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ABSTRACT: 
Uncontrolled energization of large power transformers may result in magnetizing inrush current of high amplitude and 
switching over-voltages. The most effective method for the limitation of the switching over-voltages is controlled 
switching since the magnitudes of the produced transients are strongly dependent on the closing instants of the switch.  
We introduce a harmonic index that its minimum value is corresponding to the best-case switching time.  Also, this 
paper  presents an Artificial Neural Network (ANN)-based approach to  estimate the optimum switching instants for 
real time applications. In the proposed ANN, second order Levenberg–Marquardt   method is used to train the 
multilayer perceptron. ANN training is performed based on equivalent circuit parameters of the network. Thus, trained ANN is 
applicable to every studied system. To verify the effectiveness of the proposed index and accuracy of the ANN-based 
approach, two case studies are presented and demonstrated. 
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currents, Power system restoration, Transformer energization. 
 
1.  INTRODUCTION 

At a time when bulk power systems operate close to 
their design limits, the restructuring of the electric 
power  industry has created vulnerability to potential 
blackouts. Prompt and effective power system 
restoration is essential  for the minimization of 
downtime and costs to the utility and its customers, 
which mount rapidly after a system  blackout [1,2]. A 
major process of power system restoration following a 
 blackout would be energization of primary restorative 
 transmission lines in most countries [3]. The energizing 
process  begins by starting black-start generators such 
as hydro  generators or gas turbines, and  then charging 
some pre- defined transmission lines to supply cranking 
power for large  generation plants [4,5].  Then the 
energization of unloaded  transformers would be 
followed by switching action, and that is an inevitable 
process of bottom-up restoration strategy. During 
transformer energization, unexpected over-voltage may 
happen due to nonlinear  interaction between the 
unloaded transformer and the transmission system 
[1,2,6]. When a lightly loaded transformer is energized, 
the initial magnetizing current is generally much larger 
than the steady-state magnetizing current and often 
much larger than the rated current of the transformer 
[7-9]. Controlled switching has been recommended as a 

reliable method to reduce switching overvoltage during 
energization of capacitor banks, transformers, and 
transmission lines [10].  This technique is the most 
effective method for the limitation of the switching 
transients since the magnitudes of the created transients 
are strongly dependent on the closing instants of the 
switch [6,11].  

The fundamental requirement for all controlled 
switching applications is the precise definition of the 
optimum switching instants [11]. This paper presents a 
novel method for controlled energization of 
transformers in order to minimize temporary over-
voltages. We introduce a harmonic index to determine 
the best-case switching time. Using numerical 
 algorithm we can find the time that the harmonic index 
is minimum, i.e., harmonic  over-voltages is minimum.  
Also, for real time applications, this paper  presents an 
Artificial Neural Network (ANN)-based approach to 
 estimate an optimum switching angle during the 
transformer energization. In the proposed ANN, 
Levenberg–Marquardt  second order method is used to 
train the multilayer perceptron [12,13]. The proposed 
ANN is expected to learn many scenarios of operation 
to give the optimum switching angle in a shortest 
computational time which is the requirement during 
online operation of power systems. In the proposed 
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ANN, we have considered the most important aspects, 
which influence the inrush currents such as voltage at 
the transformer bus before switching, equivalent 
resistance, equivalent inductance, equivalent 
capacitance, line length, line capacitance, switching 
angle, and remanent flux. This information will help 
the operator to select the proper best-case switching 
condition of transformer to be energized safely with 
transients appearing safe within the limits. 

The paper is organized as follows: in section 2 a 
brief description of switching over-voltages during 
 restoration is presented. Section 3 presents modelling 
issues. Section 4 describes the  proposed method for 
best switching  ccondition evaluation. In section 5 the 
ANN-based approach to  estimate the optimum 
switching angle during transformer energization is 
illustrated. Two case studies that are a portion of 39-
bus New England test system are demonstrated in 
section 6. 
 
