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ABSTRACT: 
This paper presents a new approach to a robust fuzzy controller design for the bilateral teleportation system with 
varying time delays using linear matrix inequalities. Communication channels are considered with different 
forwarding and returning time delays. The time delays of communication channels are assumed to be unknown and 
randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be 
known. In order to design the controllers, first, an impedance controller is designed for the master system to achieve 
desired impedance behavior for the master. Then, nonlinear Euler-Lagrange equation of motion of the slave system is 
linearized in the neighborhood of some operating points. In the sequel, an open-loop scheme is considered for the 
slave system. The linear model of the slave system has two imaginary/unstable poles. The slave system is stabilized by 
a PD-controller to be used in the open-loop scheme. To design the slave controller, the tele-operator block diagram is 
rearranged such that the tele-operator block diagram converts to a standard representation of a feedback control system 
which helps us to design a robust H-infinity controller for the slave system. The local linear models of the system are 
combined to form a Takagi-Sugeno fuzzy model of the whole tele-operation system. A Lyapunov-Krasovskii function 
is defined to analyze the closed-loop system’s stability and derive a sufficient delay-dependent stability criterion. An 
H-infinity performance index is defined and the design criteria for the slave controller are expressed as a set of LMIs, 
which can be tested readily using standard numerical software. 
 
KEYWORDS: Bilateral force feedback control, Robust control, Takagi-Sugeno fuzzy system, LMI. 
  
1.  INTRODUCTION 

Stability analysis and control design problems of 
time delay systems have drawn an increasing attention 
during recent decades [1]-[2]. Since 2000, Takagi-
Sugeno (T-S) fuzzy model approach has been extended 
to deal with analysis and control problems of nonlinear 
systems with time delay [3]. As an application, 
teleoperation is one of the most interesting areas of 
such systems [4]-[8]. A teleoperation system consists of 
a dual robot system in which a remote slave robot 
tracks motion of a master robot, which is, in turn, 
commanded by a human operator. Information is 
transmitted between master and slave via a 
communication media. The internet is of the most 
common communication channels used in this field. 
Time delay, induced by the internet, is time varying 
and it is well-known in the literature that time delay is a 
major source of instability and performance 
debasement [1]. 

In teleoperation, a human operator conducts a task 
in a remote environment via master and slave 

manipulators. Providing contact force information to 
the human operator can improve task performance. 
When this is done, the contact force is said to be 
reflected to the human operator and the teleoperator is 
said to be controlled bilaterally [4]. The field has wide 
applications in areas such as operations in hazardous 
environments, undersea exploration, robotic surgery, 
drilling, etc [9]. The reader is referred to [8]-[9] for 
detailed surveys of the various schemes developed for 
the problem of bilateral teleoperation. 

A number of different control schemes have been 
proposed in the literature for teleoperation systems to 
provide a reliable and satisfactory control system [9]. 
Furthermore, over the last years, the number of 
applications of fuzzy logic to mobile robot control has 
increased significantly [10], mainly due to its 
capabilities to cope with imprecise information and the 
flexibility of nonlinear control laws. 
However, this paper presents a new approach to deal 
with not only the nonlinear nature, but also the stability 
analysis and control design problem of the 
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teleoperation system. In other words, the approach 
allows further taking into account the nonlinearities of 
the teleoperation system. in addition, it utilizes a new 
Lyapunov-Krasovskii functional (LKF) which causes 
to derive a new less conservative stability analysis 
criterion, and also provides a robust H-infinity control 
system design for slave system. The criteria for 
stability and control design are presented as a set of 
matrix inequalities.  

In this paper, the environment is assumed to be 
passive. In this scenario, and in the presence of delay, 
the nonlinear slave teleoperation system, which is 
modeled by Euler-Lagrange's equations of motion [11], 
is linearized in the neighborhood of some operating 
points. An impedance controller is considered for the 
master system. In the sequence of the design problem 
solution, the control system block diagram is 
rearranged such that the slave control system design is 
converted to design a robust controller for an 
equivalent standard feedback control system. 
Moreover, the resulting linearized models are used to 
construct a T-S fuzzy model of the teleoperation 
system. The obtained T-S fuzzy model is fed to a 
robust stability analysis problem. Furthermore, an LKF 
is defined and its derivative is used to construct the 
stability criteria based on a set of LMIs. In the sequel, 
an H-infinity index is defined and a set of LMIs is 
derived for slave controller design problem. 

