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ABSTRACT: 
Biogeography based optimization (BBO) is a new stochastic force based on the science of biogeography. 
Biogeography is the schoolwork of geographical allotment of biological organisms. BBO utilizes migration operator to 
share information between the problem solutions. The problem solutions are known as habitats and sharing of features 
is called migration. In this paper, BBO algorithm is developed to optimize the current excitations of concentric circular 
antenna arrays (CCAA). Concentric Circular Antenna Array (CCAA) has numerous attractive features that make it 
essential in mobile and communication applications. The goal of the optimization is to reduce the side lobe levels and 
the primary lobe beam width as much as possible. To confirm the capabilities of BBO, three different CCAA antennas 
of different sizes are taken. The results obtained by BBO are compared with the Real coded Genetic Algorithm 
(RGA), Craziness based Particle Swarm Optimization (CRPSO) and Hybrid Evolutionary Programming (HEP). 

 
KEYWORDS: Antenna array, concentric circular arrays, biogeography based optimization, metaheuristics, non-
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1. INTRODUCTION 

Circular antenna arrays have significant interest in a 
variety of applications which comprise sonar, radar, 
and mobile and commercial satellite communications 
systems [1–4]. A circular array is an arrangement of a 
number of elements usually omni directional arranged 
on a circle [1] and can be employed for beam forming 
in the azimuth plane such as at the base stations of the  
mobile radio communications system [2-4]. Circular 
arrays have become popular in recent years over other 
array geometries because they have the capability to 
perform the scan in all directions without a 
considerable change in the beam pattern and provide 
3600 azimuth coverage. Moreover, circular arrays are 
less sensitive to mutual coupling as compared to linear 
and rectangular arrays since these do not have edge 
elements [1]. Concentric circular antenna array 
(CCAA) that contains many concentric circular rings of 
different radii and number of elements has a number of 
advantages including the flexibility in array pattern 
synthesis and design both in narrowband and 
broadband beam forming applications [2-4]. CCAA is 
also employed in direction of arrival (DOA) 
applications since it gives almost invariant azimuth 
angle coverage. Hence the synthesis of the circular 
arrays is under active research by many groups. Genetic 

Algorithm (GA) has been used in [5] to optimize the 
element placement in CCAA. Particle Swarm 
Optimization (PSO) [6] has been applied for the 
optimized synthesis of thinned CCAA. Efficient side 
lobe reduction techniques have been discussed in [3]. 
PSO has also been used for obtaining flat-top beam 
pattern of CCAA [7]. Null synthesis of CCAA has been 
performed using hybrid Ant Colonial method [8]. 
CRPSO and RGA have been used to obtain minimum 
SLL and beam width of CCAA [9]. CCAA with and 
without central element has been optimized using 
Hybrid Evolutionary Programming (HEP) [10]. 

In this paper, biogeography-based optimization 
(BBO) is applied for the optimization of CCAA. BBO 
is a population-based evolutionary technique 
introduced in [11]. It has been applied for the design of 
linear antenna arrays for obtaining the maximum SLL 
reduction and null placement in desired directions in 
[12]. Results obtained using BBO for the linear arrays 
are encouraging. The BBO method produced a lower 
value of SLL and better null placement as compared to 
PSO [13].BBO has also been used for the optimization 
of Yagi-Uda [14].  The BBO method has been also 
applied in other areas, such as the power flow problem 
[15], optimization of gear trains [16], and satellite 
image classification problems [17]. The aim of this 
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paper is to present the optimization of CCAA using 
BBO for reducing the maximum SLL and at the same 
time keeping the beam width as small as possible. To 
the best of our knowledge, BBO has not been applied 
for the optimization of the CCAA before. It is well 
known in general that if the SLL is reduced, the beam 
width is increased [1]. Therefore, the aim of the 
optimization in this paper is to minimize the SLL while 
maintaining minimum possible beam width.  

The rest of the paper is organized as follows: 
Section 2 discusses the geometry and general design for 
the CCAA. In Section 3, the BBO algorithm is 
explained. Section 4 presents design examples and the 
results and in Section 5 conclusions are presented. 
 
