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ABSTRACT: 
In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of ANFIS-based 
fuzzy models based on SSA and information granulation (IG). In comparison with conventional evolutionary 
algorithms (such as PSO), SSA leads not only to better search performance to find global optimization but is also more 
computationally effective. In the hybrid optimization of ANFIS-based fuzzy inference system, SSA is exploited to 
carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized 
with the aid of C-Means clustering helps to determine the initial values of the apex parameters of the membership 
function of fuzzy model. The overall hybrid identification of ANFIS-based fuzzy models comes in the form of two 
optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset 
of input variables, the number of membership functions, and polynomial type) and parameter identification (viz. the 
apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter 
estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed 
model was carried out by using three representative numerical examples such as Non-linear function, gas furnace, and 
Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved 
performance both in terms of the quality of the model and the computing time required. The proposed model is also 
contrasted with the quality of some conventional fuzzy models already encountered in the literature. 
 
KEYWORDS: Space Search Algorithm, Particle Swarm Algorithm, Information Granulation, ANFIS-based Fuzzy 
Inference System. 
  
1.  INTRODUCTION 

Recently, fuzzy modeling has been utilized in many 
fields for engineering, medical engineering, and even 
social science [1]. As for fuzzy model construction, 
identification of fuzzy rules is one of most important 
parts in the design of rule-based fuzzy modeling. 

Many identification methods for fuzzy models have 
been studied over the past decades. In the early 1980s, 
linguistic modeling [2] was proposed as primordial 
identification methods for fuzzy models. Then Tong 
et.al [3], C.W.Xu et.al [4] studied different approaches 
for fuzzy models. While appealing with respect to the 
basic topology (a modular fuzzy model composed of a 
series of rules) [5] , these models still await formal 
solutions as far as the structure optimization of the 
model is concerned, say a construction of the 
underlying fuzzy sets – information granules being 

viewed as basic building blocks of any fuzzy model. 
Oh and Pedrycz [6] have proposed some enhancements 
to the model, yet the problem of finding “good” initial 
parameters of the fuzzy set in the rules remains open. 
To solve this problem, several genetically identification 
methods for fuzzy models have been proposed. Liu 
et.al [7], Chung and Kim [8] and others have discussed 
employing genetic algorithms to fuzzy models, 
respectively. In a word, evolutionary identification 
methods have proven to be useful in optimization of 
such problems. 

In this study, we propose a space search algorithm 
(SSA) and then introduce a hybrid optimization of 
ANFIS-based fuzzy models based on SSA and 
information granulation (IG). SSA is exploited here to 
carry out the parameter estimation of the fuzzy models 
as well as to realize structure optimization. The 
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identification process is comprised of two phases, 
namely a structure optimization (the number of input 
variables to be used, a specific subset of input 
variables, and the number of membership functions) 
and parametric optimization (apexes of membership 
function). The structural optimization is completed first 
and then we proceed with the parametric phase. The 
SSA and the least square method (LSE) are used in 
each phase of this sequence. IG realized with the aid of 
HCM, SSA and LSM. HCM is used to help determine 
the initial parameters of the fuzzy model such as the 
initial location of apexes of the membership functions 
and the prototypes of the polynomial functions being 
used in the premise and consequence parts of the fuzzy 
rules, while SSA and LSM is employed to adjust the 
initial values of the parameters. To evaluate the 
performance of the proposed model, we exploit two 
kinds of well-known data set. A hybrid optimization of 
ANFIS-based fuzzy models based on Particle Swarm 
Optimization (PSO) and IG is also implemented for the 
comparative study. 
 