The paper is organized as follows. Section 2 
presents the basic teleoperator configuration. The 
design problem is explained with details and 
formulated in a standard representation of control 
system. Section 3 provides the main results; the 
obtained sufficient delay-dependent conditions for 
stability and controllers design. Section 4 shows 
numerical simulations. Finally, in Section 5, a brief 
discussion about our results is presented. 
 
2.  PROBLEM STATEMENT 

Fig. 1 shows the block diagram representation of a 
bilateral teleoperation system. In Fig. 1, MP  denotes 

the overall master side dynamics, including the master 
robot and its controller. sK  and sP  represent the slave 

side controller and the robot dynamics, respectively. 
Furthermore, the forwarding and returning 
communication channels time delays are labeled as 1d  

and 2d , respectively. hf  and sf  are the forces applied 

by the operator on the master and the force applied on 

the slave, respectively. Meanwhile, d
sf  shows the 

slave force signal sent to the master through the 
communication channel. In this scheme, the angular 
velocity information of the master is transmitted to the 
slave through the communication channel and the force 
information of the slave is reverted back to the master 

through the channel. The signals from and to the 
channel are related as follows: 

1( ) ( )d
m mt t d    (1) 

)()( 2dtftf s
d

s   (2) 

  

 
Fig. 1. The teleoperation control system configuration. 
 

A computer network such as the internet can be 
employed as a communication channel. One of the 
main factors affecting teleoperation is the transmission 
time delay between the master and the slave. 

Suppose the local dynamics of the master is 
expressed as a 1-degree-of-freedom (DOF) mass-
damper system for an arbitrary operating point as 
follows: 

m m m m m hm b u f                   (3) 
 

where   and u  are angular velocity and torque. m  
and b  are mass and viscous coefficients, subscript ‘m’ 
denotes the master, and finally, hf  is the force applied 

by the operator to the master. 
Neglecting friction or other disturbances, as 

represented in [11], the Euler-Lagrange's equation of 
motion for an n-link slave robot is given as: 

 

( ) ( , ) ( )s s s s s s s s s s eM q q C q q q g q f                  (4) 
 

where the subscript s  indicates the slave variables, 
s

q  

is the 1n   vector of joint displacement, 
s

q  is the 

1n   vector of joint velocity, s  is the 1n   vector of 

applied torque, ( )
ssM q  is the n n  symmetric 

positive definite manipulator inertia matrix, 
( , )

s ssC q q  is the n n  matrix of Centripetal and 

Coriolis torques and ( )
ssg q  is the 1n   gradient of 

the gravitational potential energy. ef  is the 

environmental force acting on the slave robot when it 
contacts the environment. 

As a case study, consider the nonlinear dynamics of 
a 1-link robot [11] as following: 

21
( , , ) ( ) ( cos( ))

12 2
F m m r mg u          

        (5) 

Linearizing the slave nonlinear dynamics using 
Taylor's series in the neighborhood of some 
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equilibrium operating Q -points give us local linear 
models. 

Q Q Q

F F F
u  

  
  

     
  

 
                (6) 

21
[ (cos( ) sin( )] 0 [ ( )]

2 12
mg m m r u           

    (7) 

The local model (6) can be shown as following: 

u                   (8) 

where: 

21
[ ( )]
12

m m r      

[ (cos( ) sin( ))]
2

mg   
   

  and   are calculated in the operating Q -points. 

The open-loop transfer function of the local model of 

the slave system ( )olsT s  is: 

2

( ) 1
( )

( )ols
s

T s
U s s 


 


              (9) 

Eq. (9) indicates the open-loop dynamics of the 
local slave model has one unstable or two imaginary 
poles. 
 
2.1.  Master controller design 

The impedance control is one of the widely used 
approaches for teleoperation applications [8]. An 
impedance controller relates the applied force and the 
velocity of a manipulator tip. Assume that the desired 
impedance for the master is given by: 

d
m m m h sM B K f f                              (10) 

where M , B  and K  are the inertia, damping and 
stiffness of the desired impedance, respectively.  