2.  SWITCHING OVER-VOLTAGES DURING 
RESTORATION 

One of the major concerns in power system 
restoration is  the occurrence of over-voltages as a result 
of switching  procedures [2]. The major cause of 
harmonic resonance over-voltages problem is the 
switching of lightly loaded  transformers at the end of 
transmission lines. After transformer energization, 
inrush currents with significant harmonic content up  to 
frequencies around ten times of system frequency are 
produced. The harmonic current components of the 
same frequency as the  system resonance frequencies 
are amplified in case of parallel resonance, thereby 
creating higher voltages  at the transformer terminals 
[14]. This leads to a higher level of saturation resulting 
in higher harmonic  components of the inrush current 
which again results in increased voltages. They may 
lead to long  lasting over-voltages resulting in arrester 
failures and system  faults and prolong system 
restoration [2]. This can happen particularly in  lightly 
damped systems, common for the beginning of a 
restoration procedure when a path from a black-start 
 source to a large power plant is being established, and 
only a few loads are restored yet [1,7,15]. 

The  root cause of this phenomenon is the 
unfavorable  combination of the source impedance, the 
shunt capacitance of  the energized circuits, the non-
linear magnetizing  characteristics of the energized 
transformer, inadequate  damping of the system and the 
source voltage phase angle at  the moment the 
transformer is energized. Key factors for the harmonic 
over-voltages analysis can be listed as follows: 

 The resonance frequency of the network;  
 The system damping including the network 

losses, and the load connected to the network;   
 The voltage level at the end of the EHV lines; 

 The saturation characteristic of the transformers;   
 The remanent fluxes in the core of the 

transformer; 
 The closing time of the circuit breaker pole; 
 

3.  MODELLING ISSUES 
3.1.  PSB 

Simulations presented in this paper are performed 
using the PSB. The simulation tool has been developed 
using state variable approach and runs in the 
MATLAB/Simulink environment. This program has 
been compared with other popular simulation packages 
(EMTP and Pspice) in [16]. The user friendly graphical 
interfaces of PSB enable faster development for power 
system transient analysis. 

 
3.2.  Generator Model 

In [17] generators have been modeled by 
generalized Park’s model that both electrical and 
mechanical parts are thoroughly modeled, but it has 
been shown that a simple static generator model 
containing an ideal voltage source behind the sub-
transient inductance in series with the armature 
winding resistance can be as accurate as the Park 
model. Thus in this work, generators are represented by 
the static generator model. Phases of voltage sources 
are determined by the load flow results. 

 
3.3.  Transmission-Line Model 

Transmission lines are described by the distributed 
line model. This model is accurate enough for 
frequency-dependent   dependent parameters, because 
the positive sequence resistance and inductance are 
fairly constant up to approximately 1 KHz [18] which 
cover the frequency range of harmonic over-voltages 
phenomena. 

 
3.4.  Transformer Model 

The transformer model takes into account the 
winding resistances (R1, R2), the leakage  inductances 
(L1, L2) as well as the magnetizing characteristics of the 
core, which is  modeled by a resistance, Rm, simulating 
the core active losses, and a saturable inductance,  Lsat. 
The saturation characteristic is specified as a piece-
wise linear characteristic [7]. For the  target 
transformer, hysteresis is added, in order to take into 
account the remanent fluxes in the iron core. The 
 remanent fluxes in the transformer core can be obtained 
via the integration of the voltages measured on the 
 transformer windings during its disconnection. The 
correct estimation of the residual flux is extremely 
important for the success of the controlled switching 
strategy. 

 
3.5.  Load and Shunt Devices Model 

All the  the loads and shunt devices, such as 
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capacitors and reactors, are modeled as constant 
impedances. 

 
4.  PROPOSED METHOD FOR BEST 
SWITCHING CONDITION EVALUATION 

The main part of a controlled switching 
arrangement is a controller, which is the “brain” of the 
system. It receives the signals from the measuring 
devices, determines the appropriate reference phase 
angles and sends the switching commands to each pole 
of the switching device so that closing operation occurs 
at the optimum instant. 

 
4.1.  Calculation of Transformer inrush Current 

In order to analyze the transformer inrush current, 
let us consider a single-phase transformer having a 
magnetizing characteristic as given in Fig. 1. If the 
voltage applied to the transformer is tVv cos  at the 
time  t0 for which ωt0 = θ, the established flux linkage 
will be a function of the applied voltage, and the flux 
linkage offset 0  as given by the following expression 

[5]: 

0sin 


  t
V



The flux linkage offset is made up of the remanent 
flux linkage r  and the component  sin/V  due to 

the linkage mismatch condition at energization, 




 sin0
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Under normal system conditions, the transformer 

core would be driven temporarily into saturation 
asymmetrically when the flux linkage   exceeds the 

saturation level s . The expression for the inrush 

current is: 
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Fourier analysis of the inrush current yields the 
following expressions for it's harmonic components: 

 
ss V

V

I

I



sin)2(cos2

2

10  

 
ss V

V

I

I



2sin2

2

11                              

 
Fig. 1. Simplified transformer magnetization characteristic. 
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where 0  is the flux linkage offset, sL  is the 

transformer saturation inductance, r  is the initial 

residual flux, and s  and sV  are transformer 

saturation flux linkage and saturation voltage, 
respectively. 
 