2.  IG-BASED FUZZY MODEL  

In essence, information granules are viewed as 
highly related collections of objects (data points, in 
particular) drawn together by some criteria of 
proximity, similarity, or functionality. Granulation of 
information is an inherent and omnipresent activity of 
human beings carried out with intent of gaining a 
better, more effective insight into a problem under 
consideration and arriving at its efficient solution. In 
particular, granulation of information is aimed at 
transforming the problem at hand into several smaller 
and therefore more manageable sub-problems. In this 
way, we partition the task into a series of well-defined 
subproblems (modules) of far lower computational 
complexity than the original one. The identification 
procedure for fuzzy models is split into the 
identification activities dealing with the development of 
the premise and the consequence part of rules. The 
identification completed at the premise level consists of 
two main steps. First, we select the input variables x1, 
x2, …, xk of the rules. Second, we form fuzzy partitions 
(by specifying fuzzy sets of well-defined semantics 
such as e.g., Low, High, etc.) of the spaces over which 
these individual variables are defined. In such a sense, 
this phase is all about information granulation as the 
elements of the fuzzy partitions we are interested in 
when developing any rule-based model. The number of 
the fuzzy sets constructed there implies directly the 
number of the rules of the model itself. In addition, one 
has to determine membership functions of the 
information granules.  

The identification of the premise part is completed 
in the following manner. 

Given is a set of data U={x1, x2, …, xl ; y}, where xk 

=[x1k, …, xmk]
T, y =[y1, …, ym]T, where l is the number 

of variables and  m is the number of data. 
 
[Step 1] Arrange a set of data U into data set Xk 
composed of the corresponding input and output data. 
Xk=[xk ; y]                (1) 
 
[Step 2] Run the K-Means to determine the centers 
(prototypes) vkg within the data set Xk. 

[Step 2-1] Arrange data set Xk into c-clusters (in 
essence this is effectively the granulation of 
information) 

[Step 2-2] Calculate the centers vkg of each cluster. 

1 2v { , , , }kg k k kcv v v                 (2) 

 
[Step 3] Partition the corresponding input space using 
the prototypes of the clusters vkg. Associate each cluster 
with some meaning (semantics), say Small, Large, etc. 
 
[Step 4] Set the initial apexes of the membership 
functions using the prototypes vkg. 

As for a part of the consequence identification, we 
consider the initial values of the polynomial functions 
based upon the information granulation realized for the 
consequence and premise part.  
 
[Step 1] Find a set of data included in the fuzzy space 
of the j-th rule. 
 
[Step 2] Compute the prototypes Vj of the data set by 
taking the arithmetic mean of each rule. 

1 2V { , , , ; }j j j kj jV V V M                (3) 

 
[Step 3] Set the initial values of polynomial functions 
with the center vectors Vj. 

The identification of the conclusion parts of the 
rules deals with a selection of their structure (Type 1, 
Type 2, Type 3 and Type 4) that is followed by the 
determination of the respective parameters of the local 
functions occurring there. The consequence part of the 
rule that is extended form of a typical fuzzy rule in the 
TSK (Takagi-Sugeno-Kang) fuzzy model has the form 

1 1

1

:

( , , )

j
c k kc

j j j k

R If x is A and and x is A

then y M f x x 



             (4) 

Type 1 (Simplified Inference): fj = aj0 

Type 2 (Linear Inference):  

fj = aj0 + aj1(x1 −Vj1)+…+ajk(xk−Vjk) 

Type 3 (Quadratic Inference):  
fj = aj0+aj1(x1–V1j)+…+ajk(xk−Vkj)+aj(k+1)(x1–V1j)

2+…+ 
aj(2k)(xk−Vkj)

2+aj(2k+1)(x1–V1j)(x2–V2j)+…+ 
aj((k+2)(k+1)/2)(xk-1−V(k-1)j)(xk−Vkj) 
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Type 4 (Modified Quadratic Inference):  

fj=aj0+aj1(x1–V1j)+…+ajk(xk−Vkj)+aj(k+1)(x1–V1j)(x2–V2j) 

+…+aj(k(k+1)/2)(xk-1−V(k-1)j)(xk−Vkj) 

where, jR is the j-th fuzzy rule, xk represents the input 
variables, Akc is a membership function of fuzzy sets, 
ajk is a constant, Vkj and Mj is a center value of the input 
and output data, respectively, n is the number of fuzzy 
rules. 

