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ABSTRACT: 
In this paper, we present a modified sum-of-sinusoids (SOS) based simulator for a two-dimensional (2-D) non-
isotropic scattering channel. With a new parameter computation method called equal probability area (MEPA), the 
proposed model can be applied on arbitrary 2-D scattering environments and also can be generalized to multi-path 
channels with respect to the principle of set partitioning. Simulation results verify that the first and second order 
statistics of the output channels approximate the reference model with a high precision and when the theoretical results 
are unknown, it can be used as a reference for unusual distributions. 
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1.  INTRODUCTION1 

The sum-of-sinusoids (SOS) method introduced by 
Rice and Clarke is widely used in the wireless fading 
channels simulation [1-2]. Most of the SOS models 
developed early [1]-[5] had the assumption that the 
angle of arrival (AOA) was uniformly distributed. 
However, the realistic scattering scenarios are no-
isotropic [6]-[8]. Some modified SOS models have 
been proposed in [9]-[11], which are suitable for non-
isotropic scattering environments. The Lp-norm 
method introduced in [9] can simulate any channel with 
minimum mean square error with the given 
autocorrelation function (ACF), which has good 
performance but very complicated. Method of equal 
area [10]-[11] can be used on arbitrary scattering 
scenarios with given doppler power spectrum (DPS). 
Obviously, the theoretical ACF or DPS needs to be 
known before those methods are applied. Many works 
have been done in [7]-[8] for deriving theoretical ACF 
and DPS under usual AOA distributions. However, it’s 
still difficult to get the closed-form expressions for real 
AOA distributions which are complicated. 

To overcome the restriction, this paper proposes a 
modified SOS model and a new parameter computation 
method, called equal probability area (MEPA) based on 
[12]. The new method gets simulation parameters 
directly from realistic AOA distribution which is 
always available from experiments and analysis [6].  

The remainder of this paper is organized as follows. 
Section II gives the reference model and the modified 
simulation model. Section III presents a novel 
parameter computation method. Section IV analyzes 

 the statistical properties of the new model. Section 
V gives the performance evaluation by extensive 
numerical results. Section VI concludes the paper. 

 
2.  THE REFERENCE MODEL AND NEW 
MODEL  
2.1.  The reference model 

Consider the normalized frequency nonselective 
fading channel of 2-D propagation environment given 
by [1-2], 

(1) 
1

1
( ) lim exp[ ( cos )]

N

d n nN
n

h t j t
N

  




    

where n  and n are, respectively, the angle of arrival 
signal and initial phase associated with the nth 
propagation path, N  is the number of propagation 
path, and d is the maximum Doppler radian frequency. 

When N  approaches infinity, the central limit 
theorem justifies that ( )h t  are complex Gaussian 
random processes, whose statistical properties can be 
described by envelope distribution, phase distribution, 
and other second order statistics.  

In most cases, the angle of spread is not zero, so the 
envelope of the reference model is Rayleigh 
distributed, and phase is uniformly distributed. The 
ACF and PSD of ( )h t  are defined respectively as  
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When ( , ]n U    ,(2) and (3) reduce to the 
results of Clarke’s 2-D isotropic scattering model, 
which are  
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where ( , ]U   denotes the uniform distribution over 
( , ]  , 0 ( )J  is the zero-order Bessel function. 

The typical curves of ACF and PSD for Clarke’s 2-D 
isotropic scattering model with 10df Hz  are shown in 
Fig.1. We observe that the autocorrelation reduces with 
the increasing of time delay and that the doppler power 
spectrum is U shaped. 