4.2.  Best Switching Condition Determination 

Normally for harmonic over-voltages analysis, the 
best case of the switching condition must be considered 
which it is a function of switching time, transformer 
characteristics and its initial flux condition, and 
impedance characteristics of the switching bus. Using 
the best switching condition, the harmonic over-
voltages peak and duration can be reduced 
significantly. 

In order to determine best-case switching time, the 
following index is defined as 





10

2
0 ),,()(

h
rjjj thIhZW          

This index can be a definition for the best-case 
switching condition. Using a numerical algorithm, one 
can find the switching time for which W is minimal 
(i.e., harmonic over-voltages is minimal).  

The sample system considered for explanation of 
the  proposed methodology is a 400 kV EHV network 
shown in  Fig. 2. The  normal peak value of any phase 
voltage is 400√2/√3 kV and  this value is taken as the 
base. 
 

 
Fig. 2. Sample system for transformer energization 
study. G: generator, Reqv: equivalent resistance, Leqv: 
equivalent inductance, and Ceqv: equivalent 
capacitance. 

 
for voltage p.u. In the system  studies 400 kV line-to-
line base voltage and 100 MVA as a  base power is 
considered. 

In this paper, equivalent circuit parameters are used 
as ANN inputs together other parameters to achieve 
good generalization capability for trained ANN. In fact, 
in this approach, ANN is trained just once for sample 

system of Fig. 2. Since ANN training is based on 
equivalent circuit parameters, developed ANN is 
applicable to every studied system. This issue is better 
understood in section 6 that trained ANN is tested for a 
39-bus New England test system. 

Fig. 3 shows the result of the frequency analysis at 
bus 2. The magnitude of the Thevenin impedance, seen 
from bus 2, Zbus2 shows a parallel resonance peak at 
230 Hz. Fig. 4 shows changes of harmonic currents and 
W index with respect to the switching angle, where k is 
the harmonic  number. Fig. 5 shows the harmonic over-
voltages after the  transformer energization for the best-
case condition (i.e., 56°). For temporary over-voltages, 
the overvoltage duration has to be taken into account in 
addition to the amplitude [3]. Table 1 summarizes the 
results of over-voltages simulation for five different 
switching conditions that verify the effectiveness of W 
index. 
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Fig. 3. Impedance at bus 2. 
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Fig. 4. Changes of harmonic currents and W index with 
respect to the switching angle. 
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Fig. 5. Voltage at bus 2 after switching of transformer 
for best switching condition. 
 
Table 1. Effect of Switching Angle on the Minimum of 

Over-voltages and Duration of  Vpeak > 1.3 p.u. 
 

Switching 
Angle [deg.] 

Vpeak [p.u.] 
Duration of (Vpeak 

> 1.3 p.u.) [s] 
56 1.1857 0 
45 1.5104 0.3752 
33 1.6527 0.4253 
70 1.3892 0.1442 
10 1.5861 0.3248 

 
In the next section, we  present an Artificial Neural 

Network (ANN)-based approach to  estimate the 
optimum switching angle for the real time applications. 

 

5.  THE ARTIFICIAL NEURAL NETWORK 
The proposal in this work considers the adoption of 

feed forward Multilayer Perceptron (MLP) architecture. 
A MLP trained with the back-propagation algorithm 
may be viewed as a practical vehicle for performing a 
nonlinear input–output mapping of a general nature 
[10,19]. Function approximation by feed forward MLP 
network is proven to be very efficient, considering 
various learning strategies like simple back propagation 
or the robust Levenberg–Marquardt. Its ability to 
perform well is affected by the chosen training data as 
well as training scheme. 

