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ABSTRACT:  
This paper considers the problem of robust H  filter design in uncertain discrete-time singular systems with possible 
missing measurements due to unreliable network transmission channels. The stochastic variable satisfying Bernoulli 
random binary distribution is introduced to model the missing phenomena and the corresponding filtering error 
dynamics with delay is then induced. We provide a set of sufficient conditions for the existence of the desired filter, and 
propose a robust filter design method under a strict linear matrix inequality framework. A numerical example is given to 
illustrate the effectiveness of the proposed method. 
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1. INTRODUCTION 

The  optimal filtering problem for singular 
systems has been an important research topic in the past 
decade. This is due, not only to the theoretical interests, 
but also to the relevance of the topic in various 
engineering applications. For instance, based on the 
admissibility assumption of uncertain singular systems, 
some suboptimal  singular filter design methods 
were proposed in [5, 6, 7], a linear matrix inequality 
(LMI) based filter design approach was proposed for 
impulsive stochastic systems in [15], and the 
reduced-order  filtering problem based on the 
projection lemma was investigated in [9, 17], and so on. 
Most literature concerning filtering techniques such as 
in [1, 3, 5, 6, 12, 15, 17] and so forth assumed that the 
measurements contain consecutive useful signals. 
However, the measurements are not consecutive but 
contain missing observations in practical applications. 
The missing observations are caused for a variety of 
reasons. Take the networked operation systems, for 
example. The current networks induce possible data 
transmission loss and delay, which are two main 
problems in networked operation systems, due to limited 
bandwidth, intermittent remote sensor failures, or some 

of the data may be jammed or coming from a very noisy 
environment.  

Recently, more and more efforts have been focused 
on the problem of  filtering for various time-delay 
systems, and many approaches have been proposed, 
including the Riccati equation approach [11], the 
polynomial equation approach [19], the LMI approach 
[1, 3, 12] and so on. In most existing works dealing with 
the filtering problem for time-delay systems, the 
measurement missing phenomena have seldom been 
taken into account, except [9, 13, 14]. In [9], a reduced 
order filter design method is considered for nominal 
systems. The practical applications are limited because 
of its corresponding non-strict LMI constraints and 
nominal systems formation. For discrete-time singular 
systems in the simultaneous presence of time delays, 
missing measurements, and parameter uncertainties, the 
problem of robust  filtering has not been fully 
investigated and remains to be challenging.  

In this paper, the  filtering problem for a class of 
uncertain discrete-time singular systems with possible 
missing observation due to unreliable networked 
transmission will be considered. The purpose here is to 
design a stable filter such that the corresponding 
filtering error dynamics is the exponentially mean 
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square admissible, and satisfies a prescribed level of  
filtering performance via a set of conditions under the 
strictly LMI framework.  

Here, we introduce some notations to be used 
subsequently. The inequality  means that the 
matrix  is symmetric and positive definite, and 

 means . Similar definitions apply to 
symmetric positive/negative semi-definite matrices.  
is the identity matrix with dimension . Matrices are 
assumed to have compatible dimensions for algebraic 
operations if their dimensions are not explicitly stated. 

,  is the block diagonal matrix with 
diagonal elements , . The superscript T represents 
the transpose of a matrix. 0,∞  is the space of 
square-summable vectors. Prob ⋅  represents the 
probability of the occurrence of an event, and E ⋅  
denotes the expectation operator with respect to some 
probability measure. Finally, ∗ is used to simplify the 
presentation of symmetric matrices.  

The remainder of this paper is organized as follows. 
In Section 2 we give some preliminaries about singular 
systems and formulate the filtering problem with 
unreliable networked channels. Section 3 provides a 
sufficient condition for the existence of the 
corresponding filter, and develops an LMI-based 
method to the problem. Section 4 gives a numerical 
example to show validity of the proposed method, and 
finally, Section 5 concludes the paper.  

 
2. PROBLEM STATEMENT AND DEFINITIONS 

Consider the following nominal singular system,  

Σ :
E x̄ k 1 A x̄ k B u k
           z̄ k L x̄ k ,  (1) 

where ̄ ∈  and . The unforced 
singular system pair ,  of (1) with ≡  is 
regular, if  is not identically zero. If 

, then ,  is said 
to be causal. The pair ,  is stable if all the roots 
of 0  have magnitudes less than 
unity. Finally, ,  is admissible if it is regular, 
causal, and stable [2].  
Definition 1. [18]  The singular system (1) is said to be 
exponentially mean-square stable if with , 
there exist constants 0 and ∈ 0,1 , such that  

E ∥ ̄ ∥ E ∥ ̄ 0 ∥  
for all ∈ , where  denotes the set of positive 

integers.  
Definition 2. The singular system (1) is exponentially 

mean-square admissible if it is regular, casual, and 
exponentially mean-square stable.  

