allocation with
maximum efficiency and fairness. In the figure, one can
see regions of low, intermediate and high fairness and
efficiency. Wired networks can effectively work near
the optimal point due to the implementation of
congestion control techniques, such as Transport
Control Protocol (TCP) [9]. However, the frequency
and time-varying wireless channel poses significant
challenges to the solution of this problem, and the
optimal RRA technique that always provides maximum
efficiency and fairness in wireless networks is still an
open problem. In fact, most of the times the optimal
point may be unfeasible due to the channel quality of
the users.
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Fig. 1. Trade-off between resource efficiency and QoS-
based fairness in wireless networks.
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In order to illustrate that, a scenario is considered
where user 1 has better channel conditions than user 2.
Region 1 would be the result of an opportunistic RRA
policy that gave importance only to the efficiency in
the resource usage. In the considered scenario, the
majority of the resources were allocated to user 1,
while user 2 would starve, causing an unfair situation.
On the other hand, region 2 characterizes an RRA
policy that provides absolute fairness but causes a
significant loss in efficiency since it has to deal with
the bad channel conditions of user 2. Finally, region 3
is an example of how an RRA policy can balance these
two opposing factors.

The compromise between efficiency and fairness
was conceptually studied in [9, 10, 11, 12]. Among the
works that have proposed RRA algorithms to cope with
this trade-off in a NRT scenario, three main
approaches can be highlighted: optimization-based rate
adaptive resource allocation [4, 5, 13, 14, 15, 16, 17],
cross-layer PSC [18, 19, 20, 21, 22, 23, 24, 25] and
utility theory-based resource allocation [26, 27, 28, 29,
30,31,32,6,7, 33].

Among the rate adaptive-based papers, the notion of
fairness criteria was determined by maximization of
minimum user rate [4], proportional rate constraints [5,
13, 14, 15], or the maximization of the sum of the
logarithm of user rates [16, 17]. The logarithm function
was used in [16, 17] because it was proved in [26] that
this function is intimately associated with the concept
of proportional fairness.

Most of the works that proposed PSC algorithms to
effect a compromise between efficiency and fairness
among NRT flows, for example [18, 19, 20, 21] are
based on the Proportional Fairness (PF) PSC algorithm
proposed in [34] for High Data Rate (HDR) Code-
Division Multiple Access (CDMA) systems.

However, there are some works like [22, 23] that
used different approaches. The former introduced a
PSC algorithm with a fairness controlling parameter
that accounts for any intermediate policy between the
instantaneous throughput fairness and the opportunistic
policies, while the latter evaluated a scheduling
algorithm whose priority function is a linear
combination between instantaneous channel capacity
and the average throughput. As a generalization of the
PF criterion, we can highlight the weighted
a-proportional fairness PSC algorithm, which is also
known as the alpha-rule and was initially proposed by
[24] and later used in [25]. The idea behind this
algorithm is to embody a number of fairness concepts,
such as rate maximization, proportional fairness and
max-min fairness, by varying the values of parameter o
and the weight parameter.

A more general class of RRA algorithms is based
on utility fairness. Utility fairness is defined with a
utility function that composes the optimization
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problem, where the objective is to find a feasible
resource allocation that maximizes the utility function
specific to the fairness concept used. Some examples of
utility functions can be found in [26, 27, 28]. There is a
general family of utility functions that were presented
and/or evaluated in [29, 30, 31, 32] that includes the
weighted a-proportional fairness algorithm as a special
case.

In this paper, the derived RRA policy will be called
utility-based alpha-rule. Some works followed a similar
approach, but using utility functions that did not suit
the utility-based alpha-rule exactly, e.g. [6, 7, 33]. To
the best of our knowledge, the present work is the first
one to make an explicit comparison between rate
adaptive RRA algorithms based on instantaneous data
rates and utility-based RRA algorithms based on
average data rates regarding the trade-off
between resource efficiency and user fairness in
opportunistic wireless networks.