Noise problems make the measurement of the 
angular acceleration very difficult. Therefore, the 
master side control law is derived such that the 

acceleration m  is not measured directly [12]. So, by 

combining (9) and (4), the control law of the master is 
obtained as follows: 

 1 dm m m
m m m h s m

m m m
u b B v f f Kx

M M M

           
   

 (11) 

 
2.2.  Slave controller design formulation 

We consider an open-loop controller scheme for the 
slave manipulator to track the position of the master. 
The open-loop slave dynamics (8) has one unstable or 
two poles on the imaginary axis and the system will be 
faced with the stability problem. To overcome the 
instability problem, at first, a PD controller is used for 
each local slave model to stabilize it. Consider a PD-
controller as following: 

 

( )PDi s pi diC s k k s               (12) 

where pik  is proportional gain and dik  is derivative 

constant. For each local model, the PD-controller is 
designed such that the overall slave side transfer 
function gives a desired dynamics. In other words, 
suppose the controller ( )PDi sC s  is imposed to the local 

slave model (8), the closed-loop transfer function of the 
slave system will be: 

 

2

( / ) ( / )( ) ( )
( )

1 ( ) ( ) ( / ) ( ) /

di piPDi s ols
si

PDi s ols di pi

k s kC s T s
P s

C s T s s k s k

 

  


 

   
 (13) 

Assume that the desired characteristic polynomial 
of the slave dynamics is given by: 

 

0s s s s s sM B K                  (14) 

Therefore, the PD-controller constants are obtained as 
following: 
 

/

( ) /
di s s

pi s s

k B M

k K M


 
             (15) 

Furthermore, one of the most difficulties to use an 
open-loop control is to reject the disturbance imposed 
on the plant [13]. In order to reject disturbances, a 
(sub)optimal disturbance canceling technique was 
developed [13]. This action does not enter to the stage 
of the control system design stage, directly. Therefore, 
for time being, to have more simplicity, the disturbance 
cancelling-loop has not been shown in Fig. 1. Then, we 
rearrange the control system configuration components 
of Fig. 1 such that the slave side controller design is 
converted to be a controller of a standard representation 
of feedback control system design as shown in Fig. 2.  

In Fig. 2, w  shows the exogenous input (human 
operator force) and z  denotes the controlled output 
which is the slave side velocity and/or displacement. 
Also, y  and u  are the equivalent measured output 

(delayed master side velocity command) and control 
inputs (slave robot force), respectively. 

 

 
Fig. 2. The equivalent teleoperation control system 

configuration in a standard representation. 
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Now, the stat space representation of the equivalent 
plant P  is derived. The slave plant state space 
representation is: 

1 1

2 2

1

2

0
( ) ( )

( )
( ) ( )

1

( )1 0
( )

0 1 ( )

pis

s s

s di

s s

P

kK

Mx t x t M
u t

x t B x t k

M M

x t
z t

x t

   
                      

    
           




          (16) 

 
where 2 sx   and its derivative gives the angular 

velocity. The master side overall dynamics state space 
representation is shown in Eq. (16). 
 

 

3 3
1 1 2

4 4

3

4

0 1 0 0
( ) ( )

( ( )) ( ( ) ( ))1 1
( ) ( )

( )
( ) 0 1

( )P

x t x t
w t d t u t d t d tK B

x t x t
M M M M

x t
y t

x t

                                            
       




(17) 

where 3 4[ ] [ ]T T
m mx x    . Then, the overall state 

space representation of the local equivalent plant P  
will be: 
 

1 1 2 3 1 2

1

2

( ) ( ) ( - ( )) ( ) ( - ( ) - ( ))

( ) ( )

( ) ( )

P P P

P P P

P P P

x t A x t B w t d t B u t B u t d t d t

z t C x t

y t C x t

   
 
 


(18) 

where: 

1 2 3 4( ) [ ( ) ( ) ( ) ( )]TPx t x t x t x t x t  

0 0 0

1 0 0

0 0 0 1

0 0

s s

s s
P

K M

B M
A

K M B M

 
  
 
 

  

 

1 [0 0 0 1/ ]TB M  

2 [ / 0 0]Tpi s di sB k M k M  

3 [0 0 0 1/ ]TB M   

1 2 2 2 2[ 0 ]PC I    

2 [0 0 0 1]PC   

A local dynamic output feedback controller 
( ) ( )su t K y t  is considered for slave side control 

system with the following state space representation: 
( ) ( ) ( ),      ( ) ( )

:
( ) ( ) ( ),      ( ) ( )

k k k k k k
s

k k k k k k

x t A x t B u t u t y t
K

y t C x t D u t y t u t

  
   


   (19) 

Define the tracking error e  as: 

1( ) ( ( )) ( )we t w t d t S z t                                       (20) 

where wS  determines the output required to track. 