Consider the following uncertain networked filtering 
system with measurements communicated from 
unreliable networks or remote sensors showing in Fig. 1.  

 
Fig. 1. Networked filtering systems with unreliable 

channels 
 
The singular system is determined as in (2).  

Σ:
1

,
 (2) 

where  
, ,
, ,
, ,

 (3) 

and ∈  is the state vector, ∈  is 
the measured output vector which is transmitted to a 
filter via unreliable networks, ∈  is the vector 
to be estimated, and , ∈  are disturbance 
input vector and measured noise, respectively, in 
0,∞ ,	 which is the space of square-summable 

vectors. The matrix ∈  is singular with 
, and , , , , ,  are known real 

constant matrices with appropriate dimensions. The 
constant uncertainty matrices satisfy  

Δ   	  (4) 

with Δ Δ  and Δ ∈ . Assume that the 
pair ,  is admissible. The measurements, 
which may contain missing data due to the transmission 
via unreliable networks, are described by  

1 1 , (5) 
where the stochastic variable ∈  is a Bernoulli 
distributed white sequence taking the values of 1 and 0 
with  
Prob α 1 ≡ E α η, (6) 
Prob α 0 1 E α 1 η, (7) 

∈ 0,1  is a known constant, 1  represents 
the data-loss event at , while 0 means that data 
are received at . Prob ⋅  is the probability of the 
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occurrence of an event, and E ⋅  denotes the 
expectation operator with respect to some probability 
measure. Model (5) shows that the data dropouts can be 
encountered in data transmission in networked control 
systems. It means that at least one of these 
measurements is received by the filter, which is usually 
required in practice.  
To estimated , the following filter  

Σ :
1

   , 
(8) 

is adopted, where ∈  and ∈ . 

The matrices , , , and  are to be determined. 

Assume 1 , 1 . From Σ in (2) and Σ  
in (8), the filtering error dynamics may be written as  

Σ :

1
   1 1 ,

   1 1 ,

 (9) 

where , 

       ,        , 

and ,   ,  

  ,   ,
, ,

  ,   ,
, .

 (10) 

Let ̄ 1 ,    ∈ , and 
   ∈  for brevity. We get  

̄ ,

̄ ,

  ̄     ,

       ̄ ,

 (11) 

and present other matrices in (10) more explicitly as 
in (12).  

,

,

,

,

 (12) 

where 

,

,

,

.

 (13) 

Note that matrices on the left side of equations 
(10)-(13) are related to .  

The purpose here is to design a stable filter (8) such 
that the delay filtering error dynamics (9) is 
exponentially mean-square admissible with  
filtering performance. It means that the filtering error 
singular system Σ  will be regular, casual, and 
exponentially mean-square stable for all considered 
uncertainties, and under the zero initial condition, the 
filtering error will satisfy  

E ∥ ∥ ∥ ̄ ∥ , (14) 

for a given scalar 0 and all nonzero ̄ , 
where ̄    1 .  

The following lemma is useful for formulating the 
problem within the LMI framework.  
Lemma 1. [10]  Let , , and  be real matrices 
with appropriate dimensions. Then for the matrix  
satisfying , the matrix inequality  
Ω Π Π  
holds if and only if there exists a scalar 0 such that  

. 

 
3. ROBUST FILTER DESIGN 

The following preliminary theorem, which plays a 
key role and is the first step toward developing an LMI 
solution to the problem stated above, provides a 
sufficient condition of exponentially mean-square 
admissibility and  performance for the filtering error 
dynamics (9).  
Theorem 1.  For a given 0, the error dynamic 
system  in (9) is exponentially mean-square 
admissible and satisfies (14) for all admissible 
uncertainties, if there exist matrices , , 
and , such that  
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Ξ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Ξ ∗ ∗ ∗
∗ ∗

Ξ Ξ Ξ Ξ ∗
Ξ Ξ Ξ Ξ

,

 (15) 

where  
Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

Ξ ,

,

,

,

 (16) 

and ∈  is any matrix with full column 
rank and satisfies . The -dependent matrices 
in (16) are defined as in (11)-(13) with  replaced by 

.  
Proof: The proof of the theorem is provided in 
appendix.  