As mentioned in previous section, following 
parameters are effective in determination of the 
optimum switching angle during transformer 
energization: 

 Voltage at transformer bus before switching 
 Equivalent resistance of the network 
 Equivalent inductance of the network 
 Equivalent capacitance of the network 
 Line length 
 Line capacitance 
 Closing time of the circuit breaker poles 
 Remanent flux 
 
The schematic diagram of the proposed MLP neural 

networks architecture is shown in Fig. 6. The 
composition of the input variables for the proposed 
neural networks has been carefully selected. 

 
 

 
 

Fig. 6. Proposed MLP-based ANN architecture. 
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Supervised training of ANN is a usual training paradigm for 
MLP architecture. Fig. 7 shows the supervised learning of 
ANN for which input is given to the proposed    method to 
get the optimum switching angle values, and the same data is 
used to train the ANN. Error is calculated by the difference of 
proposed method output and ANN output. This error is used 
to adjust the weight of connection. Output values of the 
trained neural networks must be capable of computing the 
optimum switching angle with very good precision. Gradient-
based training algorithms, like back propagation, are most 
commonly used for training procedures. They are not 
efficient because the fact that the gradient vanishes at the 
solution. Hessian-based algorithms allow the network to learn 
more subtle features of a complicated mapping. The training 
process converges quickly as the solution is approached, 
because the Hessian does not vanish at the solution. To 
benefit from the advantages of Hessian based training, we 
focused on the Levenberg–Marquardt (LM) algorithm 
reported in [13]. 
 

 
Fig. 7. Supervised learning of ANN. 

 
5.1.  Levenberg-Marquardt (LM) Algorithm 

Suppose that we have a function )(x  which we 
want to minimize with respect to the parameter vector 
x, where 





N

i
ie

1

2 )()( xx 

Then the Marquardt–Levenberg modification to the 
Gauss–Newton method is 

  )()()()(Δ T1T xexJIxJxJx
  

The parameter μ is multiplied by some factor β 
whenever a step would result in an increased )(x . 
When a step reduces )(x , μ is divided by β. Notice that 
when μ is large the algorithm becomes the steepest 
descent; while for small μ the algorithm becomes 
Gauss–Newton. The LM algorithm is very efficient 
when training networks have up to few hundred 
weights. Although the computational requirements are 
much higher for the each iteration of the LM algorithm, 
this is more than made up for by the increased 
efficiency. This is especially true when high precision 
is required. 

5.2.  Steps of Optimum Switching Angle Estimation  
The steps for optimum switching angle evaluation 

and estimation are listed below: 
1) Determine the characteristics of transformer that 

must be energized. 
2) Calculate the Zii(h) at the transformer bus for h = 

2f0,…,10f0. 
3) Calculate the best switching condition. 
4) Repeat the above steps with various system 

parameters to learn artificial neural network. 
5) Test artificial neural network with different 

system parameters. 
 

5.3.  Training Artificial Neural Network 
All experiments have been repeated for different 

system parameters. After learning, all parameters of the 
trained networks have been frozen and then used in the 
retrieval mode for testing the capabilities of the system 
on the data not used in learning. The testing data 
samples have been generated through the proposed 
method by placing the parameter values not used in 
learning, by applying different parameters. A large 
number of testing data have been used to check the 
proposed solution in the most objective way at 
practically all possible parameters variation. Percentage 
error is calculated as: 

100
Method

MethodANN
error(%) 


 

Neural network is trained with the goal of mean 
square error (MSE) 1e-2. Fig. 8 shows the training of 
neural network. Results for a sample test data are 
presented in Table 2.  

In the next section, the proposed model tested with 
portion of 39-bus New England test system. 
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Table 2. Some Sample Testing Data and Output 
 

V [p.u.] Reqv [p.u.] Leqv [p.u.] Ceqv [p.u.] L.L. [km] 
CLine 

[F/km]
Φr 

[p.u.] 
B.S.A.HI 

[deg.] 
B.S.A.ANN 

[deg.] 
Error [%] 

