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This paper considers the problem of robust H,, filter design in uncertain discrete-time singular systems with possible
missing measurements due to unreliable network transmission channels. The stochastic variable satisfying Bernoulli
random binary distribution is introduced to model the missing phenomena and the corresponding filtering error
dynamics with delay is then induced. We provide a set of sufficient conditions for the existence of the desired filter, and
propose a robust filter design method under a strict linear matrix inequality framework. A numerical example is given to

illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

The H, optimal filtering problem for singular
systems has been an important research topic in the past
decade. This is due, not only to the theoretical interests,
but also to the relevance of the topic in various
engineering applications. For instance, based on the
admissibility assumption of uncertain singular systems,
some suboptimal H, singular filter design methods
were proposed in [5, 6, 7], a linear matrix inequality
(LMI) based filter design approach was proposed for
impulsive stochastic systems in [15], and the
reduced-order H,, filtering problem based on the
projection lemma was investigated in [9, 17], and so on.
Most literature concerning filtering techniques such as
in[1,3,5,6, 12, 15, 17] and so forth assumed that the
measurements contain consecutive useful signals.
However, the measurements are not consecutive but
contain missing observations in practical applications.
The missing observations are caused for a variety of
reasons. Take the networked operation systems, for
example. The current networks induce possible data
transmission loss and delay, which are two main
problems in networked operation systems, due to limited
bandwidth, intermittent remote sensor failures, or some

of the data may be jammed or coming from a very noisy
environment.

Recently, more and more efforts have been focused
on the problem of H,, filtering for various time-delay
systems, and many approaches have been proposed,
including the Riccati equation approach [11], the
polynomial equation approach [19], the LMI approach
[1, 3, 12] and so on. In most existing works dealing with
the filtering problem for time-delay systems, the
measurement missing phenomena have seldom been
taken into account, except [9, 13, 14]. In [9], a reduced
order filter design method is considered for nominal
systems. The practical applications are limited because
of its corresponding non-strict LMI constraints and
nominal systems formation. For discrete-time singular
systems in the simultaneous presence of time delays,
missing measurements, and parameter uncertainties, the
problem of robust H, filtering has not been fully
investigated and remains to be challenging.

In this paper, the H,, filtering problem for a class of
uncertain discrete-time singular systems with possible
missing observation due to unreliable networked
transmission will be considered. The purpose here is to
design a stable filter such that the corresponding
filtering error dynamics is the exponentially mean
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square admissible, and satisfies a prescribed level of H,,
filtering performance via a set of conditions under the
strictly LMI framework.

Here, we introduce some notations to be used
subsequently. The inequality P > 0 means that the
matrix P is symmetric and positive definite, and
P > Q means P — Q > 0. Similar definitions apply to
symmetric positive/negative semi-definite matrices. I,
is the identity matrix with dimension m. Matrices are
assumed to have compatible dimensions for algebraic
operations if their dimensions are not explicitly stated.
diag(M,,M,) is the block diagonal matrix with
diagonal elements M;, M. The superscript ' represents
the transpose of a matrix. [,[0,) is the space of
square-summable vectors. Prob{-} represents the
probability of the occurrence of an event, and E{-}
denotes the expectation operator with respect to some
probability measure. Finally, * is used to simplify the
presentation of symmetric matrices.

The remainder of this paper is organized as follows.
In Section 2 we give some preliminaries about singular
systems and formulate the filtering problem with
unreliable networked channels. Section 3 provides a
sufficient condition for the existence of the
corresponding filter, and develops an LMI-based
method to the problem. Section 4 gives a numerical
example to show validity of the proposed method, and
finally, Section 5 concludes the paper.