2. CONCENTRIC CIRCULAR ANTENNA 
DESIGN 

In CCAA, the elements are arranged in such a 
manner that all antenna elements are positioned in 
multiple concentric circular rings, which vary in radii 
and in number of elements. Figure 1 shows the general 
configuration of CCAA with M concentric circular 
rings, where the mth (m = 1, 2,…, M) ring has a radius 
rm and the corresponding number of elements is Nm. 

 

 
Fig. 1. Concentric Circular Antenna Array. 

 
 Assuming that all the elements (in all the rings) are 

isotopic sources, then the radiation pattern of this array 
can be written in terms of its array factor only. The 
array factor (AF) is given by 

1 1

( , ) exp[ ( sin (cos( ) )]
mNM

mn m mn mn
m n

AF I I j kr    
 

    (1) 

where, 
kw is the wave number =2 / w  , 

w  is the  signal wavelength, 

mr  is the radius of the mth ring = / 2m mN d  , 

dm =inter element arc spacing of the mth ring 

2 ( 1) /mn mn N    is the angular position of the nth 

element of the mth ring, 
Imn is the current excitation of the nth element of the mth 

ring , 

  and   are the azimuth and zenith angle 

respectively , 

0cos( )mn w m mnk r      is the residual phase, 

0  is the value of    where main beam is to be 

directed. 
 
3   BIOGEOGRAPHY-BASED OPTIMIZATION 

 BBO is a recently developed population-based 
evolutionary algorithm based on the theory of 
biogeography. Biogeography is the study of the 
distribution of the species in nature. The species 
migrate to different habitats for their survival and better 
living conditions. BBO imitates this migration 
phenomenon for solving real-world optimization 
problems. In common with the GA, the PSO, and many 
other algorithms, BBO is motivated by natural 
phenomenon. In along the biogeography, a habitat (H) 
is defined as any ecological area which is 
geographically isolated from other habitats. Each 
habitat has its measure of goodness for living which is 
known as the suitability index (SI). Habitats those are 
well suited for living has a high SI. The SI of a habitat 
depends upon a number of factors, such as rainfall, 
temperature, diversity of species, population of the 
species, and security. These factors are known as 
suitability index variables (SIV). The habitats with a 
high SI have a large population as they are fit for living 
while the habitats with low SI are not apt or friendly for 
living and have a thin population. High SI habitats have 
a low immigration rate   and high emigration rate   

simply because they are highly populated and can not 
easily support new species. For the same reason, low SI 
habitats have a high immigration rate  , and low 
emigration rate   which allows more species to move 

into these habitats. The habitats with a high SI have 
many species that emigrate to nearby habitats. The high 
SI habitats are less dynamic than the low SI habitats. 
The influx of species to the low SI habitats may raise 
its SI because the suitability of a habitat is proportional 
to its biological diversity. But if SI remains low, the 
habitat may become extinct. Here, Figure 2 illustrates a 
model of species abundance in a single habitat. 
Consider the immigration graph of Figure 2. The 
maximum possible immigration rate to the habitat is I, 
which occurs when there are zero species in the habitat. 
If a habitat has less number of species, then much 
larger amount of species from other habitat can come 
into that habitat, thus immigration rate is higher at that 
time. With the increase in the number of species, the 
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habitat becomes densely populated, and fewer species 
are able to successfully survive after immigration to the 
habitat, and therefore immigration rate decreases. The 
largest possible number of species that the habitat can 
maintain is Smax, at which point the immigration rate 
becomes zero, because no more species can immigrate 
that habitat after that species count. Now consider the 
emigration graph. If there are no species in the habitat, 
then there is no species in that habitat that emigrate 
other habitat, so the emigration rate must be zero. As 
the number of species increases, the habitat becomes 
more crowded, more species are able to leave the 
habitat to explore other possible residences, and the 
emigration rate increases. The maximum emigration 
rate is E, which occurs when number of species is Smax. 
The equilibrium number of species is S0, at which point 
the immigration and emigration rates are equal. The 
immigration and emigration lines in Figure 2 have been 
shown as straight lines but, in general, they might be 
more complicated curves. However, the simple model 
gives us a general description of the process of 
immigration and emigration. In BBO algorithm, 
calculation of emigration rate and immigration rate is 
important as these play vital role to select habitats 
who’s SIVs will undergo migration operation.  