Now, the open loop augmented stat space system 
model is defined as: 

1 1 2 3 1 2

1

2

( ) ( ) ( ( )) ( ) ( ( ) ( ))

( ) ( )

( ) ( )

a a a a a a

a a a

a a a

x t A x t B w t d t B u t B u t d t d t

z t C x t

y t C x t

      
 
 


(21) 

where the augmented state vector is defined as: 

( ) [ ]T T
a e Px t x x  with: 

 

 0
( ) ( )

t

ex t e d     ,   10

0
w P

a
P

S C
A

A

 
  
 

 

 

1
1

a

I
B

B

 
  
 

, 2
2

0
aB

B

 
  
 

, 3
3

0
aB

B

 
  
 

, 

1 1[ ]a e PC C C   and  2 2[0 ]a PC C . 

With the dynamic output feedback controller sK , 

the closed-loop system of the local augmented system 
(20) is described by the following state space 
equations: 

1

1

2

( ) ( ) ( ( )) ( ( ))

( ) ( )

( ) ( )

dx t Ax t A x t d t Ew t d t

z t C x t

y t C x t

    
 
 


    (22) 

where: 

( ) [ ( ) ( )] [ ]T T T
a k e P kx t x t x t x x x  , 

1 2( ) : ( ) ( )d t d t d t  , 2 2 2

2

a a k a a k

k a k

A B D C B C
A

B C A

 
  
 

, 

3 2

3

0

0
k P

d
k

B D C
A

B C

 
  
 

, 1 1 0aC C    , 

2 2 0aC C    , and 1[ 0]T T
aE B . 

 
2.3.  T-S Fuzzy model of the teleoperator system 

Local linear models are used to construct the T-S 
fuzzy model of the system. So, we can choose arbitrary 
membership functions for the desired operating points 
in order to collect the different local linear models of 
the system in various operating points together to 
obtain a T-S fuzzy representation of the teleoperator 
system. A deep introduction to T-S fuzzy systems with 
state time delay is found in [3].  

Consider the local linear models of the augmented 
equivalent plant P  as Eq. (20): 

 

1 1 2 3 1 2

1

2

( ) ( ) ( ( )) ( ) ( ( ) ( ))

( ) ( )

( ) ( )

a ai a a i a i a i

a a i a

a a i a

x t A x t B w t d t B u t B u t d t d t

z t C x t

y t C x t

      
 
 


 

1,2, ,i r                (23) 
where r  is the number local linear models. The 
nonlinear master-salve teleoperator system with time 
delay can be approximated by a time-delay T-S fuzzy 
model of the following form: 
Plant Rule i : IF 1  is 1i  and   and p  is ip , 

THEN: 
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1 1 2 3 1 2

1

2

( ) ( ) ( ( )) ( ) ( ( ) ( ))

( ) ( )

( ) ( )

a ai a a i a i a i

a a i a

a a i a

x t A x t B w t d t B u t B u t d t d t

z t C x t

y t C x t

      
 
 



1,2, ,i r                (24) 
where r  is the number of IF-THEN rules and equal to 
local linear models; )(xj  and ij  

),,1,,,1( rjri    are respectively the premise 

variables and the fuzzy sets; the forwarding and 
returning time delays 1( )d t  and 2 ( )d t  are unknown 

but are assumed that: 

1 1 1 1

2 2 2 2

0 ( ) , ( )

0 ( ) , ( )

d t d d t

d t d d t





       


      



            (25) 

and 1 2:d d d   
 
 

 

By fuzzy blending, the overall fuzzy model of the 
equivalent plant P  is inferred as follows: 
 

1 1

2 3 1 21

1
1

2
1

( )[ ( ) ( - ( ))

( ) ( - ( ) - ( ))]

( ) ( )[ ( )],

( ) ( )[ ( )],

r
i ai a a i

a
a i a ii

r

a i a i a
i

r

a i a i a
i

h A x t B w t d t
x

B u t B u t d t d t

z t h C x t

y t h C x t













 


 

 


 










 

1,2,. ,i r                (26) 

where ],,[ 1 p   and )(ih  is the membership 

function corresponding to plant rule i  such that 

1)(
1

 
r
i ih   with 0)( ih . 