2. PROBLEM STATEMENT AND DEFINITIONS
Consider the following nominal singular system,
5 _{Eoi(k +1) = Apx(k) + Byu(k) 0
o z(k) = Lox(k),
where X(k) € R"™ and rankE, = r < n. The unforced
singular system pair (Egy, Ay) of (1) with u(k) =0 is
regular, if det(zE, — A,) is not identically zero. If
deg(det(zE, — A,)) = rankE, then (E,, A,) is said
to be causal. The pair (Ey, Ay) is stable if all the roots
of det(zE, — Ay) =0 have magnitudes less than
unity. Finally, (E,, Ay) is admissible if it is regular,
causal, and stable [2].
Definition 1. [18] The singular system (1) is said to be
exponentially mean-square stable if with u(k) =0,
there exist constants @ > 0 and p € (0,1), such that
E{Il x(k) 1>} < ap*E{ll x(0) II*}
forall k € Z*, where Z* denotes the set of positive
integers.
Definition 2. The singular system (1) is exponentially
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mean-square admissible if it is regular, casual, and
exponentially mean-square stable.

Consider the following uncertain networked filtering
system with measurements communicated from

unreliable networks or remote sensors showing in Fig. 1.
-

|

; uncertain | y networked ;
T s : ssion || robust filter |2
singular transmission robust filter
plant, ¥ channel z, e
3—

’ %

Fig. 1. Networked filtering systems with unreliable
channels

The singular system is determined as in (2).
Ex(k +1) = Asx(k) + Bsw(k)
% y(k) = Csx(k) + Dsv(k) 2)
z(k) = Lsx(k) + Jsw(k),

where

As =A+ 64, Bs =B+ 6B,

Cs=C+46C, Ds=D+6D, (3)
Ls=L+6L Js=]+49],

and x(k) € R"™ is the state vector, y(k) € RP is
the measured output vector which is transmitted to a
filter via unreliable networks, z(k) € R? is the vector
to be estimated, and w(k), v(k) € R™ are disturbance
input vector and measured noise, respectively, in
[,]0,0), which is the space of square-summable
vectors. The matrix E € R™™ is singular with
rankE =r <n, and A, B,C,D,L, J are known real
constant matrices with appropriate dimensions. The
constant uncertainty matrices satisfy

58A 6B H,
8C &D| = |H,|A[F, F,] “4)
SL &) H,

with ATA<T and A € R%*% Assume that the
pair (E,A+ 6A) is admissible. The measurements,
which may contain missing data due to the transmission
via unreliable networks, are described by
Ye(k) = (1 = a)yk) + ay(k — 1), ©)
where the stochastic variable a; € R is a Bernoulli
distributed white sequence taking the values of 1 and 0
with
Prob{oy = 1} = E{ay} =1, (6)
Prob{oay =0} =1 —E{o}=1—n, @)

n € 0,1] is a known constant, @, = 1 represents
the data-loss event at k, while a; = 0 means that data
are received at k. Prob{-} is the probability of the
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occurrence of an event, and E{} denotes the
expectation operator with respect to some probability
measure. Model (5) shows that the data dropouts can be
encountered in data transmission in networked control
systems. It means that at least one of these
measurements is received by the filter, which is usually
required in practice.
To estimated z(k), the following filter

.{xf(k + 1) = Agxp(k) + Bry (k) ®

f zs(k) = Cexp(k) + Dry.(k),

is adopted, where x7(k) € R" and z.(k) € R7.
The matrices A¢, Bf, Cr, and Dy are to be determined.
Assume {x,(—1),w,(—1)} = 0. From X in (2) and Z;
in (8), the filtering error dynamics may be written as
E.x,(k+1)=4,x.(k) + B.w,.(k) +
zedxe(k - 1) + §edwe(k - 1)!
L _ _ )
e(k) =C.x.(k) + D,w,(k) +
Z'edxe(k - 1) + Bedwe(k - 1)'

where e(k) = z(k) — zg (k) ,
xg (k) = [x"(k) xf(k)], we(k) = [w'(k) v"(K)],
and E, = diag(E, I,),
A, =A,+54,, B, =B,+5B,,
%ed =Aeq + 6Acq, Eed =B.q+ 6Bey,
c, =C,+6C,, D, =D,+4D,,
Eed = Ced + Sced' T)ed = Ded + 5Ded-
Let ay=1—-a, , H=[I, 0]€ R™?" | and
H, =[0 I,]€R™2™M forbrevity. We get

(10)