Mathematically, the concept of migration between 
habitats can be represented by a probabilistic model.  

Now, let kP  be probability that the habitat contains 

exactly k species at time t. sP  changes from time t  to 

time t t   as 

1 1 1 1( ) ( )(1 )s s s s s s s sP t t P t t t P t P t                 (2) 
where 

s  and 
s  are the immigration and emigration 

rates when there are S  species in the habitat. This 
equation holds because in order to have S species at 
time ( )t t   one of the following conditions must be 

satisfied: 
1) There were S  species at time t , and no 

immigration or emigration occurred              
between t and t t  ; 

2) There were ( 1)S   species at time t , and only 

one species immigrated; 
3) There were (S+1) species at time t , and only one 

species emigrated. 

If time t   is small enough so that the probability of 
more than one immigration or emigration can be 
ignored, then taking the limit of (2) as 0t   gives 

1 1

1 1 1 1 max

1 1 max
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s s s s s
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 
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   


 

(3) 

For the straight-line graph of Figure. 2, the equation 
for emigration rate and immigration rate for k number 

of species can be written as: 

1k b

k
I

n
    

 
               (4) 

b
k

E k

n
                                       (5) 

where Ib is the maximum possible immigration rate, Eb 
is the maximum possible emigration rate and n= Smax is 
the maximum number of species. 

When, b bE I combining (4) and (5) gives 

k k bE                                         (6) 

 

 
Fig. 2.  Linear migration relationships for a habitat 

 
BBO technique imitates nature’s way of distributing 
species, and is analogous to general problem solutions. 
Suppose that there is an optimization problem with 
some candidate solutions. The problem can be of any 
field of life provided that there is a quantifiable 
measure of the suitability of a given solution. In BBO, 
for an Nvar-dimensional optimization problem, a habitat 
is a 1 X Nvar array. The population consists of NP = n 
parameter vectors or habitats, where NP is the total 
number of habitats. Habitats consist of solution features 
named suitability index variables (SIV), corresponding 
to GA genes. A good solution is equivalent to the high 
SI habitat while a poor solution is given by the low SI 
habitat. The value of the SI of a habitat in BBO is 
similar to the fitness of solution in the other 
optimization algorithms. In this work, BBO is used to 
generate discrete numbers i.e. 0 or 1 as such the 
variable values or SIVs in a habitat are represented as 
binary numbers. The set of all such vectors is the search 
space from which the optimum solutions are to be 
found. The value of the SI is found by evaluating the 
cost of function at the variables [SIV1, ………SIVNvar]. 
Therefore, we have 
SI=f (Habitat) = f (SIV1 …-SIVNvar)                (7) 
where f (Habitat) represents the value of cost or 
objective function. The emigration and immigration 
rates of each solution are used to probabilistically share 
information between habitats. Each solution is modified 
depending on the probability Pmod which is a user-
defined parameter. In BBO, if a given solution is 



Majlesi Journal of Electrical Engineering                                                                            Vol. 6, No. 1, March 2012 
 

51 
 

selected for modification, then its immigration rate   
is used to probabilistically decide whether or not to 
modify each SIV in that solution. If a given SIV is 
selected for modification, then emigration rates   of 

other solutions are used to select which of the solutions 
should migrate a randomly selected SIV to solution Si. 
Similar to other population-based optimization 
algorithms, elitism is introduced in the BBO to prevent 
the best p solutions from being corrupted by the 
migration operation. To this end, p best solutions are 
kept aside from the migration operation by setting their 
immigration rate   equal to zero and therefore these 
are retained in the population from one generation to 
the next.   