We use two performance indexes as the standard 
root mean squared error (RMSE) and mean squared 
error (MSE) 

* 2

1

* 2

1

1
( ) , ( )

( _ ) (5)
1

( ) . ( )

m

i i
i

m

i i
i

y y RMSE
m

PI or E PI

y y MSE
m








 
 




where y* is the output of the fuzzy model, m is the total 
number of data, and i is the data number. 

The calculation of the numeric output of the model, 
based on the activation (matching) levels of rules there, 
relies on the following expression 

1

1 1*

1 1

1

1

( ( , , ) )

ˆ ( ( , , ) )

n n

ji i ji j k j

j j
n n

ji ji

j j

n

ji j k j

j

w y w f x x M

y

w w

w f x x M

 

 





 

 

 

 







   (6)                   

Here, y* is the inferred output value, wji is the 

premise level of matching jR  (activation level). As the 
normalized value of wji, we use an abbreviated notation 

to describe an activation level of rule jR to be in the 
form 

1

ˆ ji
ji n

ji

j

w
w

w





, 1 1

1 1
1

( ) ( )
ˆ

( ) ( )

j i jk ki
ji n

j i jk ki
j

A x A x
w

A x A x


 


 




         (7) 

The consequence parameters ajk can be determined 
by the standard least-squares method, which leads to 
the expression 

-1ˆ ( )T Ta X X X Y         (8) 

In the case of Type 2 scheme, we have 

10 0 11 1 1ˆ [ ]Tn n k nka a a a a a    a , 

1 2[ ]Ti m  X x x x x , 
T
i x [ 1ˆ iw  ˆniw 1 11 1ˆ( )i ix V w  1 1 ˆ( )i n nix V w 

1 1ˆ( )ki k ix V w  ˆ( )ki kn nix V w ], 

1 1 2 2
1 1 1

T
n n n

j j j j m j jm
j j j

y M w y M w y M w
  

      
         

            
  Y   

 
3.  OPTIMIZATION  

In this section, we provide a very brief description 
of the essence of the PSO and SSA. 

 
3.1.  Particle Swarm Optimization  

Generally, Particle Swarm Optimization is utilized 
as a useful optimization vehicle to deal with the 
optimization problem. PSO is an example of a modern 
search heuristics belonging to the category of Swarm 
Intelligence methods. PSO [9, 10] is an example of a 
modern search heuristics belonging to the category of 
Swarm Intelligence methods. We provide a very brief 
description of the essence of the algorithm and then 
show its direct use in feature selection. 

The underlying principle of PSO involves a 
population-based search in which individuals 
representing possible solutions carry out a collective 
search by exchanging their individual findings while 
taking into consideration their own experience and 
evaluating their own performance. PSO involves two 
competing search strategy aspects [11, 12]. One deals 
with a social facet of the search; according to this, 
individuals ignore their own experience and adjust their 
behavior according to the successful beliefs of 
individuals occurring in their neighborhood. The 
cognition aspect of the search underlines the 
importance of the individual experience where the 
element of population is focused on its own history of 
performance and makes adjustments accordingly. 

PSO is conceptually simple, easy to implement, and 
computationally efficient. Unlike many other heuristic 
techniques, PSO has a flexible and well-balanced 
mechanism to enhance the global and local exploration 
abilities [11]. The basic elements of PSO technique are 
briefly introduced as follows: 

Performance index (fitness). Each particle is 
characterized by some value of the underlying 
performance (objective) index or fitness. This is a 
tangible indicator stating how well the particle is doing 
in the search process. The fitness is reflective of the 
nature of the problem for which an optimal solution is 
being looked for. Depending upon the nature of the 
problem at hand, the fitness is either minimized or 
maximized. 

Particles. The vectors of the variables (particles) in 
the n-dimensional search space will be denoted by p1, 
p2, …, pN. In the search, a swarm is composed of “N” 
particles involved leading to the concept of a swarm. 
The performance of each particle is described by some 
objective function referred to as a fitness (objective) 
function. 