3. SYSTEM MODEL
The considered scenario is a single cell with
hexagonal shape. We consider a network with one
transmitter (base-station) and M receivers (mobile
terminals). The transmitted Orthogonal Frequency
Division Multiplexing (OFDM) signal is time-slotted,
where in every time slot at most one user can be served
over each sub-carrier. The considered environment is
Typical Urban (TU) [35] where each user experiences
independent transmit conditions. The channel is a
frequency-selective Rayleigh fading channel, with the
coherence time such that each sub-carrier experiences
only flat fading. It is assumed that the channel fading
rate is slow enough so that the frequency response does
not change during a TTI interval. Each user also
experiences shadowing with log-normal distribution. A
perfect knowledge of the CSI at the transmitter side is
assumed, with no signaling overhead transmitted. The
signal strength at the receiver side depends on the
pathloss calculated by:
L =128.1+37.6log,,d €))
where d is the distance to the base station in km.

The bit allocation on each sub-carrier is determined
using the Shannon's capacity model shown in (2) below
[6, 7]:
|l
Ny -

r

=]

Cix = log,| 1+ Djk-
2

= 10g2(1 +Djk ‘Vj,k)

where p; ;. is the power of the kth sub-carrier assigned
to the jth MT; h; is the channel gain of the kth sub-
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carrier assigned to the jth MT; Ny is the power spectral
density of additive white Gaussian noise; B is the
overall available bandwidth; and K is the total number
of sub-carriers. The constant I is called Signal-to-Noise
Ratio (SNR) gap, which indicates the difference
between the theoretical limit and the SNR needed to
achieve a certain data transmission rate for a practical
system [6]. This constant is dependent on the target Bit
Error Rate (BER) and, considering an M-level
Quadrature Amplitude Modulation (QAM), its value is
given by I' = —[In (5. BER)]/1.5. The channel quality
is characterized by the effective Channel-to-Noise

2
Ratio (CNR) given by ¥, = 4
No T
Once the achievable transmission rate per Hertz of
each sub-carrier is known following expression (2), the
data transmission rate of each MT can be calculated. In
the sub-carrier allocation process, we assume that each
sub-carrier can only be assigned to one single MT.
Assuming that a sub-carrier set K; is assigned to the jth
MT, its transmission rate is calculated as

Ri= Q= ), aueof &)
KEX KEK

where ;. is the channel capacity per Hertz of the kth

sub-carrier assigned to the jth MT and Af is the sub-

carrier bandwidth.

The throughput (average data rate) is calculated
using a low-pass Simple Exponential Smoothing (SES)
filtering as indicated in (4) below [6, 7].

Tnl = (1~ f) - Tj[n— 1]+ f; - Ry [n] ()
where R; [n] is the instantaneous data rate of the jth
MT calculated by (3) and f; is a filtering constant.

In order to perform fairness evaluations, we define
two kinds of User Fairness Index (UFI): rate-based and
throughput based:

7ot = R[] )
e = 7[n - 1] (©)
which are given by (3) and (4), respectively. The rate-
based UFI is used when performing rate adaptive
optimization based on instantaneous data rates, while
the throughput-based UFI is used when performing
utility-based optimization based on average data rates.

In order to measure the fairness in the rate or
throughput distribution among all MTs in the cell, a
Cell Fairness Index (CFI) is calculated by (7) [36].

oo )
M- Zy=1(¢j)2

where M is the number of MTs in the cell and ¢; is the
UFI of the jth MT given by (5) or (6), depending if rate
adaptive or utility-based RRA is being considered.
Notice that 1/M <® < 1. A perfect fair allocation is
achieved when @ = 1, which means that the rates or
throughputs allocated to all MTs are equal (all UFIs are

(7

Vol. 5, No. 1, March 2011

equal). The worst allocation occurs when @ = 1/M,
which means that all resources were allocated to only
one MT.

It was assumed that the MTs remained stationary,
hence there is no need to implement any handover
scheme. All users are assumed to have an in infinite
amount of data to transmit during the whole simulation
run (full-buffer model).