At sA = A+ 6A 0
e tode = [dka(C+ é0) Af] ’
B + 6B 0
B,+ 6B, = 0 a,B;(D + 6D)]’ (11)

C.+6C, =[L+6L—aqD;(C+8C) —Cfl

D,+6D,=[]+6] - d’kDf(D +6D)],

and present other matrices in (10) more explicitly as
in (12).
Agq + 64,4 = A%H,

B.; + 6B,y = B H,,
(12)
Ced + 6Ced = ngH,

Doy + 6D,y = D3y H,,
where
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_ — — 0
Agd =Aeq +04cq = [aka(C + 5(:)] ’

) N _ 0
5 _ —
By =Bey + 6By = [aka(D + SD)] ’ (13)

€5y = Coq + 6Coq = —a D(C + 5C),

DSy =D,y + 6Doq = —ayDs(D + D).

Note that matrices on the left side of equations
(10)-(13) are related to ay.

The purpose here is to design a stable filter (8) such
that the delay filtering error dynamics (9) is
exponentially mean-square admissible with H,,
filtering performance. It means that the filtering error
singular system X, will be regular, casual, and
exponentially mean-square stable for all considered
uncertainties, and under the zero initial condition, the
filtering error will satisfy

D Elet Py < uE ) 1w I (14)
k=0 k=0

for a given scalar yu, > 0 and all nonzero w,(k),
where wl(k) = [wl(k) vT(k—-1)].

The following lemma is useful for formulating the
problem within the LMI framework.
Lemma 1. [10] Let 2, M, and N be real matrices
with appropriate dimensions. Then for the matrix Il
satisfying 711 < I, the matrix inequality
Q+ MIIN + NTI™™T < 0
holds if and only if there exists a scalar € > 0 such that

_ .

ar ol ') <o

3. ROBUST FILTER DESIGN

The following preliminary theorem, which plays a
key role and is the first step toward developing an LMI
solution to the problem stated above, provides a
sufficient condition of exponentially mean-square
admissibility and H,, performance for the filtering error
dynamics (9).
Theorem 1. For a given u, > 0, the error dynamic
system X, in (9) is exponentially mean-square
admissible and satisfies (14) for all admissible
uncertainties, if there exist matrices P, >0, Q > 0,
and S, such that

25



Majlesi Journal of Electrical Engineering

211 * * * * *

0 -Q * * * *
E31 0 HeIZm * * *

0 0 0 N * (15)
51 Esz Z53 54 —P, %
61 ez Z63 Ze4 0 -1

<0,

where

£, = HTQH — ETP,E, + ATR + R"4,

[1]

31 = B™R,

[1]

s1 = Pe(Ac.(1) + 84.(n)),

Esy = Po(Aoa(m) + 84.4(M)),

Es3 = Po(B.(n) + 6B.(1)),

Esq4 = Po(Bog(n) + 6Boa(M)),

H61 = Ce(n) +6C.(), (16)
E62 = Coa(m) + 6Coa(0),

Ze3 = D.() +6D.(n),

64 = Deq() + 6D ca(n),

A=[A+64 0],

B=[B+6B 0],

R=[RS 0],

and R € R™™ ") s any matrix with full column
rank and satisfies ETR = 0. The n-dependent matrices
in (16) are defined as in (11)-(13) with a,, replaced by
1.

Proof: The proof of the theorem is provided in
appendix.

Note that as a knack, the last two terms of Eq; in

(16) improve the applicability instead of conservative of
the sufficient condition, especially when it works under
the LMI framework.
Theorem 2. The filtering error dynamics X, in (9) is
exponentially mean-square admissible and satisfies (14)
with all considered uncertainties, if there exist matrices
SeRMTXN W, € RV W, € RVP, W, € R,
Dy € RT*P, and positive definite matrices {X,®,Q} €
R™M such that the inequality
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|'X11 * * * * * '|
0 -Q * * * *
Xs1 0 —pllyy * * *
0 0 0 —uil o+ x (17)

