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ABSTRACT: 
An important technique in image and video processing is global motion estimation (GME). The common GME 
methods can be classified in direct and indirect categories. Whereas the direct global motion estimation techniques 
boast reasonable precision they tend to suffer from high complexity. As with indirect methods, though presenting 
lower complexity, they mostly exhibit lower accuracy than their direct counterparts. In this paper, the authors 
introduce a robust algorithm for GME with near identical accuracy and almost 50-times faster than MPEG-4 
verification model (VM). This approach entails two stages in which, first, motion vector of sampled block is employed 
to obtain initial GME then Levenberg-Marquardt algorithm is applied to the subsampled pixels to optimize the initial 
GME values. As will be shown, the proposed solution exhibits remarkable accuracy and speed features with 
experimental results distinctively bearing them out. 
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1.  INTRODUCTION 

Motion estimation and compensation are some of 
the most essential techniques in video compression and 
processing. Motions in video are categorized into local 
motion (LM) and global motion (GM) [1]. The LMs are 
resulted from movement, rotation and reform of 
objects, while the GMs are due to movement, rotation, 
and camera zoom [2]. Global motion estimation (GME) 
has many applications such as video coding, image 
stabilization, video object segmentation, virtual reality 
and, etc. In MPEG-4 standard, some techniques such as 
sprite coding and global motion compensation (GMC) 
are required for GME [3].  

The common GME methods are divided into direct 
and indirect categories. In the direct category, which is 
pixel-based, prediction error is minimized by using 
optimization methods such as Levenberg-Marquardt 
algorithm (LMA) [1],[2],[4]-[7]. The indirect methods 
consist of two stages. In the first stage, motion vectors 
of blocks are calculated and by using these vectors, GM 
of the frame  is estimated in the second stage [8]-[14]. 

In the MPEG-4  verification model (VM), GME is a 
direct type scheme where LMA is applied to the whole 
frame. Since LMA has high computational complexity, 
some methods have been devised by considering a 
limited number of pixels in the calculations. One such 
technique is called FFRGMET that is used in MPEG-4 
optimizing model. This technique just applies LMA to 
a number of pixels called feature pixels [15]. In [6], 
pixels are selected using gradient method. In this work, 

each frame is divided into 100 blocks and then 10% of 
pixels with the highest gradient are selected from each 
block. This procedure requires gradient calculations 
and pixels arrangement based on the gradients. 
Therefore, this method has a considerable 
computational complexity. The idea of random pixels 
selection is introduced in [16]. In spite of the method 
presented in [6], this technique has much lower 
computational complexity. However, random pixel 
selection causes numerical instabilities. In [4] and [5], 
pixels are selected based on a static pattern. In these 
papers, authors divide the frame into non-overlapped 
blocks and then select a few pixels with a static pattern 
from each block. These methods have low complexity 
and also do not cause numerical instabilities. However, 
they may converge to a local minimum because they 
have no initializing step. In comparison to MPEG-4 
VM, this scheme is faster with little accuracy 
degradation. An indirect GME for the affine model is 
proposed in [14]. In this study, firstly the amount of 
translations is estimated by using integral projection 
algorithm (IPA) and then based on that information a 
limited block-matching is performed for each sampled 
block.  

In this paper, we have improved the proposed 
method in [14] and intend to use the perspective model. 
This is expected to achieve an improvement of peak 
signal to noise ratio (PSNR) at low complexity. 

The reminder of this paper is organized as follows. 
The motion models are described in section II and in 
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section III, the proposed method, including its different 
steps are discussed in details. The experimental results 
are provided in section IV and finally, the paper is 
concluded in section V. 
 
2.  MOTION MODELS 

The most comprehensive GM model in MPEG-4 is 
the perspective model. This model encompasses 
simpler models. This model is defined by: 
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where m is GM vector from current frame pixels (xi , yi) 
to reference frame pixels (x'i , y'i). This vector consists 
of translation parameters (m3 and m6), rotation and 
zoom parameters (m1, m2, m4, and m5), and perspective 
parameters (m7 and m8). Simpler models such as affine 
(with 6 parameters, m7= m8=0), Translation-Zoom-
Rotation (with 4 parameters, m1=m5, m2=-m4, 
m7=m8=0), Translation-Zoom (with 3 parameters, 
m1=m5, m2=m4=m7=m8=0) and Translation (with 2 
parameters, m1=m5=1, m2=m4=m7=m8=0) are special 
cases of the perspective  model. 
 