 
2.2.  The new simulation model 

As we can see from (1) that the reference model 
comprises an infinite sum of complex harmonic 
functions, which is impossible in simulation. Our 
modified simulator for non-isotropic scattering 
conditions is defined by in-phase and quadrature 
components,  

(5) , ,( ) ( ) ( )l l i l qh t h t jh t   
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where N  is the simulation  number of propagation path 
(usually 10 ~ 20N  ), n indicates the initial phase  
which uniformly distributed over[0,2 ) , | ,i q n and n  
are random variables based on given AOA’s 
distribution and must meet the following conditions: 
a). Asymmetric DPS (or ( )p  is asymmetrical on / 2 ) 
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b). Symmetric DPS (or ( )p  is symmetrical on / 2 ) 
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where ( )p  denotes the probability distribution 

function(PDF) of AOA. 
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(b) The doppler power spectrum ( 10Hzdf  ) 
Fig. 1. The ACF and PSD of Clarke’s 2-D isotropic 

scattering model 

3.  PARAMETER COMPUTATION METHOD 
The problem lies in finding a set of | ,i q n which can 

provide a good approximation to the reference model 
and must meet the conditions of (7) and (8). The 
computation procedure based on the method of equal 
probability area (MEPA) is shown as follows, 

1). Divide the area under ( )p   into M subspaces 
equally except the first one (see Fig.2).  

 

1/ M
 

( )p 


1/ M   

Fig. 2. M equal subspaces of arbitrary AOA’s PDF 
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The mth subspace is denoted as  

(9) 
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where,   is a random phase shift which avoids 
symmetric | ,i q n , when ( )p   is symmetrical on 0  .  

2). Divide each subspace into two equal areas by 
points m  which can be expressed as  
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If we introduce the cumulative distribution function 
(CDF) of AOA, (10) can be simplified as 
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Thus we can obtain a closed form solution of m  
when 1( )G x exists. 
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 3). Get | ,i q n  from random phases set{ }m . 

For asymmetric DPS, let 2M N  and 
(13) , 2 1 , 2, , 1, 2, ,i m m q m m m N        

For symmetric DPS, let M N  and 

(14) , , , 1,2, ,i m q m m m N       
The principle of set partitioning allows improving 

the performance of SOS-based model or simulating 
multi-path channels. Following the approach proposed 
in [13], the MPEA method can be modified easily to 
get better performance. This modification consists in 
creating L uncorrelated complex Gaussian processes. 
We can create LM random phases with step (1)-(2) and 
take out M random phases each time for step (3). The 
lth random phases are selected as 

(15) ( )
( 1) 1 ( 1) 2{ } , , , , 1 ~l
l M l M lM M l L          

  
4.  STATISTICAL PROPERTIES  

Invoking the central limit theorem, when the angle 
of spread is not zero, the envelope PDF of the new  
model is similar to Rayleigh’s distribution:   

(16) 
2

| | ( )
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x
h

x
p x e  

and the phase uniformly distributed 
over[0,2 ) ,which is  

(17) | | ( ) 1/ 2p     

Fig.3 shows the PDFs of envelope and phase for 
N=5, 10, 20 and  , as well as the reference model’s 
PDFs. As expected | | ( )hp x and | | ( )p   converge to the 
theoretical PDFs with increasing N  respectively. It 
also shows that 20N   has enough precision for most 
simulation purpose. 
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Fig. 3. Envelope and phase PDFs comparison 
 

Based on (2), the ACF can be expressed by  
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and the in-phase component is   
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Assuming that DPS is asymmetrical and | ,i q n  meet 
the conditions of (7), we can rewrite (19) and simplify 
other items of (18). Finally, we obtain  
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In the limit of N  , (21) matches the ACF of 
reference model exactly. 

Using the same procedure shown above, we can 
obtain the ACF for symmetric DPS 
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Since ACF and DPS are Fourier transform pairs, 
ACF should be real function when DPS is symmetrical. 
So, formula (22) also approaches the desired ACF as 
N  approaches infinity. 

For the set-partitioning model, the L  complex 
waveforms are mutually independent awarding to the 
phase selection of(15). The ACF is given by  

(23) ˆ ( ) [ ( )]l
hh hhR E R   
where [ ]E  denotes the expectation, and ( )l

hhR  is the 

ACF of lth waveform defined in (21) or (22).  
 