Xs1 X Xs3 ) CYRD. CTI

o X Xez  Xe O Il
<0
is satisfied, where
[[ Q- E"XE +
X1, = |\AJRS + STR"A; ,
(® — X)E d-X
[BTRS 0
X31 = 80 O:l’
X = DA 0]
517 | XAz +7W,C5 W,
0
X5z = .nWbCa]’ (18)
xo. = | ®Bg 0 ]
37 |XBs+01W,Ds 7W,Ds|
[ o _ ® D
Xse = _nWst]’ XY=~ g x|

Xe1 = [Ls —11DsCs —W],
Xe; = —nDsCs, Xg4 = —nDDy,
Xe3 =[Js —1DfDs],
and | = 1 —n. When the above inequality holds, the

filter X¢ in (8) with filter gains

A =UW,UTT, By =U"'W,,
(19)
C,=w.UT, D = D¢
is a solution to the considered robust filtering
problem, where U is a nonsingular matrix satisfying
uuT =X - 9.
Proof: The proof is provided in Appendix.
By Lemma 1 and Schur complement, it is
straightforward to rewrite (15) in Theorem 2 under the
LMI framework. The resultant LMIs and the
corresponding filter gains are presented in Theorem 3
below.
Theorem 3 For a given pu, >0, the filtering error
dynamics X, in (9) is exponentially mean-square
admissible and satisfies (14) with all considered
uncertainties, if there exist positive real scalars
(€4, €, 6}, matrices § € RMT>M W, € RV
W, e RVP, W.€RP", D €RVP, and positive
definite matrices {X,®,Q} € R™™, such that the LMI
[Mn M3,
My M,
is satisfied, where

<0 (20)
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e * * * * * 'l
0 M,, * * * *
M. = M, 0 M3, * * * |
T M, 0 M, o o+ *
Ms, Ms, Ms; M5, Mss @ *
Mg, Mg, Mgz Mg, O -1, @1
My =| 0 0 0 0 Mg Mg,
[ 0 0 0 0 My; My
M, = diag(M;;, Mgg, Moy),
and
<Q — ETXE + ATRS) .
My, = [\+STRTA + ¢,FIF, ,
(® -X)E o-X
M, =-Q+ 5cF;1er/1x'
M.. — |BTRS + eaFiFy o]
31 — | 0 0 ’
[—2u2l,, + £, FF, * ]
Ms; = 2 2 T
- —uely —pely + ep FyFy
M42 = ecFEFxt M44 = —[lgl + SCFEF‘LU
[ oA 0
Ms1 = x4+ w,c Wa]’ (22)
[0
M2 = yw,c)
M.. = [ B 0 ]
537 |XB+aWw,D n7W,D/

70 @ o
Mss = ,nWbD]’ Mss =~ [tb X]’
M, =[L—7D;,C —W,],

Mg, = —nDfC, My, = —nDD,

Mg; = [J —71DsD —7D;D],

M, = [HERS 0],

M;s = H] — jH} D},

M5 = [Hi® HIX —iH W},

Mgs = [0 77H§W};]: Mg, = _ﬁH;D,T,

Mos = [0 nHJW}|, Mo = —nH, DY,

M;; = —&qlgy, Mgg = —€plgy, Mog = —¢cl gy,
and 1 = 1 —n. When the above LMIs hold, the filter

X in (8) with filter gains

A =(X— o) tw,, By =(X— o) tw,,

(23)
Cf = WC' Df = Df
is a solution to the considered robust filtering
problem.

Proof: By Lemma 1 and the Schur complement, it is
easy to verify that (17) is equivalent to (20) with
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Ea» Epr € > 0. The proof is omitted for brevity. The only
part that must be proved here is the relationship between
(19) and (23), which can be established via the transfer
function matrix G(z) of the filter from y (k) to
zs (k).

Gr(2) =W [z(UUT) + W,]7'W,, + D;

=W [z(X—-D)+W,] "W, + Dy

= W [(X - D)z — (X — ®)'W)|"'W, + D,
=W (zl - (X - ®)"'W,) ' (X - ®)"'W,, + Dy

Remark 1 Based on Theorem 3, the following convex

24

optimization problem may be formulated to find the H,,
optimal filter of the form (8) such that (14) is satisfied

with the minimal u,:
: 2
min ,
KE.Eaeh DX SWaWpWe,QDs He (25)
subject to the LMI (20), {e4,&p, 3> 0, u2>0

and {Q,X,®} > 0.