The SI of a habitat can change suddenly due to 
some cataclysmic events due to which the species count 
in a habitat changes rapidly from its equilibrium value. 
Therefore, these random events can result in an abrupt 
change in the SI of a habitat.  This is modelled in the 
BBO as SIV mutation. The species count probabilities 
are used to determine the mutation rate. The 
probabilities of each species count are determined by 
the differential equation in (3). Every habitat member 
has an associated probability, which represents the 
chances that it exists as a solution for a given problem.  
The solutions having high SI and low SI are equally 
improbable. On the other hand, solutions with medium 
SI are relatively probable. If a given solution S has a 
low probability Ps, then it is surprising that it exists as a 
solution. It is, therefore, likely to mutate to some other 
solution. Conversely, a solution with a high probability 
is less likely to mutate to a different solution. This can 
be realized as a mutation rate m that is inversely 
proportional to the solution probability  

max
max

1 s
s

P
m m

P

 
  

 
                  (8) 

where maxm  is a user-defined parameter and sP  is a 

function of S. This mutation scheme is likely to 
increase the diversity of the population. Without this 
variation, the highly probable solutions will have a 
tendency to be more dominant in the population. This 
mutation operation makes both low and high SI 
solutions likely to mutate, which gives a chance of 
improving both types of solutions in comparison to 
their earlier value. Elitism is introduced so that the best 
solutions are retained in the population. Elitism helps in 
reverting back to an old solution (solution before 
mutation) if a solution is ruined by the mutation process 
[11]. The algorithm of BBO is shown in Figure 3. 

The migration of species among a group of 
neighboring habitats, combined with mutation of the 
individual species, will have a propensity over many 
generations to produce habitats that attract and keep 
large numbers of species through immigration. Habitats 

with low SI lose species through the extinction or 
emigration and will sometimes become uninhabited. 
The BBO algorithm emulates this behaviour in a 
manner that causes an "optimal" habitat to come out 
from the original population of habitats.  

 

 
Fig. 3.  BBO algorithm 

 
Similar to GA and PSO, BBO share its information 

between solutions. Therefore, BBO can be applied to 
many of the similar types of problems that GA and 
PSO are used for. But, BBO also has some distinct 
features which separates it from the other algorithms. 
One of them is that the original population is not 
discarded after each generation. It is rather modified by 
migration. Also, for each generation, BBO employs the 
fitness of each solution to determine its emigration and 
immigration rates [11].  
 
4. DESIGN EXAMPLES 

In this section, the proposed BBO algorithm is 
applied to the three CCAA with different numbers of 
elements. The goal of the synthesis of the antenna in 
this work is to determine array structure for having the 
radiation pattern with the minimum SLL and narrower 
beam width. This is done by manipulating the 
excitation current of the elements of each ring. The 
objective function to achieve the desired pattern using 
BBO is given by  

1 2* *F w SLL w BW                  (9) 

where w1 and w2 are the weighting coefficients, SLL 
and BW are he side lobe level (in decibels) and beam 
width (in degrees) In this work, the beam width is 
determined computationally from the radiation pattern 
data. The optimization problem can be summarized as 
the minimization of function F to obtain a set of 
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element amplitudes  11 12[ , ,...... ]mnI I I  . The values of 

the element amplitudes are allowed to vary between [0, 
1]. The BBO algorithm is applied to three CCAA 
designs having of M=3 rings. For each CCAA design, 
the number of elements for the inner most ring is N1, 
the middle ring consists of N2 number of elements 
whereas for the outermost ring is N3   The elements in 
each ring of CCAA are equally spaced (inter-element 
spacing) and the value of spacing is 0.55λ, 0.61λ and 
0.75λ for first ring, second ring and third ring 
respectively. These spacings are optimized values of 
element spacing given in [9].The main lobe is steered at 

0 =0. After many runs of the optimization, the 

following parameters that yield satisfactory results are 
chosen for the BBO algorithm as follows: 

 Number  of habitats or population : Npop =150 
 Iterations or Generations =120 
 Mutation probability: mmax=.005 
 Elitism parameter p =2  
 Maximum Migration Rates Eb=1 and Ib=1 
 w1=1 and w2=2 

In the first case, the CCAA with three rings (M=3) 
and (N1, N2, N3) = (4, 6, 8) elements is optimized with 
BBO. The number of parameters to be optimized are 
eighteen i.e. eighteen current element excitations of 
elements in each ring.   The number of habitats is equal 
to the population size and it is taken as 150. Each 
habitat consists of eighteen SIVs made up of i.e. 

