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ABSTRACT: 
This paper presents a computational study on the dynamic of nitric oxide (NO) in both the biological and artificial 
environments, by the analysis of important nitric oxide diffusion attributes. We apply the compartmental model of NO 
diffusion as a formal tool, using a computational neuroscience point of view. The main objective is the analyses of the 
emergence and dynamic of complex structures, essentially diffusion neighbourhood (DNB), in environments with 
volume transmission (VT). The study is performed by the observation of the NO diffusion attributes, the NO 
directionality (NOD), the average influence (AI) and the center of DNB (CDNB). We present a study of the influences 
and dependences with respect to associated features to the NO synthesis-diffusion process, and to the different 
environments where it spreads (non-isotropy and non-homogeneity). The paper is structured into three sets of 
experiences which cover the aforementioned aspects: influence of the NO synthesis process, isolated and multiple 
processes, influence of distance to the element where NO is synthesized, and influence of features of the diffusion 
environment. The developments have been performed in mono bi-and three-dimensional environments, with 
endothelial cell features. The study contributes the needed formalism to management the dynamic of NO in artificial 
and biological environments also to quantify the information representation capacity that a type of NO diffusion-based 
signaling presents and their implications in many other underlying neural mechanisms, such as neural recruitment, 
synchronization of computations between neurons and in the brain activity in general. 
 
KEYWORDS: Nitric Oxide, Artificial Neural Networks, Cellular Signalling, Volume Transmission, and Diffusion 
Neighbourhood. 
  
1.  INTRODUCTION 

The understanding of brain structure and function 
and its computational style is one of the biggest 
challenges both in Neuroscience and Neural 
Computation. Knowledge of the underlying 
mechanisms of brain activity are essencial if we are 
going to reach this aim.  

Biological Neural Network (BNN) is the principal 
agent responsible for brain activity, affecting cellular 
communication and learning. Neural recruitment, or 
synchronization of computations between neurons, the 
existence of an information indexing schema at the 
BNN, or the LTP expression, are aspects that can 
directly depend on an neural underlying signaling 
schema. We understand that such aspects will play a 
crucial role in the information representation capacity, 
and consequently, in the BNN and ANN computation 
potential.  

Volume Transmission (VT) is located among all 
sets of cellular signals that globally affect brain 

activity. The underlying mechanism of VT is the 
diffusion of neuroactive substances and diffusible 
signals, such as Nitric Oxide (NO). NO is one of the 
liposoluble molecules generated by cells from its own 
tissue which permit a volumetric transmission. A key 
property of NO is its extreme diffusibility in both 
aqueous and lipid environments, which allows a rapid 
three-dimensional spread of the signal irrespective of 
the presence of membranes  [1]. Because of this, it 
freely diffuses through membranes affecting all 
neighbouring cells  [2],  [3],  [4] and  [5]. 

The presence of a molecule in the brain such as NO, 
opens new perspectives in the study of brain 
functioning. NO can help as an control element for 
several systems. It can act as a retrograde 
neurotransmitter; it can be involved in learning and 
memory, and it can play a role in the LTP process. NO 
is capable of producing a hybrid neuromodulation: 
Diffusive Hybrid Neuromodulation (DHN)  [1]. NO has 
also opened a new dimension in our concept of neural 
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communication, one overlaying the classical synaptic 
neurotransmission, where information is passed 
between neuronal elements at discrete loci (synapses). 

An intrinsic feature of the NO diffusion is the 
formation of not-wired neighbourhoods, diffuse 
neighbourhoods (DNB), which supports the emerging 
of complex structures. The formation of these 
structures has been studied by several authors  [6], but 
has not been considered as a possible underlying 
communication schema in BNN and ANN. Our studies 
consider this capacity.  

In this paper we present a computational study on 
the dynamic of nitric oxide (NO) in both the biological 
and artificial environments, by means the analysis of 
important nitric oxide diffusion attributes. We focus on 
the analysis of the DNB dynamic and its possible 
influence in mechanisms and processes at the neural 
circuit and/or higher level. An important aim is to infer 
from the analysis a possible implication of VT in the 
increase of the information representation capacity in 
both BNN and ANN, in their architectures and in the 
functional complexity of its main computation element, 
the neuron. 

The computational analysis of DNB and its 
dynamic performed in this study is based on our 
compartmental model of diffusion of NO  [1]. This 
work also defines and analyzes new nitric oxide 
diffusion attributes which are defined in the paper: 
Directionality of NO dynamics (NOD), Average 
Influence (AI), DNB by directionality, Diffusion 
Centre of the DNB (CDNB) and DNB Limit (DNBL). 

The importance of this study is providing the 
needed formalism to quantify the information 
representation capacity that a type of NO diffusion-
based signaling can present. 
 