4. NUMERICAL EXAMPLE

In this section, an example is worked out to illustrate
the proposed filter design method. Suppose matrices of
the system X in (2) are as follows:

1.2 3 15 -1
E=10 3 15|, B=]|1],
1.2 0 0 0.2
[—0.204 —0.060 —0.092
A=1-0.208 —-0.336 —0.208], (26)
[—0.180  0.228  0.848
C=[01 —-04 05], D = —0.6,
L=[-106 —-05], J=0.
The uncertainty matrices in (4) are
Hy=[112 1], H,=02 H,=03,
(27)

F,=[-02 —-04 —-02], F, =1,
and |A| < 1. Itis easy to verify that (E,A + H,AF,) is
an admissible pair, and rankE = 2.

Consider an unreliable transmission network (5) with
n =0.2. The corresponding H, optimal filter is
designed by solving the convex optimization problem
mentioned in Remark 1, which is implemented by the
MATLAB LMI Control Toolbox [4]. The resulting
optimal p, is 2.7666, and the filter gains in (23) are
found to be
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0.1404 -0.0397 —0.2907
Ar =(-0.1182 0.0370 0.4833],
0.3107 -0.1082 —-0.4774

T _
Bf =[0.0105 1.2069 —1.0078 ], 28)
C; =[—0.0903 0.0032 0.6919],

D, = —1.6506.

In addition, Fig. 2 shows the corresponding results
for the optimal pu, with respect to different expected
values 1. It appears that a better H,, performance is
achieved when there are less missing-data.

opt

n

0 0.65 Of1 0.‘15 0.‘2 0.‘25 0.‘3 0.135 0.‘4 0‘4") 0.5
n
Fig. 2. Optimal u, with respect to different 7

5. CONCLUSIONS

The networked filtering problem for a class of
uncertain discrete-time singular systems with missing
measurements due to unreliable transmission channels
has been considered in this paper. It is easy to design a
stable filter via a set of sufficient conditions under the
LMI framework, such that the filtering error dynamic
system is exponentially mean-square admissible and
satisfies a prescribed level of H,, filtering performance.
Anoptimal H,, filter can also be solved by the proposed
convex optimization. One numerical example is
provided to illustrate the effectiveness of the proposed
approach. In the numerical example shown and other
numerical experiments, it appears that a better H,,
filtering performance is achieved when less packet-loss
occurs.

6. APPENDIX
6.1. Proof of Theorem 1

The proof may be divided into three parts. The first
part is to show that the filtering error dynamics X, in (9)
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without any input w,(+) is regular and causal. We may
rewrite the unforced filtering error system as

Teot Eexo(k + 1) = Apxo (k) + Aggx.(k— 1),  (29)
where 4, and A4,, are determined in (10). Based on
the definition 3 of [16], the regularity and causality of
Yo can be ensured by the ones of

T EeXo (ke + 1) = A% (K), (30)
where %7 (k) = [xg (k) xg(k—1)],

Ee = diag(E., I57), 2e = [Ae Aca

L, 0]l 31
Therefore, we establish the regularity and causality
of the system X, via the corresponding matrices shown
in (3), (10), (11), and
det(zE, — A4,) =
(1?2 . 22" . det(zE, — A, — 27 A,q)
zE — A 0(16 32
= dee([gn 50 ) >
= z?" - det(zE — A;) - det(zl,, — Ap),
where 0,, = —(a@; + z 'ay). Since the pair (E,As) in
(2) is assumed to be admissible for all considered
uncertainty 64, and the filter gain Ay is Hurwitz, we
get
det(zE — As) # 0, det(zl,, —Af) # 0, (33)
for sufficiently large z. There exists z € C such that
det(zE, — A,) # 0, which means that the pair (E,,4,)
is regular. On the other hand, based on (32),
deg(det(zE, — A,)) = 3n + rankE = rankE, (34)

The pair (E,,A,) is causal. Therefore, the system
Yoo 1s regular and causal.