Note that as a knack, the last two terms of  in 
(16) improve the applicability instead of conservative of 
the sufficient condition, especially when it works under 
the LMI framework.  
Theorem 2.  The filtering error dynamics  in (9) is 
exponentially mean-square admissible and satisfies (14) 
with all considered uncertainties, if there exist matrices 

∈ , ∈ , ∈ , ∈ , 
∈ , and positive definite matrices , , ∈

, such that the inequality  

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗
 (17) 

is satisfied, where  

∗

Φ Φ
, 

, 

Φ
̄ , 

, (18) 

Φ
̄ ̄ , 

, Φ Φ
Φ

, 

̄ , 
, , 
̄ , 

and ̄ 1 . When the above inequality holds, the 
filter  in (8) with filter gains  

, ,

,
 (19) 

is a solution to the considered robust filtering 
problem, where  is a nonsingular matrix satisfying 

.  
Proof: The proof is provided in Appendix.  
By Lemma 1 and Schur complement, it is 
straightforward to rewrite (15) in Theorem 2 under the 
LMI framework. The resultant LMIs and the 
corresponding filter gains are presented in Theorem 3 
below.  
Theorem 3 For a given 0 , the filtering error 
dynamics  in (9) is exponentially mean-square 
admissible and satisfies (14) with all considered 
uncertainties, if there exist positive real scalars 

, , , matrices ∈ , ∈ , 
∈ , ∈ , ∈ , and positive 

definite matrices , , ∈ , such that the LMI  

 (20) 

is satisfied, where  
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∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

,

, , ,

(21) 

and  

∗

Φ Φ
, 

, 

, 

2 ∗
 

,    , 
Φ
̄ , (22) 

, 

Φ
̄ ̄ , 

,     Φ Φ
Φ

, 

̄ , 

,    , 
̄ ̄ , 

,    
̄ , 

Φ ̄ , 

̄ ,   ̄ , 

,  , 

,  ,  , 
and ̄ 1 . When the above LMIs hold, the filter 

 in (8) with filter gains  
Φ , Φ ,

,
 (23) 

is a solution to the considered robust filtering 
problem.   

Proof: By Lemma 1 and the Schur complement, it is 
easy to verify that (17) is equivalent to (20) with 

, , 0. The proof is omitted for brevity. The only 
part that must be proved here is the relationship between 
(19) and (23), which can be established via the transfer 
function matrix  of the filter from  to 

.  

Φ

Φ Φ
Φ Φ .

(24) 

Remark 1 Based on Theorem 3, the following convex 
optimization problem may be formulated to find the  
optimal filter of the form (8) such that (14) is satisfied 
with the minimal :  

min
, , , , , , , , , , ,

, (25) 

subject to the LMI (20), , , 0 , 0 
and , , . 
  
4. NUMERICAL EXAMPLE 

In this section, an example is worked out to illustrate 
the proposed filter design method. Suppose matrices of 
the system Σ in (2) are as follows:  

1.2 3 1.5
0 3 1.5
1.2 0 0

,
1
1
0.2

,

0.204 0.060 0.092
0.208 0.336 0.208
0.180 0.228 0.848

,

 0.1   0.4  0.5  ,          0.6,

1 0.6 0.5 ,    0.

 (26) 

The uncertainty matrices in (4) are  
1 2 1 , 0.2,  0.3,

0.2 0.4 0.2  ,  1,
 (27) 

and |Δ| 1. It is easy to verify that , Δ  is 
an admissible pair, and 2. 

Consider an unreliable transmission network (5) with 
0.2 . The corresponding  optimal filter is 

designed by solving the convex optimization problem 
mentioned in Remark 1, which is implemented by the 
MATLAB LMI Control Toolbox [4]. The resulting 
optimal  is 2.7666, and the filter gains in (23) are 
found to be  
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0.1404 0.0397 0.2907
0.1182 0.0370 0.4833
0.3107 0.1082 0.4774

,

 0.0105  1.2069   1.0078  ,

  0.0903  0.0032  0.6919 ,

1.6506.

 (28) 

In addition, Fig. 2 shows the corresponding results 
for the optimal  with respect to different expected 
values . It appears that a better  performance is 
achieved when there are less missing-data. 