0.9077 0.003 0.0375 0.3694 100 1.199e-8 0.1 43.5 44.3 1.8526 

0.9254 0.0035 0.035 0.3694 125 1.199e-8 0.2 28.1 28.4 1.1637 

0.9731 0.004 0.0325 0.9781 150 1.224e-8 0.3 58.6 56.4 3.8201 

0.9973 0.0045 0.03 0.9781 180 1.224e-8 0.3 41.9 42.9 2.2854 

1.0426 0.005 0.0275 1.2825 200 1.237e-8 0.4 88.4 86.7 1.9735 

1.0621 0.0055 0.0275 1.2825 220 1.237e-8 0.5 75.6 72.3 4.3947 

1.1222 0.006 0.025 1.5869 250 1.249e-8 0.6 51.3 50.6 1.3528 

1.1224 0.003 0.0225 1.5869 250 1.249e-8 0.7 25.7 26.1 1.6914 

1.1668 0.005 0.02 2.1956 265 1.274e-8 0.7 90 89.1 0.9525 

1.1824 0.0035 0.02 2.1956 280 1.274e-8 0.8 48.5 49.6 2.3691 

V = voltage at transformer bus before switching, Reqv = equivalent resistance, Leqv = equivalent inductance, Ceqv = equivalent 
capacitance, L.L. = line length, CLine = line capacitance, Φr = remanent flux, B.S.AHI = the best switching angle obtained by the 
harmonic index, B.S.AANN = the best switching angle obtained by the ANN, and Error = switching angle error. 
 
6.  CASE STUDY 

In this section, the proposed algorithm is 
demonstrated for two case studies that are a portion of 
the 39-bus New England test system, which its 
parameters are listed in [20]. The simulations are 
undertaken on a single-phase representation. 

 
6.1.  Case 1 

Fig. 9 shows a one-line diagram of a portion of the 
39-bus New England test system which is in the 
restorative state. The generator at bus 35 is a black-start 
unit. The load 19 shows cranking power of the later 
generator that must be restored by the transformer of 
bus 19. When the transformer is energized, harmonic 
over-voltages can be produced because the transformer 
is lightly loaded. 

 

Fig. 9. Studied system for case 1. 

As mentioned in the section 4, first, the equivalent 
circuit of this system, seen behind bus 16, is 
determined and values of the equivalent resistance, 
equivalent inductance, and equivalent capacitance are 
calculated, in other words, this system is converted to 
equivalent system of Fig. 2. In this case, values of 
equivalent resistance, equivalent inductance and 
equivalent capacitance are 0.00291 p.u., 0.02427, and 
2.474 p.u., respectively. For testing trained ANN, 
values of voltage at transformer bus (bus 19), line 
length, and remanent flux are varied and in each step, 
optimum switching angle values are calculated from 
trained ANN and proposed method. Table 3 contains 
the some sample result of test data of case 1. 

 
6.2.  Case 2 

As another example, the system in Fig. 10 is 
examined. In the next step of the restoration, unit at bus 
6 must be restarted. In order to provide cranking power 
for this unit, the transformer at bus 6 should be 
energized. In this condition, harmonic over-voltages 
can be produced because the load of the transformer is 
small. 

 
 

V [p.u.] L.L. [km] Φr [p.u.] B.S.A.HI [deg.] B.S.A.ANN [deg.] Error [%] 

0.9243 100 0.2 80.6 78.9 2.1675 

0.9541 150 0.3 37.5 38.2 1.8044 

1.0195 200 0.4 18.3 18.7 2.2783 

1.0481 230 0.4 44.8 45.4 1.2459 

1.0977 250 0.5 62.1 61.1 1.6623 

1.0977 250 0.6 89.7 85.6 4.5391 

1.1505 270 0.7 67.7 66.4 1.8542 

1.1776 290 0.8 32.6 32.2 1.2658 

V = voltage at transformer bus before switching, L.L. = line length, Φr = remanent flux, B.S.AHI = the best switching 
angle obtained by the harmonic index, B.S.AANN = the best switching angle obtained by the ANN, and Error = 
switching angle error.  



Majlesi Journal of Electrical Engineering                                                                     Vol. 5, No. 3, September 2011 
 

22 
 

 

Fig. 10. Studied system for case 2. 

After converting this system to the equivalent 
circuit of Fig. 2, i.e., after calculating equivalent circuit 
seen from bus 5, various cases of transformer 
energization are taken into account, ccount and 
corresponding optimum switching angles are computed 
from proposed method and trained ANN. In this case, 
values of equivalent resistance, equivalent inductance 
and equivalent capacitance are 0.00577 p.u., 0.02069, 
and 0.99 p.u., respectively. Summery of few result are 
presented in Table 4. It can be seen from the results that 
the ANN can learn the pattern and give results to 
acceptable accuracy. 
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