2.  METHOD 

Diffusion is the main axis in the study of the NO 
dynamics  [7], as well as the responsible agent of the 
NO influence to different brain zones from a functional 
and structural point of view. This influence is 
materialized, essentially, by means of Diffuse 
Neighbourhoods (DNB). This concept allows to 
analyze the dynamic of NO influences through the 
diffusion environment, and which is their dependence 
with non-isotropy and non-homogeneity. The 
establishment and analysis of DNB, which we will 
perform using the compartmental model of NO 
diffusion, are required to formalize intrinsic aspects of 
the diffusion phenomena and to NO dynamics. On one 
hand, we have the directionality measure of the NO 
dynamics, which provokes different spatial-temporal 
influences in the diffusion environment and a new 
concept of DNB, the DNB by directionability. This 
makes us towards the concept of Average NO 
Influence, key variable in the DNB definition and the. 

On the other hand, adaptive a no local character of the 
DNB dynamic justifies the need of variables which 
formalize that dynamism and its effect as diffusion 
centre of the DNB and DNB limit. 
 
2.1.  Compartmental Model of NO Diffusion and 
Diffusive Concepts 

The compartmental model of NO diffusion  [1] is a 
discrete computational model that allows us to study 
the dynamic of NO, generation, diffusion, self-
regulation and recombination, in biological and 
artificial environments. Its main features are its 
simplicity, and it can be considered as a general formal 
tool with biological plausibility. It gathers the real 
features of the diffusion environment such as non- 
homogeneity and the non-isotropy and possible 
morphology of the NO synthesis. 

The model represents an important tool for the 
design and interpretation of biological experiments on 
NO behaviour and its effect on brain structure and 
function. 

The model is based on compartmental systems  [8] 
and is defined by a system of first order differential 
equations, like those seen in Eq. 1, where we can 
consider specific cyclic contour conditions.  ݀ܥ௜݀ݐ = ௜ିଵܥ௜,௜ିଵሺܦ − ௜ሻܥ + ௜ାଵܥ௜,௜ାଵሺܦ − ௜ሻܥ − ௜ܥ௜ߣ + ௜ܨ (1)

where Di,i-1 and Di,i+1 are the coefficients of diffusion 
between the compartments i and i-1 and between i and 
i+1, respectively. λi is the self-regulation parameter of 
NO. It is being considered, for this case, for the self-
regulation of NO dynamics proportional to the quantity 
of concentration, and Fi is the function of generation of 
NO.  

The computational analysis of DNB and its 
dynamic, using this model, is performed by means the 
analysis of important nitric oxide diffusion attributes, 
which will be mathematically defined and formalized 
in this paper, that are: Directionality of NO dynamics 
(NOD), Average Influence (AI), DNB by 
directionality, Diffusion Centre of the DNB (CDNB) 
and DNB Limit (DNBL)  [9]. 

 
NO Directionality (NOD) 

What we shall call Directionality of NO dynamics 
(DNO) first needs to be formalized before entering into 
the concept of quantifying the influence that a 
compartment has on another, specifically in a VT 
environment. This definition will later be used when 
introducing the formalization of DNB dynamics.  

NOD is a magnitude that is defined for each 
compartment h and dimension, and its value is given as 
a function of the concentration dynamics of the NO that 
are associated with the h compartments that are 
adjacent to each dimension. The compartments that are 
adjacent to a given h are determined by the defined 
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These isolation areas are not static if they are not 
displaced with time as a function of the generation and 
diffusion of the dynamics of the NO in the 
environment. The displacement allows us to highlight 
an important result in the dynamics of the NO, 
directing in the end of the time period a dynamic and 
self-adjusting tessellation of the environment that could 
lead to the segmentation of computations and indexing 
of the  information in this biological and/or artificial 
setting.  

Two important attributes of these complex 
structures that are also found in DNB, are CDNB and 
DNBL. We conclude the computational study with an 
analysis of CDNB dynamics. The dependence that 
DNB dynamics and CDNB have with respect to non-
isotropic and non-homogeneous environments has 
already been discussed. We have worked in a bi-
dimensional environment with very low diffusion 
constant values in two areas/zones, which makes the 
NO dynamics to be almost null. 

The diffusion constant is in the range 
3.3×103±0.2×103 m2s-1 in the rest of the environment. 
Two NO synthesis processes are induced in two 
compartments i, k. A formation of non-symmetrical and 
non-local DNBi and DNBk at times t=0,6 s. and t=1,3 
s. are observed (see Figures 9a and 9b). Thus a 
changing trajectory in CDNB is apparent in addition to 
a possible dependence on the shape of DNB. For t=0,6 
s., in both neighbourhoods, CDNB matches with the 
compartment where synthesis was caused; however for 
t=1,3 s. in DNBi the position of CDNB has changed, 
moving in agreement to that neighbourhood shape, 
Figure 9. 
 