5.  NUMERICAL RESULTS  

The parametric Von Mises/Tikhonov distribution 
plays a prominent role in statistical channel modeling 
and analysis of angular variables today, which is 
defined as  
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Under this scatting environment, the theoretical 
expression of ACF and PSD are given by [8] as  
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where 0 ( )I   is the zero-order modification Bessel 

function, 0 denotes the mean direction of AOA, and 

0k  controls the angular spread.  
Fig.4 gives one set of | ,i q n based on our MEPA 

with 10, 3, 1/ 4N k N   under symmetrical and 
asymmetrical AOA distribution. It can been seen from 
Fig.4(b) that | ,i q n  is asymmetrical when ( )p   is 

symmetrical on 0  due to random phase shift  .  

-0.5 0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase(/)

N
o

rm
a

liz
e

d
 P

D
F

Symmetrical DPS

 

 

Theory


q,n

 i,n

 
(a) AOA distribution symmetry  

-1 -0.5 0 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase(/)

N
o

rm
a

liz
e

d
 P

D
F

Asymmetrical DPS

 

 

Theory


i,n

 or 
q,n

 
(b) AOA distribution asymmetry 

Fig. 4. A set of | ,i q n  based on MEPA 

 
We have conducted extensive simulations of our 

model and MEPA when the AOA’s PDF is von Mises 
distribution ( 20,  20, 1000d sN f f   ). Fig.5 shows 
the comparison between the absolute value of the ACF 
of our model and the reference model for various k, 0  
and L . In the figure, L denotes the number of complex 
Gaussian processes of set partitioning method and 

df  is the normalized time delay. As we can see, the 
set-partitioning model of 4L   has higher precision 
than 1L  to the reference. However, two models are 
both approximate the reference one and the 
approximation are excellent, especially when the PDF 
is  a symmetrical ( 0 / 2  ) or uniformly distribution 
( 0k  ). 

Fig.6 gives some examples of PSD comparison with 
the same simulation parameters in Fig.5, where 

/ df f denotes the normalized doppler frequency. The 
figure shows that when 0 / 2  , which means AOA 
symmetrical on / 2 , the PSD will be symmetric. 
Moreover, the PSD curves of two models have minor 
difference than ACF curves in Fig.5. 
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Fig. 6. The absolute value of PSD comparison  
 
It is worth mentioning that the residual errors of 

ACF or PSD, as well as other statistical parameters, can 
be further reduced by a larger N  or L . The results of 
Fig.5 and Fig.6 show that the statistical properties of 
the new simulator are very close to the theory even 

with 20, 4N L  . Moreover, when the realistic AOA 
distribution is too complicated and the theoretical 
formulations are not easy to derive, the simulation 
results can be used as references. Some results of ACF 
under Gaussian and Laplace’s distribution [7] are 
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shown in Fig7, and they can help us to validate the 
analytical results such as (25). 
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The level crossing rate(LCR) and average fade 
duration(AFD)[14-15] are two other important second-
order statistical properties of wireless channel. The 
exact solution of LCR and AFD for any AOA 
distribution are unknown today due to its complexity. 
Some simulation results of von Mises distribution are 
shown in Fig.8, where rms is the normalized fading 
envelope level given by | | / | |rmsh h , with | |rmsh being 
the root mean square envelope level. In the simulation, 
105 samples are generated and df  is set to 20Hz. It’s 
interesting to see that three curves of 0k  , which 
mean isotropic scattering situation or AOA uniformly 
distributed, coincide with each other completely and 
agree with the result of Clarke’s 2-D isotropic 
scattering model.  
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Fig. 8. Simulation results of AFD with different , k   
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Fig. 9. Simulation results of LCR with different , k  

 
6.  CONCLUDE 

In this paper, we present a modified SOS based 
model and a new parameter computation method which 
can simulate any 2-D non-isotropic channel directly 
with given AOA distribution. The first and second 
order statistics of this model converge to the reference 
model with increasing number of simulating the 
propagation path. In addition, we apply the set partition 
method into practice to improve the performance and 
generate it for multiple channels situation. Simulation 
results show that the statistical properties of the 
modified  model are very close to the theory model and 
can be used as a reference when the theoretical results 
are unknown in unusual and complicated AOA 
distributions. 
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