3.  GLOBAL MOTION ESTIMATION 

The proposed algorithm consists of two stages. The 
first process calls for a rough estimation of GM. When 
this is obtained second stage takes place in which the 
initial estimation has to be optimized with greater 
precision. Structure of the proposed algorithm is as 
follows. 

Stage I 

 Estimating translation between two frames using 
IPA. 

 Sampling blocks from the current frame as in Fig.1. 
Calculating motion vectors of sampled blocks using 
block matching (with shifted search centre and small 
searching range). Excluding 30% of blocks with the 
maximum  sum of absolute differences (SAD). 

 Estimating eight parameters of GM vector using 
above motion vectors. 

Stage II 

 Sampling current frame pixels using 1:12×12 model 
as in Fig.2-d. Applying LMA to sampled pixels to 
optimize initially estimated GM of the first stage. 
The LMA iterations are continued until either of the 
following conditions is satisfied: reaching 10 
iterations or updated term be lower than 0.001 for 
translationally components and lower than 0.00001 
for other components. 

3.1.  Initial Translation Estimation 
In the first stage of GME, translation components 

must be estimated. In [1]-[5], a three-step search is used 
for this purpose. IPA is employed instead of a three-
step search in our algorithm, because it is more 
accurate and robust [14]. 

To estimate translation between two frames, 
horizontal and vertical projection vectors are calculated 
as: 
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where Fk denotes luminance of the frame  k and (M , N) 
are dimensions of frames. vert

kIP and horiz
kIP are integral 

projection values of Fk in vertical and horizontal 
directions respectively. By using the correlation 
between horizontal and vertical integral projection 
vectors of Fk and Fk-1, a translation value is calculated 
in vertical and in horizontal directions as below: 
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where (dx,dy) is the translation  of the current frame 
with respect to previous frame and s is maximum 
search range. The maximum search range is determined 
based on the size and contents of the video. To give 
some examples, s=8 for QCIF format and s=16 for CIF 
and SIF formats seems reasonable. 
 
3.2.  Block Sampling and Limited Block Matching 

After translation estimation, one of the patterns in 
Fig.1 is employed for blocks sampling. Size of each 
block for different formats is considered as: 8×8 for 
QCIF, 16×16 for CIF and SIF and 32×32 for 4CIF. 
Then for each sampled block, a modified full search 
block matching algorithm (BMA) is obtained. In this 
search, the search centre is shifted (dx,dy) units and 
searching range is as small as (-3, +3). This results in 
fewer SAD computations putations and sufficient 
accuracy for motion vectors of background blocks. 
Since blocks with high SAD are mostly part of the 
foreground, 30% of them are excluded. The motion 
vectors of remaining blocks will be used in the next 
subsection. 
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(a)   (b) 

  
(c)   (d) 

Fig. 1. Blocks sampling pattern [14]: (a) 1:2, (b) 1:4, 
(c) 1:9, (d) 30:369. 
 
3.3.  Initial Estimation of Perspective Model GM 
Parameters 

By considering (xi , yi) as central pixel coordinate of 
the current frame sampled block and (xi' , yi' ) as central 
pixel coordinate of the best matched block, we can 
have: 

,i x i ix v x                    (8) 

,i y i iy v y                    (9) 

where  ,x iv  and ,y iv are motion vectors obtained from 

the previous step. 
To find GM between two frames, we must 

minimize the Euclidean error: 
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whrere Nb is the number of blocks. Since the 
perspective model is nonlinear, (10) could be solved by 
using LMA which results in significant computational 
complexity. On the other hand, by using algebraic error 
definition [17], (10) can be modified as: 
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where Di is the denominator of motion model: 
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At this stage, we can minimize (11) by solving 
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where m is GM vector. The Ai matrix and bi vectors are 
defined as (14) and (15). 

 
3.4.  Subsampling Pixels and Levenberg-Marquardt 
Algorithm 

In this stage, the estimated GM from the previous 
stage is optimized with greater accuracy by employing 
LMA. In this paper, we suggest subsampling from all 
pixels of the current  frame with a static pattern as in 
[4], instead of just selecting feature pixels between the 
remaining blocks as in [14]. This selection technique 
poses less computational complexity than [14] and it is 
more precise. 

In this paper, the 1:12×12 sampling method is used, 
which means that we select one pixel from each 12×12 
block. After pixels subsampling, initial GM is 
optimized by applying LMA to these pixels. To reduce 
outlier effects, 10% of pixels with the most error are 
discarded after first iteration [4]. 