4.  CONCLUSIONS 

We present a work developed from a computational 
neuroscience point of view which provides a step 
forward in the understanding of the VT and their 
implications in the biological and artificial 
environments. 

We have performed a computational analysis of one 
of the great potentialities of NO as diffusive signaling, 
the DNB. We have used the compartmental model of 
NO diffusion, showing its high capacity to study the 
dynamic of NO.  

We have proposed, defined and analyzed attributes 
associated to the diffusion phenomena which present 
significant capabilities to characterize the NO dynamic. 
These attributes are Directionality of NO dynamic, 
Average Influence, Diffusion Neighborhood by 
directionality, Diffusion Centre of the DNB and DNB 
Limit. 

We have established that the generation and 
dynamical behavior of the DNB depend on associated 
characteristics to the NO synthesis-diffusion processes, 
and to the environment where it spreads (non-isotropy 

and non-homogeneity). The complexity in DNB 
emerges when the complexity in NO generation 
processes has increased, and when the NO spreads in 
complex environments, with non-isotropy and non-
homogeneity.  These environment characteristics are 
also responsible for a non uniform dynamic of DNB. 
The non symmetry in DNB presents a greater 
dependence of the non isotropy of the environment, not 
the non-homogeneity. 

This paper also shows that the dynamic of NO leads 
a dynamic and self-adjusting tessellation of the 
environment that could guide the segmentation of 
computations and indexing of the information in this 
biological and/or artificial setting. This phenomenon 
relies on the existence of non static isolation zones. 
With this study it is possible to explain some important 
environment characteristics such as non-homogeneity. 
Finally all these results allow us to detect the 
implications of VT, by means of DNB, in the increase 
of information representation capacity, in the neural 
recruitment, in the synchronization of computations 
between neurons, and in the neural modulation, in both 
scenarios, biological and artificial. These implications 
will also permit to confirm the possible role of the NO 
on several neural circuits as the sleep-wake cycle 
control.  

Future research will include an analysis of the 
behavior of DNB by developing complementary studies 
such as complex systems using bifurcation theory and 
analysis 
 
REFERENCES 
[1] C.P. Suárez Araujo, P. Fernández López, P. García 

Báez and J.L Simoes da Fonseca., 2006. “A Model of 
Nitric Oxide Diffusion Based in Compartmental 
Systems”. In International Journal of Computing 
Anticipatory Systems (IJCAS), Vol. 18, pp:172-186. 

[2] R.D. Hawkins, E.R. Kandel, and S.A. Siegelbaum, 
1993. In Annu. ev. Neurosci. 16, 625-665. 

[3] E.M. Schuman, and D.V. Madison, 1994. “Nitric 
Oxide and Synaptic Function”. In Annu. Rev. 
Neurosci. 17:153-183. 

[4] M. Zhuo, J.T. Laitinen, X.C. Li, And R.D. Hawkins, 
1998. In Learn. Mem., 5, 467-480. 

[5] J. Garthwaite, and C.L. Boulton, 1995. “Nitric Oxide 
Signalling in the Central Nervous System”. In Annu. 
Rev. Physiol. 57 pp. 683-706. 

[6] B. Krekelberg, 1997. “Modelling cortical seft-
orgnization by volumen learning”. Doctoral 
Dissertation. King's College London. 

[7] J. Wood, and J. Garthwaite, 1994. “Models of the 
Diffusional Spread of Nitric Oxide: Implications  
for Neural Nitric Oxide Signalling and its 
Pharmacological Properties”. In 
Neuropharmacology Vol. 33, N. 11, pp. 1235-1244. 

[8] D.H. Anderson, 1983. Compartmental analysis and 
tracer kinetics. In Springer-Verlag, Berlin. 

[9] P. Fernández López, C.P. Suárez Araujo, and García 
Báez, P., “A Computational Study of the Diffuse 



Majlesi Journal of Electrical Engineering      Vol. 5, No. 1, March 2011 
 

82 
 

Neighbourhoods in Biological and Artificial Neural 
Networks”.  In IJCCI 2009 - Proceedings of the 
International Joint Conference on Computational 
Intelligence. INSTICC Press. 

[10] J. Von Neumann, and A.W. Burks. 1966. “Theory of 
seft-reproducing automata”. University of Illinois 
Press, Urbana. 

[11] T. Malinski, Z. Taha, S. Grunfeld, , S. Patton, M. 
Kapturczak, and P. Tombouliant, , 1993. “Difusion of 
nitric oxide in the aorta wall monitored in situ by 
porphyrinic microsensors”. In Biochem Biophys Res 
Commun, 193, 1076-1082. 

[12] Aleh Balbatun, Febee Rophail Louka and Tadeusz 
Malinski. “Dynamics of nitric oxide release in the 
cardiovascular system. Acta Biochimica Polonica”. 
Vol. 50 No. 1. pp. 61-68. 10 February 2003. 
 