11 12, 14 21 26 31 38( , ... , ,...... , ,.... )X I I I I I I I         (10) 

The BBO algorithm is applied to the CCAA 
problem which consists of migration operator followed 
by mutation. The duplicate solutions are removed at 
each generation and restored with random mutations. 
The elitism operation is applied for preserving two 
fittest habitats from each generation. The stopping 
criterion for BBO is the maximum number of 
generations. The BBO method took around 13 minutes 
to complete this optimization on a computer with a 
Pentium Core 2 Duo and 2 GB of RAM. The results 
obtained for this optimization are given in Table 1. 
Along with the BBO results, the optimized excitations 
using a RGA [9], CRPSO [9], HEP [10] and uniform 
excited antenna are also listed for comparison. The 
maximum SLL obtained by BBO is -33.64 dB and the 
beam width is 28.60. Obviously, BBO offers improved 
SLL and beam width than other techniques. The SLL 
given by BBO is enhanced by -16.43 dB, -1 dB, -5.54 
dB, and -1.21 dB than those by the uniform excited 
array, CRPSO, RGA, and HEP optimized arrays, 
respectively. The obtained beam width is also narrower 
by 0.80 0.20, 0.540, 0.40 than the uniform array, CRPSO, 
RGA, and HEP arrays respectively. The radiation 
pattern of the array obtained by BBO is plotted in the 
Figure 4 along with the radiation patterns of the 
uniform excited, the RGA and the CRPSO and the HEP 
methods. 

 
Table 1. Normalized current excitations of CCAA with (N1=4, N2=6, N3=8) elements 

Method 
Current excitations weights for the array elements (I11, 

I12, I13,……….. Imn) 
 

Uniform 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 
SLL=-17.17 

3dB BW=29.4 

RGA[9] 

0.3773   0.9491   0.3830   0.7861   0.5661   0.6932    

0.9638   0.6275   0.5465   0.9349   0.4878   0.7220    

0.5123   0.2850   0.6041   0.7300   0.5016   0.2799 

SLL=-28.06 

3dB BW=29.06 

CRPSO[9] 

0.0906   0.6250   0.0986   0.6904   0.4267   0.4139   

1.0000   0.4145   0.4393   0.9604   0.4979   0.6600     

0.4866   0.2423   0.5017   0.6475   0.5020   0.2387 

SLL=-32.61 

3dB BW=28.8 

HEP[10] 

0.0192   0.4230   0.0233   0.4009   0.2530   0.2507   

0.6606   0.2746   0.2473   0.6098   0.2956   0.4095     

0.3052   0.1664   0.3213   0.4082   0.3124   0.1514 

SLL=-32.39 

3dB BW=29 

BBO 

0.1105   0.6413   0.0964   0.6438   0.4017   0.3942    

0.9661   0.3923   0.3981   0.9564   0.4699   0.6872    

0.4646   0.2339   0.4680   0.6681   0.4738   0.2214 

SLL=-33.64 

3dB BW=- 28.6 
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In the next example, the BBO algorithm is 
employed to optimize a CCAA with three rings (M=3) 
and (N1, N2 N3) = (6, 8, 10) elements for the same 
objective and parameters. The constraints are also the 
same as in the previous example. The results achieved 
are given in Table 2. These are again judged against 
with the results of uniform excited array, CRPSO [9], 
the RGA [9], and the HEP [10] methods. Again, the 
BBO has surpassed the other algorithms. The obtained 
maximum SLL is better by -10.73 dB, -1.75 dB, -1.64 
dB and, -1 dB than those achieved by the uniform 
excited array, the CRPSO,  the RGA  and the HEP 
methods, respectively.  Moreover, the beam width 
obtained by the BBO is smaller by .20, 20, than those by 
the CRPSO and the RGA methods, respectively. The 
optimized radiation pattern of the BBO array for this 
case is plotted in Figure 5. For comparison, the 
radiation patterns of the uniform excited antenna and 
antennas obtained by the RGA, the CRPSO, and the 
HEP techniques are also plotted in Figure 5. The 
radiation pattern clearly shows that BBO accomplishes 
excellent results. 