In addition to the local PD-controller for stabilizing 
the slave dynamics, consider a dynamic output 
feedback controller for each local model; as follows: 
Slave Controller Rule i : IF 1  is 1i  and   and p  

is ip , THEN 

,
: 1,2,. ,

( ) ,
k ki k ki k

s
k ki k ki k

x A x B u
K i r

y t C x D u

 
  


        (27) 

( ) ( ),

( ) ( )
k a

k

u t y t

y t u t




 

where slave controllers parameters kiA , kiB , kiC , and 

kiD  are to be chosen. 

The overall slave control law is thus inferred as: 






















r

i
kkikkiik

r

i
kkikkiik

uDxChty

uBxAhx

1

1

])[()(

,])[(




                        (28) 

Combining (25) with (27), the closed loop fuzzy time-
delay system   is written as: 

1
1 1

1
1

( ) ( )[ ( ( )) ( ( ))],

:

( ) ( )[ ], 1,2,. ,

r r

i j ij dij ij
i j

r

i i
i

x h h A x A x t d t E w t d t

z t h C x i r

 



 




    





 











(29) 

where : 

( ) [ ( ) ( ) ] [ ]T T T T T T T T
a k e P kx t x t x t x x x  , 

1 2( ) : ( ) ( )d t d t d t  , 

2 2 2

2

ai a i kj a i a i kj
ij

kj a i kj

A B D C B C
A

B C A

 
  
  

, 

3 2

3

0

0

a i kj a i
dij

a i kj

B D C
A

B C

 
  
  

, 

1 1 0i a iC C     and 1[ 0]T T
ij a iE B . 

So, the control problem is to design a controller 
which robustly stabilizes the overall system   and 
causes the slave robot to track the master side 
commands. 

 
3.  MAIN RESULTS 
3.1.  Robust Stability Analysis 

Now, we will present the stability condition for the 
general form of the proposed teleoperation control 
scheme. 

 
Theorem 1: System   in Eq. (28) with delays 

1( )d t and 2 ( )d t  satisfying Eq. (24) is asymptotically 

stable if there exist matrices 0P  , 1 2 0Q Q  , 

3 4 0Q Q  , 1 2 0M M  , 3 4 0M M  , kN , 

1,...,8k  , satisfying (29); 
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11 1 2 5 6 55 1 5

22 3 4 2 3

33 7 8 6 7

44 55 4 8

55
1

1 1
1

2 2
1

2 3
1

1 4

0 0

* 0 0 0 0

* * 0 0 0

* * * 0 0

0* * * * 0 0 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

T T T
ij dij ij

T

T

T
dij

N N N N PA A N N

N N N N

N N N N

A N N

d M

d M

d M

d M









      
    
   
 

  
  
 

 
  
 
  

                (29) 

 for , 1, 2, ,i j r   

where: 

11 1 3 1 1 5 5
T T T

ij ij ijA P PA Q Q N N N N         ,  

22 1 1 2 2 2 5 5(1 )( ) T TQ Q N N N N         ,  

33 2 3 4 6 6 7 7(1 )( ) T TQ Q N N N N         ,  

44 1 2 2 4 4 4 8 8(1 )( ) T TQ Q N N N N           ,  

55 1 1 2 2 2 3 1 4( )d M d M d M d M     . 

 

1 2 3 4 5( )V t V V V V V                                       (30) 

1 ( ) ( )TV x t Px t , 

1

1 1 2

( )

2 1 2
( ) ( ) ( )

( ) ( ) ( ) ( )
t t d t

T T

t d t t d t d t
V x s Q x s ds x s Q x s ds



  
  , 

1

1

1 2

0 0

3 1

0

2

( ) ( )

( ) ( )

T

d

d
T

d d

V x t M x t d d

x t M x t d d





   

   





 

  

 

 

 

 

 

, 

2

2 1 2

( )

4 3 4
( ) ( ) ( )

( ) ( ) ( ) ( )
t t d t

T T

t d t t d t d t
V x s Q x s ds x s Q x s ds



  
  , 

2

2

1 2

0 0

5 3

0

4

( ) ( )

( ) ( )

T

d

d
T

d d

V x t M x t d d

x t M x t d d





   

   





 

  

 

 

 

 

 

. 

where 0P  , 0iQ  , 0iM   are matrices to be 

determined. The time derivative of ( )V t  along the 

solution, using Newton-Lebniz formula and Schur 
complement theorem give us the stability conditions. 
Because a similar rule to that of [14] is used, the proof 
of the theorem is omitted. 