4. RESOURCE ALLOCATION ALGORITHMS
4.1. Rate adaptive sub-carrier and power allocation
based on instantaneous data rates

RRA  often leads to algorithms whose
implementation is very complex. In fact the allocation
problem is in general not convex since the allocation
variable is integer and can assume only two values: 1
when the channel is allocated to a specific user and 0
otherwise. In most cases the optimal solution can be
found only evaluating all possible allocations and the
complexity grows exponentially in the number of users
and sub-carriers. Therefore, most of the literature has
been focused on the development of sub-optimal
heuristics that have a lower computational complexity
but that still yield good results. Many algorithms make
the problem convex by relaxing the integer constraint
on the allocation variable.

Unfortunately, non-integer solutions are hardly
applicable in many scenarios where a sub-carrier
should be actually allocated or not to a user. In the
following we will focus on the rate adaptive RRA
problem outlining its most common formulations and
solutions.

4.1.1. Sum Rate Maximization
The mathematical formulation of the Sum Rate
Maximization (SRM) RRA problem is:
M K
max Z Z pric - 108(1+ D - Vi) ®)
j=1 dmd =1 2

DjkPjk

M K
St PSP ©)
Jj=1 k=1
k

pj,k = 0, V], (10)
o =101}, Vjk (11)
M
pj,k = 1, vk (12)
j=1

where M is the total number of MTs; K is the total
number of sub-carriers; p;  is the power and y;  is the
CNR of the kth sub-carrier assigned to the jth MT,
respectively; I' is the SNR gap; Py, is the Base Station
(BS) total transmit power; and p; is the connection
indicator, whose value 0 or 1 indicates whether sub-
carrier k is assigned to MT j or not. On one hand,
constraints (9) and (10) state that the sub-carriers'
powers must be non-negative and the sum of powers
among all sub-carriers must be lower or equal to the BS
total transmit power. One the other hand, constraints
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(11) and (12) say that each sub-carrier must be assigned
to only one user at any instant of time.

In its original formulation the problem (8) has been
solved in [3] by assigning each sub-carrier to the user
that maximizes its gain on it and then performing
waterfilling power allocation over all sub-carriers. On
one hand, such a solution maximizes the cell
throughput but on the other hand is extremely unfair
tending to privilege the users that are closest to the BS
and neglecting all the others.

4.1.2. Max-Min Rate

The RRA allocation (8) tends to starve the users
with the worse channel gains, i.e. the users that are
more distant from the BS. Thus, in [4] the RRA
problem has been formulated with the goal of
maximizing the minimum capacity offered to each user,
thus introducing fairness among the users. In general,
fairness among the MTs comes at the cost of a
decreased overall throughput of the cell. The Max-Min
Rate (MMR) RRA problem is formulated as follows:

K

i e o1 1+p:0 v
T ZHPNC 082 (1 + D)k Vjk) (13)
M K
s-t Z Pjk = Protal (14)
j=1 k=1
pPjx=0, Vjk (15)
pjx =101}, Vjk (16)
M
pj,k = 1; Vk (17)
j=1

where K is the total number of sub-carriers; p;  is the
power and yj, is the CNR of the kth sub-carrier
assigned to the jth MT, respectively; I is the SNR gap;
P is the BS total transmit power; pj, is the
connection indicator, whose value 0 or 1 indicates
whether sub-carrier k is assigned to MT j or not; and M
is the set of MTs. Constraints (14)-(17) are the same of
the SRM problem given by (9)-(12).

Unfortunately, the problem in the formulation (13)
is not convex and the authors in [4] study a heuristic
that is based on: a) transmitting the same amount of
power (P../K) on each channel; b) implementing an
assignment strategy that iteratively assigns each sub-
carrier to the user with the smallest rate.