Majlesi Journal of Electrical Engineering                                                                            Vol. 5, No. 1, March 2011 
 

53 
 

Best particles. As a particle wanders through the 
search space, we compare its fitness at the current 
position with the best fitness value it has so far 
attained. This is done for each element in the swarm. 
The location of the particle at which it has attained the 
best fitness is denoted by pbest. Similarly, by gbest we 
denote the best location attained among all pbest. 

Velocity. The particle is moving in the search space 
with some velocity which plays a pivotal role in the 
search process. Denote the velocity of the i-th particle 
by vi. From iteration to iteration, the velocity is 
governed by the following expression 

i i 1 1 i i

2 2 i

w c r (pbest -p )

c r (gbest-p )

 


v v
              (9) 

Or equivalently 

ik ik 1 1 ik ik

2 2 k ik

v w v c r (pbest p )

c r (gbest p )

   
 

           (10) 

i=1,2,…,N; k=1,2,….,n  where, r1 and r2 are random 
values in [0,1], and c1 and c2 are positive constants, 
called the acceleration constants and referred to as the 
cognitive and social parameters, respectively. As the 
above expression shows, c1 and c2 reflect the weighting 
of the stochastic acceleration terms that pull the i-th 
particle toward pbesti and gbest positions. Low values 
allow particles to roam far from the target regions 
before being tugged back. High values of c1 and c2 

result in abrupt movement toward, or past, target 
regions. Typically, the values of these constants are set 
to 2.0. The inertia factor “w” is a control parameter that 
is used to establish the impact of the previous velocity 
on the current velocity. Hence, it influences the tradeoff 
between the global and local exploration abilities of the 
particles. For initial stages of the search process, large 
values enhancing the global exploration of the space 
are recommended. As the search progresses, the values 
of “w” are gradually reduced to achieve better 
exploration at the local level. 

As PSO is an iterative search strategy, we proceed 
until there is no substantial improvement of the fitness 
or we have exhausted the number of iterations allowed 
in this search. Overall, the algorithm can be outlined as 
the following sequence of steps: 

Step 1: Randomly generate “N” particles, pi, and 
their velocities vi。Each particle in the initial swarm 
(population) is evaluated using the objective function. 
For each particle, set pbesti=pi and search the best 
particle of pbest. Set the best particle associated with 
the global best, gbest. 

Step 2: Adjust the inertia weight, w. Typically, its 
values decrease linearly over the time of search. We 
start with wmax=0.9 at the beginning of the search and 
move down to wmin=0.4 at the end of the iterative 
process, 

max min
max

max

w w
w(t) w t

iter


                (11) 

Where itermax denotes the maximum number of 
iterations of the search and “t” stands for the current 
index of the iteration. 

Step 3: Given the current values of gbest and pbesti, 
the velocity of the i-th particle is adjusted following 
(10). If required, we clip the values making sure that 
they are positioned within the required region. 

Step 4: Based on the updated velocities, each particle 
changes its position using the expression 

ik ik ikp v p                (12) 

Furthermore, we keep the particle within the 
boundaries of the search space, that is 

min max
k ik kp p p               (13) 

Step 5: Move the particles in the search space and 
evaluate their fitness both in terms of pbesti and gbest. 

Step 6: Repeat from Step 2 to Step 5 until the 
termination criterion has not been met. Otherwise 
return gbest as the solution found. 

 
3.2.  Space Search Algorithm 

SSA is a heuristic algorithm whose search method 
comes with the analysis of the solution space. In 
essence, the solution space is the set of all feasible 
solutions for the optimization problem (or 
mathematical programming problem), which is stated 
as the problem of determining the best solution coming 
from the solution space. To illustrate the idea of the 
SSA, let us consider why an evolutionary algorithm 
(such as the well-known genetic algorithm) can find the 
optimal solution. In fact, a precondition should be 
satisfied when evolutionary algorithm can find the 
optimal solution. The precondition is that, in most of 
local areas, a point (solution) and the other points 
located in the point’s adjacent space have the similar 
values of the objective function (fitness values). In 
other words, in most of local areas, a solution with 
better fitness is closer to the optimal solution. 
Moreover, if we take the entire space as the biggest 
local area into consideration, the precondition can be 
satisfied for any target optimization problems. Based 
on this observation, we may give rise to a space search 
mechanism to update the current solutions. The role of 
space search is to generate new solutions from old 
ones. The search method is based on the operator of 
space search, which generates two basic steps: generate 
new subspace (local area) and search the new space. 
Search in the new space is realized by randomly 
generating a new solution (individual) located in this 
space. Regarding the generation of the new space, we 
consider two cases: (a) space search based on M 
selected solutions (denoted here as Case I), and (b) 
space search based on one selected solution (Case II).  
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In Case I, the new subspace (local area) is generated 
by M selected solutions (individuals). The core issue is 
how to determine the adjacent space based on the M 
solutions. For convenience, a solution X  can be 