 
4.  EXPERIMENTAL RESULTS 

In this section, the proposed method is examined 
and compared against MPEG-4 VM, [14] and [4] with 
a sampling factor 1:9×9.The following sequences with 
CIF format are considered for simulations: Akiyo (300 
frames), Bus (150 frames), Carphone (300 frames),  
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 (a)   (b) 

   
 (c)   (d) 

Fig. 2. Pixels subsampling pattern: (a) 1:2×2, (b) 
1:4×4, (c) 1:6×6, (d) 1:12×12,. 

 
Coastguard (300 frames), Foreman (400 frames), 
Flower (150 frames), Mobile (300 frames), Stefan (300 
frames), Tempete (260 frames), and Waterfall (260 
frames). The simulations are run on a desktop computer 
featuring 2.66GHz Core2Quad CPU, 4GB RAM and 
MS Windows Vista operating system in MATLAB 
environment. 

The GME times of different sequences are 
presented in Table 1 and Fig. 1. Judging from the 
Table, it is seen that the proposed method’s GME time 
is less than that in [4] for most of the sequences. 
Furthermore, this is almost the same as the GME time 
in [14] with affine model. 

Table 2 compares speed of the proposed method 
with other methods in relation to the MPEG-4 VM 
method with perspective model. As these results 
illustrate, the proposed technique is 53 times faster than 
VM with perspective model. This is while the method 
in [14] is about 43 times faster than VM with affine 
model and about 60 times faster than VM with 
perspective model. The Proposed method as well as [4] 
both work with perspective model whereas [14] only 
works with affine model. 

The PSNR of sequences is calculated by: 
2
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In Table 3 and Fig. 2, PSNR of GME for each 
sequence is presented. Table 4 also displays PSNR 
degradation in respect of VM with perspective motion 
model. As the results demonstrate, the proposed 
method has on average reduced the PSNR by -0.2 dB 
while [4] and [14] methods degrade the PSNR by -0.27 
dB and -1.2 dB respectively. 

For comparing coding efficiency of mentioned 
 

Table 1. GME Time Comparison of 5 Different 
Methods (Sec.). 

Sequence 
VM 
Pers. 

VM 
Aff. 

[4] [14] Proposed 

Akiyo 433.1 254.3 7.2 7.2 8.5 

Bus 232.7 145.9 5.2 3.4 4.1 

Carphone 152.7 99.9 4.5 3.8 4.1 

Coast. 436.8 300.0 7.0 6.7 7.8 

Foreman 960.6 641.0 12.6 8.9 10.8 

Flower 518.6 279.1 7.0 5.5 6.7 

Mobile 354.6 222.7 11.1 6.7 8.1 

Stefan 297.1 204.2 8.8 6.6 7.8 

Tempete 225.3 154.0 7.0 5.6 7.0 

Waterfall 345.7 190.2 6.8 6.2 7.3 
 

Table 2. Speed Comparison of the [4] and MPEG-4 
VM Perspective GM. 

Sequence 
VM 
Pers. 

VM 
Aff. 

[4] [14] Proposed 

Akiyo 1.0 1.7 60.6 60.3 51.3 

Bus 1.0 1.6 44.4 68.8 57.5 

Carphone 1.0 1.5 34.2 40.5 37.2 

Coast. 1.0 1.5 62.8 65.5 56.4 

Foreman 1.0 1.5 76.2 108.1 89.2 

Flower 1.0 1.9 73.8 94.6 76.9 

Mobile 1.0 1.6 31.9 52.9 43.8 

Stefan 1.0 1.5 33.8 45.2 38.1 

Tempete 1.0 1.5 32.2 39.9 32.1 

Waterfall 1.0 1.8 50.5 56.2 47.5 

Avg. 1.0 1.6 50.0 63.2 53.0 
 

Table 3. PSNR Comparison for Different Sequences 
(dB). 

Sequence 
VM 
Pers. 

VM 
Aff. 

[4] [14] Proposed 

Akiyo 41.01 41.01 41.10 36.30 41.01 

Bus 21.69 21.68 21.62 21.81 21.83 

Carphone 30.81 30.74 30.40 28.86 29.73 

Coast. 26.38 26.38 26.36 26.24 26.60 

Foreman 25.28 25.26 25.29 23.24 25.09 

Flower 28.31 28.16 27.88 27.23 27.72 

Mobile 25.54 25.50 25.58 25.21 25.58 

Stefan 24.49 24.16 22.75 23.59 23.92 

Tempete 27.79 27.78 27.73 27.43 27.72 

Waterfall 35.68 35.63 35.57 34.92 35.73 
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Table 4. PSNR Degradation in Respect of MPEG-4 
VM Perspective GM. 