4.1.3. Sum Rate Maximization with Proportional
Rate Constraints

The solution of the MMR RRA problem (13)
guarantees that all users achieve a similar data rate.
However, different users may require different data
rates. In this case the max-min solution is not able to
comply with the different user requirements. The RRA
algorithm presented in [5], which is called Sum Rate
Maximization with Proportional Rate Constraints
(SRM-P) in the present work, is designed to allocate
radio resources proportionally to different rate
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constraints that reflect different levels of service. The
SRM-P RRA problem is formulated as follows:

M K
pﬁ?));(,k Z}'=1 Zkzlpj'k “logy (1 + Pjk 'Vi,k) (18)
M K
Z . Djk =< Ptotal: (19)
Jj=1 k=1
Pjx =0, Vjk (20)
P =101}, Vik @1
M
pie=1 Vk 22)
j=1

where K is the total number of sub-carriers; p; ; is the
power and yj, is the CNR of the kth sub-carrier
assigned to the jth MT, respectively; I' is the SNR gap;
P is the BS total transmit power; p;j is the
connection indicator, whose value 0 or 1 indicates
whether sub-carrier k is assigned to MT j or not; 4; is
the proportional rate requirement of the jth MT; and M
is the set of MTs. Constraints (19)-(22) are the same of
the SRM and MMR problems. Constraint (23) states
that the user rates must follow the proportional rate
requirements.

The optimization in (18) is a mixed binary integer
programming problem and as such is in general very
hard to solve. Thus, also in this case the problem is
solved using a suboptimal heuristic and the
optimization (18) is performed in two steps. In the first
step, following the approach taken in [4], the sub-
carriers are allocated trying to comply as much as
possible with the proportional rate constraints and
assuming a uniform power distribution. In the second
step, having fixed the sub-carrier allocation, the power
is distributed to the users so that the proportional rate
constraints are met exactly.

Notice that the SRM-P problem is a combination of
the SRM and MMR problems, because it combines the
rate maximization of the objective function (18) with
the proportional rate constraints given by (23). In the
particular case where the proportional rate requirements
are all equal to one, we have that the sub-carrier
assignment algorithm is the same of the MMR problem
described in [4]. In this way, the SRM-P RRA
algorithm can achieve a kind of trade-off between
resource efficiency (rate maximization) and user
fairness (proportional rate requirements).

4.2. Packet Scheduling Based on Utility Theory and
Average Data Rates

In this section we formulate PSC algorithms that
use Utility Theory in order to find an efficient trade-off
between resource efficiency and fairness among the
users. The considered optimization problem is the
maximization of the total utility with respect to the
throughput (average data rate), which is calculated
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using a low-pass SES filtering as indicated in (4).

M
max Z U; (T;[n]) (24)
p]k?(
s.t Z Z Pik = Potal (25)
j=1 k=1
Pjxk 20, Vjk (26)
X; € K, 27
e (27)
:}Qﬂ:}g:@,w,jeM,i;tj. (28)

where K; is the subset of sub-carriers assigned to the
jth MT, K is the set of all sub-carriers in the system, M
is the set of all MTs in the system, p;  is the power of
the kth sub-carrier assigned to the jth MT, Py is total
transmit power of the cell, and U; (T [n]) is a concave
and increasing utility function based on the current
throughput T; [n] of the jth MT. On one hand,
constraints (25) and (26) state that the sub-carriers'
powers must be non-negative and the sum of powers
among all sub-carriers must be lower or equal to the BS
total transmit power. One the other hand, constraints
(27) and (28) say that there is a limited number of sub-
carriers and that each one of them must be assigned to
only one user at any instant of time.

The optimum solution for the joint optimization
problem (24)-(28) is still an open problem. The
majority of the sub-optimum solutions proposed in the
literature are based on the problem-splitting technique,
which splits problem (24)-(28) in two stages: DSA and
APA. In the present work, we also use this technique,
as explained in the following.

Evaluating the objective function in (24) and the
throughput expression in (4), the derivative of U(T})
with respect to the transmission rate R; is given by:

Uu;  dU; 0T; aU;
6R aT 6R =fe aT) |7 j=(1-fT;In-11+£:R;In]

where ft is the filtering constant in the throughput
calculation. In the case that f; is sufficiently small, the
expression above can be further simplified, as indicated
below [7].

ou(rn) _ . ay,

W~ t'a_leTj:Tj[n—l]

where the previous resource allocation totally
determines the current values of the marginal utilities.
Using the one-order Taylor formula, the following
expression can be derived [7]:

Z}.E Uj (T-[n])—z Ui (Tjln - 11) =

aU;
Z]EM aT |T]—T)n 1] (ft R [n] ftTJ[n—l])

The maximization of the expression above leads to
the maximization of (24). Since f; is a constant and
Ti[n — 1] is fixed at the current TTI n, the objective
function of our simplified optimization problem

Vol. 5, No. 1, March 2011

becomes linear, as can be seen in the following.

max > U} (1)~ 11) - R[] 9)
JEM
' u; )
where  U: (Tj[n—1]) = a1, T, =Tn—1] is the

marginal utility of the jth MT with respect to his
throughput in the previous TTI. The optimization
problem (29) is a weighted sum rate maximization
problem [37], whose weights are adaptively controlled
by the marginal utilities. The mathematical
development presented above shows that the
instantaneous optimization maximizing (29) leads to a
long-term optimization that maximizes (24).

The linear objective function greatly simplifies the
corresponding algorithms. The DSA problem, which is
the optimization problem (24)-(28) with equal power
allocation, has a closed form solution [7, 38]. The MT
j* is chosen to transmit on the kth sub-carrier in the nth
TTI if it satisfies the condition given by (30):

— 1) - gilnl}, Vi (30
where U;(.) is the marginal utility of the jth MT,
Ti[n — 1] is the throughput of the jth MT up to TTI
n — 1, and ¢j [n] denotes the instantaneous achievable
transmission efficiency of the jth MT on the kth sub-
carrier.

In this paper we will consider a family of utility
functions of the form presented in (31) below [32].

]1—0!

Uj(Tj[nl) = % (1

where o is a non-negative parameter that determines
the degree of fairness. The fairness of the utility
function becomes stricter as a increases. In the present
work we call the RRA policy derived from the use of
this particular utility function as utility-based alpha-
rule, which is a generalization of the original alpha-rule
proposed in [24].

According to (30), this is equivalent to consider a
priority function of the PSC algorithm given by:

Cixln
Ph¢ = % Vj,k; a€[0,) (32)

For each of the K sub-carriers in the system, a
multi-carrier PSC algorithm calculates the priority
functions for all ] MTs according to (32) and assign it
to the MT that has the highest priority value.

We will show in sections 4.2.1, 4.2.2 and 4.2.3 that,
depending on the value of the parameter a, the general
utility framework presented above can be designed to
work as any of three well-known classical PSC
algorithms: Max-Rate (MR), Max-Min Fairness
(MMF) and Proportional Fairness (PF). Furthermore, in
section 4.2.4 we present the Adaptive Throughput-
Based Fairness (ATF) PSC algorithm, which can
achieve an adaptive trade-off between resource
efficiency and fairness according to the cellular

j* =arg max{U]- ’(Tj[n
j
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operator's objectives.

4.2.1. Max-Rate

The MR PSC algorithm is able to maximize the
system spectral efficiency because it considers a linear
utility function U; (T; [n]) = T [n], which yields a
constant marginal utility U; (Tj[n]) = 1 [6, 7]. One can
notice that this can be achieved setting
=0 in (31). According to (32), this is equivalent to
consider a priority function related to the MR algorithm
given by (33) below.
PR =cilnl, Vjk (33)

As the final result, each sub-carrier will be assigned
to the MT that has the highest channel gain on it. The
MR criterion maximizes the system capacity at the cost
of unfairness among the MTs, because those with poor
radio link quality probably will not have chance to
transmit.

4.2.2. Max-Min Fairness

The utility function of the MMF algorithm is the
limit of the function in (31), when a = oo [30].

According to (30) and (32), the priority function is
dependent on the marginal utility U; (Tj[n]) and the
achievable instantaneous transmission efficiency
Cjx [n]. However, in the case of the MMF criteria and
when considering MTs with lower data rates, the
influence of the marginal utility when a — oo is so high
that the influence of the channel quality becomes
negligible. Taking this fact into account, we can
assume a more simplified priority function for the
MMF algorithm given in (34), which is also known in
the literature as the “Fair Throughput” criterion [39].