presented in another way 1 2( , ,......, )nX x x x , 

where n  is the index of the dimension. Regarding the 
M  solutions, we use the following representations: 

1 2( , ,......, )
n

k k k kX x x x , 1, 2,......,k M . To 

adjust the size of the new generating subspace, we use 

the coefficients [ , ]ia l u  as parameters, where l and 

u are given numbers. Suppose that V  is the new 

generating space, newX  is a new feasible solution 
randomly generated on a basis of V , where 

1 2( , ,......, )
n

new new new newX x x x , S is the entire 

feasible solution space. The new space can be 
determined by the following expression: 

1

1

{ ,

1, }

M
new new k new

i i i
k

M

i i
i

V X x a x X S

where a l a u





   

  




       (14) 

 

min
1x max

1x

min
2x

max
2x

 
Fig. 1. Different spaces generated from M solutions 

using different parameters (Case I) 
 

Figure 1 depicts different subspaces generated by 
M solutions using different parameters when the index 
of the dimension of a feasible solution is equal to 2. In 
this case, M solutions can presented as 

1 2
( , )k k kX x x , where [ , ], 1, 2

i

k
i ix l u i  , 

1, 2,......,k M . The four points 
1

minx , 
2

minx , 
1

maxx , 

2

maxx  are the minimum of 1
kx , the minimum of 2

kx , 

the maximum of 1
kx , the maximum of 2

kx , respectively. 

It is clear that the search space V is equal to S1 in case 

of [0,1]ia  . S2 is the search space of V in case of 

[ , ]ia l u , where 0,l   and 1.u   In this study, we 

search the adjacent space S2 and set [ 1, 2]ia   . We 

generate the new space 1V  based on the following 

expression:  

1
1

1

{ ,

1, 1 2}

M
new new k new

i i i
k

M

i i
i

V X x a x X S

where a a





   

   




       (15) 

In Case II, the space search operation is based on a 
given solution. In this case, the given solution is the 
best solution in the current solution set (population). 
The role of this operator is to adjust the best solution by 
searching its adjacent space. In the SSA, we generate 

the new space 1V  based on the following expression: 

1 1 2{( , ,......, ) | ( )

[ , ]}

new new new new
n j j

new
i i i

V x x x x x j i

x l u

  


  (16) 

where the value of new
ix  is the same as ix  which is 

range from il  to iu .  

Suppose that the fitness value of a solution x  is 

denoted by ( )f x . Assume a function  

, ( ) ( ),
( , )

, ( ) ( ).

true if f x f y
better x y

false if f x f y


  

      (17)

where both x  and  y are the feasible solutions in the 

solution space. The overall algorithm can be outlined as 
the following sequence of steps. 

Step 1. Initialize (randomly generate) solution set 
1 2( , ,......, )mP X X X , where iX S . 

Step 2. Evaluate each solution iX , where 
1, 2,......,i m . 

Step 3. Find the best solution bestx  and the worst 

solution worstx  in the current solution set. 

Step 4. If ( , )worst bestbetter x x true , goto step 13. 

Step 5. Randomly select M  solutions from P , 
where M  is a given number. 

Step 6. Generate a new subspace V  according to the 
M  solutions (Case I). 

Step 7. Generate a new solution newx  from the 

new subspace V . 
Step 8. Update the current best and worst solutions in 

the following two cases:  
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(a) if ( , )new worstbetter x x true , set worst newx x ;  

and 

(b) if ( , )new bestbetter x x true , set best newx x . 