Remark 1. Using new and different LKF causes to 
derive new LMI conditions for stability criteria. When 
we use more information to derive the stability 
condition, it will be less conservative. There are two 
different delays in forwarding and returning channels. 
Since the properties of the delays are different due to 
transmission conditions, it is not acceptable to 
combine them together. Theorem 1 presents a delay 
dependent stability condition for system   which is a 

matrix inequality and can be readily checked using 
well known numerical software. 

Remark 2. The stability condition of Eq. (29) is for 
the nominal system. However, the results can be 
readily extended to the system with uncertainties. 
 
3.2.  Slave side H-infinity controller synthesis 

We introduce the following H-infinity performance 
index for system  , with zero initial conditions, as: 

 
2

1 1
 0

[ ( ) ( ) ( ( )) ( ( ))]T T T
w wJ z t S S z t w t d t w t d t dt


    (31)    

Remark 3. Human operator is one of the important 
components of teleoperation system. S/he is 
considered as a passive subsystem in a teleoperation 
system which does not intentionally destabilize the 
system. Therefore, human operator avoids sudden 
changes in commands, imposed on the teleoperator 
system. This remark is in-line with the assumptions 
that usually imposes by the other researchers which 
use passivity theory for their designs [15]-[16]. To 
formulate this description in design procedure, assume 
that: 

1 1 2( ) ( ( )) ( )q w t w t d t q w t                                 (32) 

where 1q  and 2q  are real numbers. Then, one has: 
 

2 2
2

 0

 
2 2

1
 0

[( ( ) ( ) ( ) ( ))]     

[( ( ) ( ) ( ) ( ))]

T T T
w w

T T T
w w

z t S S z t q w t w t dt J

z t S S z t q w t w t dt









  




   

(33)  

Satisfying H   performance index in Eq. (31) 

requires the right-hand side term of Eq. (33) to be 
negative. 

 
Theorem 2: The closed loop system   is robustly 

stable with tracking error bound   for time delay 

satisfying Eq. (24), if there exist matrices 0P  , 

1 2 0Q Q  , 3 4 0Q Q  , 1 2 0M M  , 

3 4 0M M  , kN , 1,...,8k   and scalar q  

satisfying Eq. (34); 
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11 1 1 1 2 5 6 66 66 1 5

22 3 4 2 3

33 7 8 6 7

44 66 66 4 8
2 2

55

66
1

1 1
1

2 2

0 0

0 0 0 0 0

0 0 0 0

0 0

0 0 0 0 0

0 0 0 0

0 0 0

0

T T T T T T
ij i w w i dij ij ij ij ij

T

T

T T
dij ij dij

ij

C S S C N N N N PA PE A E A N N

N N N N

N N N N

A E A N N

q I

d M

d M







        
   
    
     
     
     
      
       

1
2 3

1
1 4

0

0

0d M

d M





 
 
 
 
 
 
 
  
 
 
 
 
          
           
for , 1, 2, ,i j r                      (34) 

where  

55 66
T

ij ij ijE E   , 

66 1 1 2 2 2 3 1 4( )d M d M d M d M      

and the other notations are the same as in Theorem 1. 
 

Proof: Following the procedure like the stability 
analysis and the assuming system   with zero initial 
conditions, it can be concluded that: 

2
1 1

0

2 2

0

[ ( ) ( ) ( ( )) ( ( )) ( )]   

      [( ( ) ( ) ( ) ( ) ( ))] 

T T T
w w

T T T
w w

J z t S S z t w t d t w t d t V dt

z t S S z t q w t w t V dt









      

  









(35) 

 

since 
0

( ) 0
t

V


   and ( ) 0
t

V


  . Then, one 

obtains 0J  , if the LMI Eq. (33) holds over the 
entire uncertain domain. The LMI implies that 0J   
for any nonzero 2w L  and over the entire uncertain 

domain, i.e. the closed-loop system   is robustly 
stable for any time delay satisfying the constraints in 
Eq. (24), which concludes the proof. 

 
4.  SIMULATION RESULTS 

The step response is the most common and generic 
dynamic test for controls. Hence, the tracking control 
performance is evaluated by applying a step force 
exerted by a human operator. Two different sets of 
parameters of desired behavior and manipulators were 
considered with equal varying time delay in 
forwarding and returning communication paths. 