1

le};IcMF = m, Vj, k (34)
which gives priority to the MT that has experienced the
worst throughput so far. In this way, in terms of
throughput distribution, it is the fairest criterion
possible, since all MTs will have approximately the
same throughput in the long-term. However, since this
criterion maximizes the throughput of the worst MTs, it
will provide low aggregate system throughput.

4.2.3. Proportional Fairness

A trade-off between resource efficiency and
fairness can be achieved by means of the PF PSC
algorithm [26]. In utility theory, the logarithmic utility
function is associated with the proportional fairness [6,
7]. In the general family of utility functions presented
in (31), the logarithmic function can be achieved when
a — 1 (see proof on [30]). Therefore, according to
(32), the priority function of the PF algorithm is given
by (35).

¢j[nl

PR =

T vj, k (35)
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4.2.4. Adaptive Throughput-Based Fairness

The ATF PSC algorithm, which was proposed in
[40], joins in a wunified framework the three
aforementioned classical PSC algorithms (MR, MMF
and PF). In the light of utility theory, it was shown that
a general PSC algorithm based on (31) is able to
provide several degrees of fairness. The ATF algorithm
adaptively explores this flexibility in order to achieve
an efficient trade-off between resource efficiency and
fairness planned by the network operator. However, it
is difficult to design an adaptive control of the a
parameter because it is defined over a large range of
values. Instead of that, the ATF algorithm transforms
the priority function of (32) into another priority
function that is based on a parameter B, which is
defined over a controlled range and provides the
possibility of a stable and simple adaptive control. The
priority function of the ATF algorithm is presented in
(36) below.

PATF _ ¢juln]'#
Jjk T] [Tl _ 1] B’

Notice that in a conceptual point of view, the
priority functions on (32) and (36) perform in the same
way. The ATF algorithm is able to work as the classical
PSC algorithms by means of the adaptation of the B
parameter. The values of 8 = {0,0.5,1} corresponds to
the MR, PF and MMF, respectively.

The ATF algorithm uses the User Fairness Index
(UFI) Cthru and the Cell Fairness Index (CFI) @,
which are given by (6) and (7), respectively.

The objective of the ATF algorithm is to assure a
strict fairness distribution among the MTs, i.e. the CFI
® must be kept around a planned value @igpger.
Therefore, the ATF algorithm adapts the parameter B3 in
the scheduling policy presented in (36) in order to
achieve the desired operation point. In order to do that,
the new value of the parameter B is calculated using a
feedback control loop of the form:
pln]l=pn—-1]-n- ((Dfilt[n] - q)target) (37
where ®@g;;¢[n] is a filtered version of the CFI using a
SES filtering, ®¢q;g¢ target is the desired value for the
index, and the parameter 1 is a step size that controls
the adaptation speed of the parameter . Notice that a
SES filter, which is suitable for time series with slowly
varying trends, was used to suppresses short-run
fluctuations and smooth the time series ®[n].

vik; Bel01] (36)

5. SIMULATION RESULTS

In this section the simulation parameters as well as
the simulation results are presented. The main
simulation parameters are presented in Table 1.

The metrics used for evaluation and comparison of
the investigated resource allocation algorithms were:

e Total cell throughput (resource allocation

efficiency factor);
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e Cell fairness index (according to (7)). It was
assumed that the user fairness index @; used in
(7) was be“te given by (5) for the case of rate
adaptive = RRA  algorithms based on
instantaneous data rate, or @fhr“ given by (6)
for the case of utility-based PSC algorithm
based on average data rate (throughput);

e  User satisfaction (percentage of satisfied users
in the cell). A user is considered satisfied if the
achieved throughput at the end of his session is
equal or higher than a threshold, which is
indicated in Table 1;

e Mean user throughput as a way to analyze the
opportunism in the resource allocation.