Step 9. Generate new subspaces 1V  based on the 

current best solution bestx  (Case II). 

Step 10. Generate a new solution 1newx  from the 

subspace 1V . 

Step 11. Update the current best and worst solutions 
in the following two cases:  

(a) if 1( , )new worstbetter x x true , 

set 1worst newx x ; and  

(b) if 1( , )new bestbetter x x true , set 1best newx x . 

Step 12. Repeat steps 4-11. 
Step 13. Report the optimal solution. 

The features of the SSA are highlighted as follows. 
(1) The SSA leads to better performance when 

finding global optimization than PSO, especially in the 
optimization problems with larger solution spaces. The 
SSA searches the same size of solution space as PSO. 
However, the SSA searches the solutions based on the 
relative adequate analyzing space while PSO searches 
the solutions without such adequate analyzing space. 

(2) The SSA leads to shorter computing time when 
being compared with the conventional PSO. Each 
solution is updated in PSO while SSA generates only 
two new solutions in each generation. That is in one 
generation, individuals which correspond to lots of new 
solutions are evaluated in PSO while only two new 
solutions (individual) are evaluated in the SSA. This 
operation procedure enables us to carry out the rapid 
CPU operation for hybrid identification of fuzzy 
systems. 

 
3.3.  Hybrid Optimization of ANFIS-based Fuzzy 
models  

The standard gradient-based optimization 
techniques might not be effective in the context of rule 
based systems given their nonlinear character (in 
particular the form of the membership functions) and 
modularity of the systems. This suggests us to explore 
other optimization techniques. Figure 2 depicts the 
arrangement of chromosomes commonly used in fuzzy 
modeling [6, 13]. Genes for structure optimization are 
separated from genes used for parameter optimization. 
The size of the chromosomes for structure 
identification of the IG-based fuzzy model is 
determined according to the number of all input 
variables of the system. The size of the chromosomes 
for parameter identification depends on structurally 
optimized ANFIS-based fuzzy inference system. 

The objective function (performance index) is a 

basic mechanism guiding the evolutionary search 
carried out in the solution space. The objective function 
includes both the training data and testing data and 
comes as a convex combination of the two components. 

( , _ ) (1 ) _f PI E PI PI E PI         (18) 

Here, PI and E_PI denote the performance index for 
the training data and testing data, respectively.   is a 
weighting factor that allows us to form a sound balance 
between the performance of the model for the training 
and testing data. Depending upon the values of the 
weighting factor, several specific cases of the objective 
function are worth distinguishing.  
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of MFs

...
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of MFs
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of MFs

Order of 
Polynomial

Input 
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Input 
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...
Input 
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polynomial

Apexes of membership functions 
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First 
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First 
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apex

First 
apex

Second 
apex

In case of structural optimization result  as the following
- Number of input variables : 4
- Number of membership functions per variable : [2, 3, 2 ]

No. of
variable

Chromosome for structural optimization

Number of input variables to 
be used in fuzzy model

Genes for input variables 
to be selected

Genes for number of membership functions  
per input variable to be selected

 Fig. 2. Arrangement of chromosomes for the 
optimization of fuzzy model 

 

(i) If 1    then the model is optimized based on the 
training data. No testing data is taken into 
consideration. 

(ii) If 0.5    then both the training and testing data 
are taken into account. Moreover it is assumed that they 
exhibit the same impact on the performance of the 
model. 

(iii) The case     where  [0, 1]   embraces both 

the cases stated above. The choice of   establishes a 
certain tradeoff between the approximation and 
generalization aspects of the fuzzy model.   