Next, in order to show the the system X, is
exponentially mean-square stable, we define a
Lyapunov candidate as
V(k) = xz (kK)E; P Eoxe (k) +

xX(k— 1D)HTQHx.(k — 1)
with P,,Q > 0. Let F be the minimal o-algebra
generalized by {xf(i)0<i<k} . Via some

(35)

straightforward algebraic manipulations, we have

E(V(k + D|F} =V (k) = & () Qe (k), (36)
where

[ Qq
%=lot as G7)

§e(k) = [xg(k) x¢(k—1)H"], and

0, =A'P,A, + HTQH — ETPE,,

Q1 = QIZ = AZdPeﬁet (38)
Qyp = ézdpeéed -Q
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and 4.4 = A,y + 84,4 is determined as in (13). It
is not difficult to obtain from (15) and Schur
complement that Q, < 0, which implies that
E(V(k + 1)|F} = V(k) = §£(k)Q.§. (k)
< —Amin(—Q)§2 (k)& (k) (39
< —B&s (k). (k),
where
0< ﬁ < min{lmin(_ﬂe)' ¢}'
(40)
¢ = max{lmax(Eg‘PeEe)’A(Q)} #0,
and Apin/max(M) denotes the minimal or maximal
eigenvalue of the square matrix M. By definition 1 and
Lemma 1 of [18], we know that the system is
exponentially mean-square stable.
At last, in order to show the filtering error e(k)
satisfies the H,, performance (14), let

N-1
Iy =) E{lle(k) 17} - & I W) I @1
k=0
For any nonzero w(k) € [,[0,0) and zero initial
conditions,
N-1 N-1
=D A VOBV Y S (42)
k=0 k=0
where
= E{ll e(k) 1} — p& Il w(k) II? 43)

HEV(k + 1) = V()Y = ET()AmE(K),

ET(k) = [xT(k) xT(k — 1)HT w (k)w (k — 1)HT ], and
f Al (n) 1 f am 1
_|@Tm|, | @)
| BI(p) I eI BI(m) |
B2y LB o)l

Q@)

cr(m ct(m
CGAHROIIGHEO) +
DI DI (44)

(D) MILD)" ()

diag(HTQH - EzPeEex -0, _Mgl _.uel)

AT1[R™]" [RT|[AT]"

ol|lo olflo
+] 2 + h

BT|l 0 0||BT

ollo ollo

Note that the last two terms of (44) induced by an
auxiliary equation
xT(k +1)ETRS"x(k) + x(k)TSRTEx(k + 1) =0  (45)
with ETR = 0 will not affect equality of (43) but
improve the possible feasibility of the corresponding
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problem. It follows from (15) and by Schur complement
that Q(n) < 0. It implies that Jy <0 for all N,
including for N = oco. Therefore, the system satisfies the
H,, performance in (14). This completes the proof.

6.2. Proof of Theorem 2

With X >0, & > 0, inequality (17) implies its
sub-matrices

o D
[8 9)<o @

which means that X —® > 0. Thus, I — X! is
nonsingular and there exist nonsingular matrices U and

V suchthat I — X®~1 = UVT. Let
G| S 1 X
=0 o P=[y ) 47)

Note that P is nonsingular and therefore P~! =

[(I) pe 1V_T] Define P, = PP~' . By letting
U=-9vV, P, = gT LI’] Moreover, under this
arrangement P, >0 because X-UUT =X+
Uuvie = o > 0.

Pre- and post-multiply (17) by X, and X7 ,
respectively, with UUT = X — @, where
X, = diag(diag(1,U™), I, 1,1,diag(®1,1),I). (48)
Substituting (10), (13), (19), U =-®V and
P, = PP! to the resultant inequality sequentially, as
well as pre- and post-multiplying by X} and X, ,
respectively, where
X, = diag(I,1,1,1,P~1, 1), (49)
result in (15). By Theorem 1, the filtering error
dynamics in (9) is exponentially mean-square
admissible, which implies the filter in (8) with gains in
(19) is stable, and the H, performance requirement
(14) is satisfied for all admissible uncertainties.
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