Sequence 
VM 
Pers 

VM 
Aff. 

[4] [14] 
Propos

ed 

Akiyo 0.00 0.00 0.09 -4.71 0.00 

Bus 0.00 -0.01 -0.06 0.12 0.14 

Carphone 0.00 -0.07 -0.41 -1.96 -1.08 

Coast. 0.00 0.01 -0.02 -0.14 0.22 

Foreman 0.00 -0.15 -0.43 -1.09 -0.60 

Flower 0.00 0.02 0.01 -2.04 -0.19 

Mobile 0.00 -0.04 0.05 -0.33 0.04 

Stefan 0.00 -0.34 -1.74 -0.90 -0.58 

Tempete 0.00 -0.01 -0.06 -0.35 -0.07 

Waterfall 0.00 -0.04 -0.10 -0.76 0.05 

Avg. 0.00 -0.07 -0.27 -1.22 -0.21 
 
methods, the test sequence is encoded in interframe 
mode (IPPPP…) with two fixed quantizer sizes Q=10 
and Q=31. For each macroblock, encoder use local 
motion compensation or global motion compensation 
based on SAD criteria. The coding efficiency results 
are compared in Table 5 and 6. furthermore, Fig. 3 and 
Fig. 4 illustrate the average size of compressed video 
frames. 
 
5.  CONCLUSIONS 

In this paper, a fast two-stage algorithm for global 
motion estimation (GME) with perspective model is 
introduced. In the first stage, eight parameters of global 
motion (GM) are estimated by using sampled motion 
vectors of blocks. In the second stage, by subsampling 
of pixels and using Levenberg-Marquardt algorithm 
(LMA), the estimated GM of the first stage is estimated 
more accurately. 

As the experiment results demonstrate, one key 
advantage of the proposed solution in this paper is that 
it is almost 53 times faster than the MPEG-4 VM 
method. Another outstanding feature of the innovative 
technique is its enhanced estimation accuracy, which is 

more than [4]’s and almost the same as MPEG-4 VM’s. 
Still, when compared against [14], the algorithm 
exhibits better precision with reasonable speed. This is 
while our method works with the perspective model 
and [14] estimates the simpler affine model. 
 

Table 5. Average Sizes of the Compressed Video 
Frames with Q=10 (KByte/Frame). 

Sequence 
VM 
Pers. 

VM 
Aff. 

[4] [14] Prop. 

Akiyo 3.05 2.91 2.81 3.14 2.85 

Bus 10.66 10.63 10.44 10.27 10.32 

Carphone 1.62 1.59 1.64 1.70 1.69 

Coast. 6.92 7.06 6.79 6.76 6.82 

Foreman 6.73 6.67 6.86 6.82 6.90 

Flower 11.16 11.38 11.27 11.55 11.35 

Mobile 13.86 13.82 13.79 13.92 13.79 

Stefan 9.83 10.01 9.90 10.50 10.26 

Tempete 8.88 8.83 8.87 9.05 8.90 

Waterfall 5.41 5.28 5.26 5.42 5.26 
 

Table 6.  Average Sizes of the Compressed Video 
Frames with Q=31 (KByte/Frame). 

Sequence 
VM 
Pers. 

VM 
Aff. 

[4] [14] Proposed 

Akiyo 2.81 2.81 2.64 3.15 2.55 

Bus 7.29 7.28 7.25 7.20 7.23 

Carphone 1.36 1.34 1.39 1.48 1.44 

Coast. 5.65 5.78 5.57 5.52 5.61 

Foreman 5.95 5.92 6.05 6.10 6.15 

Flower 5.99 6.01 6.00 6.03 6.05 

Mobile 7.08 7.07 7.06 7.09 7.06 

Stefan 6.75 6.76 6.78 6.87 6.84 

Tempete 6.31 6.27 6.28 6.38 6.31 

Waterfall 4.93 4.82 4.84 5.00 4.84 
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Fig. 3. GME Time of [4], [14] and Proposed Methods (Sec.). 
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Fig. 4. PSNR Comparison for Different GME Methods (dB). 
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Fig. 5. Average Sizes of the Compressed Video Frames with Q=10 (KByte/Frame). 
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Fig. 6. Average Sizes of the Compressed Video Frames with Q=31 (KByte/Frame). 
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