Table 1. Parameters used in the simulations

Parameter Value
Number of cells 1
BS transmission power 1 W
Cell radius 500 m
MT speed static
Carrier frequency 2 GHz
Number of sub-carriers 192
Sub-carrier bandwidth 15 kHz
Path loss using (1)
Log-normal shadowing
standard dev. 8dB
Small-scale fading Typical Urban
AWGN power -123.24 dBm
per sub-carrier
BER requirement 1076
Link adaptation using (2)
TTI 0.5 ms
Traffic model Full buffer
Throughput filtering 0.02
constant (ft) )
Minimum S value 0
Maximum f value 1
ATF PSC control time
. 0.5
window
ATF PSC target
fairness index (Prarget) 0.50r0.9
ATF PSC
. 0.1
step size (1)
ATF PSC filtering
0.1
constant
Throughput requirement 640 kbps

The results presented in this section are obtained for
all rate adaptive RRA algorithms presented in section
4.1 averaged over 100 snapshots (each with a
simulation time span of 0.5s), and all utility-based PSC
algorithms described in section 4.2 averaged over 10
snapshots (each with a simulation time span of 30s).

Vol. 5, No. 1, March 2011

The difference in the duration of the simulations is due
to the fact that the utility-based optimization is based
on average data rates and so it requires a larger time
window. For the rate adaptive SRM-P algorithm (see
section 4.1.3), the proportional rate requirements are set
equal to one for all users, i.e. ; = 1(j = 1,..,M).
In the case of the utility-based packet scheduling
analysis, the power distribution over all sub-carriers
was uniform with no power adaptation.

Fig. 2 shows the mean cell fairness index calculated
using (7) for different cell loads and various RRA
algorithms. In this case the rate adaptive MMR and
utility-based MMF algorithms outperform all the
others. As expected, the SRM resource allocation and
the MR PSC algorithms, which are designed to use the
resources in the most efficient way, are the ones that
present the lowest fairness indexes. The SRM-P
resource allocation and the PF PSC algorithms achieve
a static trade-off between resource efficiency and user
fairness. The latter presents a more visible trade-off
since the former shows a performance very close to the
MMR resource allocation algorithm. Regarding the
ATF PSC algorithm, we run simulations with two
different target CFIs: 0.5 and 0.9. It can be observed
that ATF is successful to achieve its main objective,
which is to guarantee a strict fairness distribution
among the MTs. This is achieved due to the feedback
control loop that dynamically adapts the parameter 3 of
the ATF priority function (see (36)). The advantage of
the ATF algorithm in comparison with the others is that
it can be designed to provide any required fairness
distribution, while the other strategies are static and do
not have the freedom to adapt themselves and
guarantee a specific performance result.

~—#— MMF PSC
2y~ PF PSC

| —@—MRPsc L.

-~ A+ ATF 0.9 PSC

=+ P+ ATF 0.5 PSC
—~MMR RA
—%7- - SRM-P RA
—O-SRM RA

o o o
> [

Mean Cell Fairness Index
°
&

o
~

—

0.1

L H H H H H H H H
6 7 8 9 10 n 12 13 14 15 16
Number of users

Fig. 2. Cell faimess index as a function of the number
of users.

Fig. 3 shows the total cell throughput for the

different algorithms. As expected, the SRM resource
allocation and the MR PSC algorithms are able to
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maximize the resource efficiency, while MMR and
MMF present the lowest cell throughput. Since SRM-P
and PF are trade-offs between SRM/MR and
MMR/MMF, their performance lied between those
extremes. Looking at Fig. 2, one can expect that
depending on the value of the ATF target fairness
index, the ATF resource -efficiency would be
somewhere in the middle between the performances of
MMEF, PF and MR. This can be observed in Fig. 3. On
one hand, when the ATF target fairness index is set to
0.5, ATF works as an hybrid scheduling policy between
PF and MR. On the other hand, the ATF performance
in terms of total cell throughput lies between MMF and
PF when the target fairness index is set to 0.9. Notice
that the throughput values presented by the MR PSC
algorithm are lower than those observed with the rate
adaptive SRM resource allocation. This was due to the
fact that the simulations carried out for the PSC
investigation did not consider power adaptation.

—— MMF PSC
—¥— PF PSC
—@— MR PSC
-~ ATF 0.9 PSC
== P-- ATF0.5 PSC
~{~ - MMR RA
== SRM-P RA

: fase =

Total Cell Throughput (bps)

Number of users
Fig. 3. Total cell throughput as a function of the number
of users.