Example 1: The parameters were set to 1 M kg
, 1 /B Ns m  and 1 /K N m  for the master robot. 
For the slave robot, the parameters were set to 

0.1 m , 0.05r m , 5m kg and 

9.8 /g N kg . We linearize the slave system about 

30    and 60   . The linearized models are 

obtained as: 0.245 1.47 u    and 

0.245 0.98 u   , respectively. The desired 
parameters for slave system were set to: 1sM  , 

6sB  and 9sK  . The local PD-controllers were 

obtained as: 1 1.47 0.735PDsK s   and 

2 1.47 3.185PDsK s   respectively. Also, H   

performance index was set to 0.01  . 

Time delay constraints were considered as 

1 2 0.4 secd d   and 1 2 0.4   . The LMIs were 

solved by PENBMI Software [17]. The corresponding 
stable slave side controller was obtained with the 
following minimum realization: 

kA  = [-2.439e+004   -864.9;   -941.5   -155], 

 kB  = [ -36.94;   -46.32],  

kC  = [84.37   3.202],  kD  = -7.288e-017       (36) 

To obtain a slave side controller with unit DC gain, 
a negative proportional gain was cascaded with the 
slave side controller equals to -4.8715. Fig. 3 shows 
the simulation results of H   slave side controller. 

The figure shows excellent tracking performance. 
However, the transient behavior should be improved. 
 

 
Fig. 3. Step response of H  Controller for position 

tracking by sx  (--). 

 
Example 2: In the second simulation, the 

parameters were set to 1 M kg , 3 /B Ns m  and 

2 /K N m  for the master robot. For the slave robot, 
the parameters were set to 0.2 m , 0.1r m , 
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10m kg and 9.8 /g N kg . We linearize the slave 

system about 30    and 60   . The linearized 

models are obtained as: 1.03 4.45 u    and 

1.03 7.81 u   , respectively. The desired 
parameters for the slave system were set to: 1sM  , 

4sB   and 4sK  . The local PD-controllers were 

obtained as: 1 4 0.45PDsK s   and 

2 4 11.81PDsK s   respectively. Also, H   

performance index was set to 0.01  . 

Time delay constraints were considered as 

1 2 0.4 secd d   and 1 2 0.4   . The LMIs were 

solved by PENBMI Software [17]. The corresponding 
stable slave side controller was obtained with the 
following minimum realization: 

kA  = 1.0e+005*[-1.7841  -1.0910;  -0.0189  -4.9885], 

kB  = 1.0e+005*[1.9028; 0.6423],  

kC  = 1.0e+003*[ -3.7816   -5.5297], 

 kD  = 5.8218e+004   (37) 

To obtain a slave side controller with unit DC gain, 
a negative proportional gain was cascaded with the 
slave side controller equals to -5.425. Fig. 4 shows the 
simulation results of H   slave side controller. The 

figure shows excellent tracking performance. The 
transient behavior has been improved compared to the 
example 1 by selecting different desired impedance 
behavior. 

 

 
Fig. 4. Step response of H  Controller for 

position tracking by sx  (--). 

 
5.  CONCLUSIONS 

In this paper, a new formulation was presented for 
control system design of a bilateral teleoperator 
system. A local closed-loop configuration was 
considered for the master system and a local open-
loop configuration was considered for the slave 
system. Open-loop scheme of the slave side allowed 
us to formulate the design problem in a standard 
representation of a control system in an H   

framework. To design the controllers, first, an 
impedance controller was designed for the master 
system to achieve desired impedance behavior for the 
master. Then, the nonlinear Euler- Lagrange's equation 
of motion of the slave system was linearized in the 
neighborhood of some operating points. The slave 
system dynamics was located in a series configuration 
relative to the other portions of the control system. 
Because of the oscillatory or unstable dynamics of the 
local linear models of the slave system, local PD-
controllers were considered in addition to the main 
slave controller to stabilize the local slave system 
dynamics. The main slave side controller was 
designed based on a Takagi-Sugeno fuzzy model 
strategy. Using a Lyapunov-Krasovskii functional, 
new criteria were derived to analyze the close loop 
system stability. In the sequel, an H-infinity output 
tracking performance index was considered and the 
design criteria for the slave controller were expressed 
as a set of LMIs, which could be solved using standard 
numerical software. 
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