 
4.  EXPERIMENTAL STUDIES  

This section includes comprehensive numeric studies 
illustrating the design of the fuzzy model. We use three 
well-known data sets. PI denotes the performance index 
for training data and E_PI for testing data. The 
weighting factor  = 0.5 is taken into consideration. 
The numeric values of the parameters of the PSO were 
either predetermined or selected experimentally. More 
specifically, we used the following values of the 
parameters: maximum number of generations is 150; 
maximal velocity, vmax, is 20% of the range of the 
corresponding variables; w=0.4 and acceleration 
constants c1 and c2 are set to 2.0. The maximal velocity 
was set to 0.2 for the search carried out in the range of 
the unit interval [0,1]. The algorithm terminates after 
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running 1000 generations. The parameters of SSA are 
as follows. We use 150 generations and a size of 100 
populations (individuals) for structure identification 
and run the method for 1,000 generations. The 
population size is 60 for parameter identification. In 
each generation, we first search the space based on 8 
solutions generated randomly and then search the space 
based on the best solution.  

 
4.1.  Non-linear function  

The three-input nonlinear function is given as 
0.5 1 1.5 2
1 2 3(1 )y x x x                (19) 

It is widely used to evaluate performance of various 
fuzzy models [14-17]. In this experiment, the data set is 
partitioned into two separate data sets. We use MSE 
defined by Eq.(5) as the performance index. The first 
50% of data set (consisting of 20 pairs) is used for the 
design of the fuzzy model. The remaining 50% data set 
(consisting of 20 pairs) helps quantify the predictive 
quality of the model.  

 

 
(a) Identification error in successive generations 

 
(b) Computing time in successive generations 

Fig. 3. Comparison of PSO with SSA (Non-linear 
function). 

 
Figure 3 shows the optimization process of fuzzy 

model with eight fuzzy rules when running SSA and 

PSO, respectively. SSA and PSO exhibit the same 
identification error (performance index) in structural 
optimization, but SSA comes with the lower error than 
the one produced by the PSO in parametric 
optimization; see Figure 3(a). Moreover, Figure 3(b) 
shows that SSA uses less CPU time than PSO in each 
optimization phase.  

Table 1 supports a comparative analysis 
considering some existing models; it is evident that the 
proposed model compares favorably both in terms of 
accuracy and prediction capabilities. Notice that we 
compare with different types of model such as FNNs 
and GMDH, because there no previous fuzzy model for 
three-input nonlinear data. 

 

Table 1. Comparison of identification errors for 
selected fuzzy models (Non-linear function) 

Model  PI E_PI No. of rules

Shinichi's model [14] Type 1 0.84 1.22  

 Type 2 0.73 1.28  

Sugeno's model [15] Model I 1.5 2.1  

 Model II 1.1 3.6  

Linear model [16]  12.7 11.1  

GMDH [16]  4.7 5.7  

Single-FNN [17]  2.670 3.063  

Oh et al.'s model [17]  0.174 0.689  

Our model 

PSO+IG  0.000837 0.1590 8 

SSA+IG  0.000835 0.1564 8 

 
4.2.  Gas Furnace Process 

The second well-known dataset is time series data 
of a gas furnace utilized by Box and Jenkins [2-6,13]. 
The time series data is comprised of 296 input-output 
pairs resulting from the gas furnace process has been 
intensively studied in the previous literature. The 
delayed terms of methane gas flow rate ( )u t  and 

carbon dioxide density ( )y t  are used as six input 

variables with vector formats such as 
[ ( 3), ( 2), ( 1), ( 3), ( 2), ( 1)].u t u t u t y t y t y t     
 ( )y t  is used as output variable. The first 148 pairs are 
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used as the training data while the remaining 148 pairs 
are the testing data set for assessing the predictive 
performance. MSE is considered as a performance 
index. 

 
(a) Identification error in successive generations 

 
(b) Computing time in successive generations 
Fig. 4. Comparison of PSO with SSA (GAS). 