The user satisfaction as a function of the number of
users is depicted in Fig. 4. It is interesting to see that
the algorithms that achieve a trade-off between
resource efficiency and user fairness, namely SRM-P,
PF and ATF, are the ones that present the highest user
satisfaction. This indicates that it is not advantageous in
terms of user satisfaction to use RRA algorithms that
are located in the extremes of the efficiency-fairness
plane  (maximization of system capacity or
maximization of user fairness). In general terms, the
algorithms that maximize capacity achieve low and
almost constant user satisfaction because they always
give priority to few users with best channel conditions.
On the other hand, the algorithms that privilege user
fairness present higher satisfaction for low system load
but the performance decreases very fast when the
number of users increases. Regarding the algorithms
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able to achieve a trade-off, the utility-based PSC
algorithms (PF and ATF) are preferable than the rate
adaptive SRM-P resource allocation, since they present
higher user satisfaction for all the range of system loads
considered in this study.

It can be concluded from Figs. 2, 3 and 4 that the
adaptive ATF PSC algorithm is the most flexible
technique  able to  control the  trade-off
between resource efficiency and user fairness while
maintaining good satisfaction levels for the users. In
order to have a deeper insight into the functioning of
the ATF PSC algorithm, Fig. 5 is presented. This figure
analyzes the opportunistic resource allocation of the
ATF policy depicting the mean user throughput as a
function of the number of users with several CFIs. The
users are divided into two groups of equal size: inner
and outer. The former is composed by the users with
best channel conditions considering path loss and
shadowing (close to the BS), while the latter is
composed by the users with worst channel conditions
(far from the BS).

100
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Fig. 4. User satisfaction as a function of the number of
users.

Observing Fig. 5, one can notice that the closer the
performance of the inner and outer groups, the fairer
the resource allocation of the ATF algorithm (higher
CFIs). The opposite is also true: when the ATF
algorithm is configured with a low CFIL, the
performance of the user groups diverge, indicating that
the inner group is privileged in detriment of the outer
group. Furthermore, trying to approximate the
performance of the user groups by using a fairer RRA
policy has the disadvantage of decreasing the mean
throughput of the users of both groups, which leads to
the decrease of the total cell throughput (see Fig. 3) and
also the decrease of user satisfaction when the system
is loaded (see Fig. 4). Unfair RRA policies give priority
to the inner group. Since they have good channel
conditions, the efficiency in the resource usage will be
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high, as can be seen in Fig. 3, and the satisfaction of
these users will always be guaranteed no matter how
loaded the system is, as can be observed in Fig. 4.

One last issue that should be taken into account is
complexity. In general, the rate adaptive RRA
strategies considered in this work, which are comprised
of DSA and APA algorithms and are based on
instantaneous data rate, present higher computational
complexity than their counterparts that use utility-based
PSC algorithms and are based on average data rates.
Using less computational resources, the utility-based
PSC algorithms show approximately the same
performance in terms of fairness and system capacity
and better performance in terms of user satisfaction
than the rate adaptive RRA algorithms.
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Fig. 5. Mean user throughput as a function of the
number of users for the ATF policy considering inner
and outer groups.

6. CONCLUSIONS

In this paper we investigated the trade-off between
resource efficiency and fairness among users in
OFDMA-based cellular networks. Two RRM
approaches were studied: rate adaptive resource
allocation (sub-carriers and power) based on
instantaneous data rate and utility-based packet
scheduling based on average data rate (throughput).
Comparing the two approaches, one can see clearly the
direct relationship between SRM RRA and MR PSC,
and also MMR RRA and MMF PSC. Furthermore,
possible trade-offs were presented, such as SRM-P in
the case of rate adaptive RRA, and PF and ATF in the
case of utility-based PSC.

It was concluded from the simulation results in a
single-cell scenario that it is possible to achieve an
efficient trade-off between resource efficiency and
fairness using any of the two RRM approaches.
However, utility-based PSC algorithms have the
advantage of presenting higher user satisfaction with

Vol. 5, No. 1, March 2011
less computational complexity.
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