 

 
Fig. 2. Optimal  with respect to different  

 
5. CONCLUSIONS 

The networked filtering problem for a class of 
uncertain discrete-time singular systems with missing 
measurements due to unreliable transmission channels 
has been considered in this paper. It is easy to design a 
stable filter via a set of sufficient conditions under the 
LMI framework, such that the filtering error dynamic 
system is exponentially mean-square admissible and 
satisfies a prescribed level of  filtering performance. 
An optimal  filter can also be solved by the proposed 
convex optimization. One numerical example is 
provided to illustrate the effectiveness of the proposed 
approach. In the numerical example shown and other 
numerical experiments, it appears that a better  
filtering performance is achieved when less packet-loss 
occurs. 

  
6. APPENDIX 

6.1. Proof of Theorem 1 

The proof may be divided into three parts. The first 
part is to show that the filtering error dynamics Σ  in (9) 

without any input ⋅  is regular and causal. We may 
rewrite the unforced filtering error system as  

Σ : 1 1 , (29) 

where  and  are determined in (10). Based on 
the definition 3 of [16], the regularity and causality of 
Σ  can be ensured by the ones of  

Σ : 1 , (30) 

where      1   ,  

, , . (31) 

Therefore, we establish the regularity and causality 
of the system Σ  via the corresponding matrices shown 
in (3), (10), (11), and  

1 ⋅ ⋅ ⋅

⋅
16

⋅ ⋅ ,

 (32) 

where ̄ . Since the pair ,  in 
(2) is assumed to be admissible for all considered 
uncertainty , and the filter gain  is Hurwitz, we 

get  
0, 0, (33) 

for sufficiently large . There exists ∈  such that 

0, which means that the pair ,  
is regular. On the other hand, based on (32),  

3   (34) 

The pair ,  is causal. Therefore, the system 
Σ  is regular and causal.  

Next, in order to show the the system Σ  is 
exponentially mean-square stable, we define a 
Lyapunov candidate as  

1 1
 (35) 

with , . Let  be the minimal -algebra 
generalized by ,0 . Via some 

straightforward algebraic manipulations, we have  
E 1 | Ω , (36) 
where  

Ω
Ω Ω
Ω Ω , (37) 

   1 , and  

Ω ,
Ω Ω ,

Ω ,
 (38) 
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and  is determined as in (13). It 

is not difficult to obtain from (15) and Schur 
complement that , which implies that  
E 1 | Ω

Ω
,
 (39) 

where  
0 Ω , ,

, 0,
 (40) 

and /  denotes the minimal or maximal 

eigenvalue of the square matrix . By definition 1 and 
Lemma 1 of [18], we know that the system is 
exponentially mean-square stable.  

At last, in order to show the filtering error  
satisfies the  performance (14), let  

E ∥ ∥ ∥ ̄ ∥ . (41) 

For any nonzero ̄ ∈ 0,∞  and zero initial 
conditions,  

E 0 E , (42) 

where  
E ∥ ∥ ∥ ̄ ∥

   E 1 Ω ,
 (43) 

  1     1   , and  

Ω

, , ,

.

 (44) 

Note that the last two terms of (44) induced by an 
auxiliary equation  

1 1 0     (45) 
with  will not affect equality of (43) but 

improve the possible feasibility of the corresponding 

problem. It follows from (15) and by Schur complement 
that . It implies that 0  for all , 
including for ∞. Therefore, the system satisfies the 

 performance in (14). This completes the proof.  

6.2. Proof of Theorem 2 

With , Φ , inequality (17) implies its 
sub-matrices  

Φ Φ
Φ

, (46) 

which means that Φ . Thus, Φ  is 
nonsingular and there exist nonsingular matrices  and 

 such that Φ . Let  
Φ ,    

   
. (47) 

Note that  is nonsingular and therefore 

Φ
. Define . By letting 

Φ , . Moreover, under this 

arrangement  because 
Φ Φ .  

Pre- and post-multiply (17) by  and , 
respectively, with Φ, where  

, , , , , Φ , , . (48) 
Substituting (10), (13), (19), Φ  and 

 to the resultant inequality sequentially, as 

well as pre- and post-multiplying by  and , 
respectively, where  

, , , , , , (49) 
result in (15). By Theorem 1, the filtering error 

dynamics in (9) is exponentially mean-square 
admissible, which implies the filter in (8) with gains in 
(19) is stable, and the  performance requirement 
(14) is satisfied for all admissible uncertainties. 
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