 
Table 2. Comparative analysis of selected models 

(GAS) 
Model PIt PI E_PI 

No. of  
rules 

Pedrycz's model[2] 0.776   20 
Tong's model[3] 0.469   19 
Xu's model[4] 0.328   25 

Sugeno's model[5] 0.355   6 

Oh et al.'s 
model[6] 

Simplified  0.024 0.328 4 

Linear 
 0.022 0.326 4 
 0.021 0.364 6 

HCM+GA 
[13] 

Simplified 
 0.035 0.289 4 
 0.022 0.333 6 

Linear 
 0.026 0.272 4 
 0.020 0.264 6 

Our model 
PSO+IG 

 0.019 0.284 4 
 0.015 0.273 6 

SSA+IG 
 0.017 0.266 4 
 0.015 0.260 6 

 
Figure 4 depicts the optimization process in SSA 

and PSO for the fuzzy model with six fuzzy rules. It 
shows that SSA has less identification error, less CPU 
time and rapid convergence in comparison with PSO. 
The identification error of the proposed model is 

compared with the performance of some other models; 
refer to Table 2. It is easy to see that the proposed 
model outperforms several previous fuzzy models 
known in the literature. 
 
4.3.  Chaotic Mackey-Glass Time Series  

A chaotic time series is generated by the chaotic 
Mackey–Glass differential delay equation [18-23] of 
the form: 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t




 
 

 
              (20) 

The prediction of future values of this series arises 
is a benchmark problem that has been used and 
reported by a number of researchers. From the 
Mackey–Glass time series x(t), we extracted 1000 
input–output data pairs for the type from the following 
the type of vector format such as: [x(t-30), x(t-24), x(t-
18), x(t-12), x(t-6), x(t); x(t +6)] where t = 118–1117. 
The first 500 pairs were used as the training data set for 
IG-based FIS while the remaining 500 pairs were the 
testing data set for assessing the predictive 
performance. To come up with a quantitative 
evaluation of the fuzzy model, we use the standard 
RMSE performance index as like Eq. (5).  

 

 
(a) Identification error in successive generations 

 
   (b) Computing time in successive generations 
Fig. 5. Comparison of PSO with SSA (Mackey). 
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Figure 5 depicts the optimization process of fuzzy 
model with sixteen fuzzy rules when running SSA and 
PSO, respectively. It shows that SSA has better 
performance index, less Computing time and rapid 
convergence in comparison with PSO. Table 3 
summarizes the results of comparative analysis of the 
proposed model with respect to other constructs. Here 
PIt denotes the performance index for total process data, 
the non-dimensional error index (NDEI) is defined as 
the RMSE divided by the standard deviation of the 
target series. 

 
Table 3. Comparative analysis of selected models 

(Mackey) 

Model PIt PI E_PI NDEI
No. of 
rules 

Support vector regression 
model[18] 

 0.023 1.028 0.0246  

Multivariate adaptive 
regression splines [18] 

 0.019 0.316 0.0389  

Standard neural networks  0.018 0.411 0.0705
15 

nodes 

RBF neural networks  0.015 0.313 0.0172
15 

nodes 

Wang’s model[19] 
0.004    7 
0.013    23 

ANFIS [20]  0.0016 0.0015 0.007 16 
FNN model[21]  0.014 0.009   

Incremental type multilevel 
FRS [22] 

 0.0240 0.0253  25 

Aggregated type multilevel 
FRS[22] 

 0.0267 0.0256  36 

Hierarchical TS-FS[23]  0.0120 0.0129  28 

Our model 
PSO+IG 

 0.00346 0.00323 0.0157 8 
 0.00033 0.00035 0.0057 16 

SSA+IG 
 0.00321 0.00302 0.0155 8 
 0.00012 0.00015 0.0013 16 

 
5.  CONCLUDING REMARKS  

This paper contributes to the research area of the 
hybrid optimization of ANFIS-based fuzzy models in 
the following two important aspects: 1) we proposed a 
space search algorithm. From the perspective of the 
size of the solution space, the SSA exhibits better 
performance in finding global optimization and less 
computing time than the conventional PSO; and 2) we 
introduced the hybrid optimization of ANFIS-based 
fuzzy models based on the SSA and information 
granulation. It is shown that the coding scheme 
introduced here leads to chromosomes which help 
decrease the number of unfeasible solutions arising in 
the process of evolutionary computing. Numerical 
experiments using three well-known data sets show that 
the model constructed with the aid of the SSA exhibits 
better performance in comparison with the PSO-
constructed fuzzy model. 
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