 
Fig. 4. Radiation pattern of CCAA (N1=4, N2=6, N3=8) 

 
In the last example, the BBO method is used to 

optimize a CCAA for three rings (M =3) and (N1, N2, 
N3) = (8, 10, 12) elements. The results attained after 
optimization are shown in Table 3.  Yet again, the BBO 
technique gives results which are better to the other 
algorithms. The maximum SLL is lower than those 
accomplished by the other algorithms. The 
improvement in the SLL is significant and it is lower 
by -14.7 dB, -1.8 dB, -2.6 dB, and -1.6 dB  than those 
from uniform excited antenna and the optimized 
antennas by the the CRPSO [9], the RGA [9], and the 
HEP [10] techniques, respectively. The obtained beam 
width is also better than those accomplished by the 
CRPSO, the RGA, and the HEP techniques. It is 
narrower by 7.40, 0.40, and 0.2 as compared to CRPSO, 
RGA, and HEP optimized arrays respectively. The 

radiation patterns for the antennas obtained by BBO, 
uniform excited antenna, RGA, CRPSO and HEP are 
plotted in Figure 6. Certainly, BBO has again done 
better than the other techniques in obtaining the 
required antennas. 
 
5. CONCLUSIONS 

In this paper, the design of a non-uniformly excited 
concentric circular antenna array with uniform spacing 
between the elements has been illustrated using the 
BBO technique. As compared with previous published 
results of CRPSO and HEP, BBO has obtained better 
results. The design of CCAA using BBO offers 
improvement in SLL reduction along with reduced 
beam width.  The main benefit of the BBO is its 
simplicity that provides an easy, quick, and efficient 
resolution of medium and large problems The BBO 
method has proved to be an efficient algorithm for the 
antenna optimization problems. 

 
Fig. 5.  Radiation pattern of CCAA (N1=6, N2=8, 

N3=10) 

 
Fig. 6. Radiation pattern of CCAA  (N1=8, N2=10, 

N3=12) 
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Table 2. Normalized current excitations of CCAA with( N1=6, N2=8, N3=10 )elements 
Method Current excitations weights for the array elements (I11, I12, I13,……….. Imn)  

 

Uniform 
1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 

SLL=-15.84 

3dB BW=23.4 

RGA[9] 

0.5513   0.4810   0.6504   0.5254   0.7093   0.9878    0.9240   0.0206   0.7129   0.9853  

0.8481   0.0006     0.8226   0.9933   0.4945   0.7770   0.6438   0.4928    0.6184   

0.4075   0.9723   0.8552   0.4231   0.5006 

SLL=-24.93 

3dB BW=23.8 

CRPSO[9] 

0.6462   0.7146   0.8599   0.6331   0.5285   0.9829   0.9326         0      0.8051   0.9424   

0.8323   0.0000    1.0000   0.9999   0.4039  0.8987   0.8780    0.3347    0.6025   0.5059  

0.8089   0.8498   0.5761   0.6353 

SLL=-24.82 

3dB BW=23.8 

HEP[10] 

0.2539   0.1643   0.2535   0.1615   0.1837   0 .4012   0.4195      0         0.3601   0.5418  

0.3092       0 0.4333   0.5739   0.1976   0.4085   0.4174   0.2424    0.3586   0.2639   

0.3406   0.4188   0.2275   0.2450 

SLL=-25.57 

3dB BW=23.4 

BBO 

0.4073   0.2687   0.4759   0.2694   0.3495   0.6715    0.7029   0.0008   0.6814   0.9961  

0.5479   0.0002    0.7029   0.9955   0.4055   0.6973   0.7377   0.4156    0.6119   0.4560  

0.5953   0.6779   0.4317   0.4858 

SLL=-26.57 

3dB BW=23.6 

 
Table 3. Normalized current excitations of CCAA with( N1=8, N2=10, N3=12 )elements 

Method Current excitations weights for the array elements (I11, I12, I13,……….. Imn)  

 

Uniform 
1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SLL=-14.08 

3dB BW=19.2 

44 

RGA[9] 

0.7507   0.3438   0.7676   0.9471   0.8357   0.4322   0.8105   0.9816   0.4392   0.1996   

0.2429   0.8479   0.5903   0.6827   0.0409   0.0649   0.9464   0.5148     0.5861   0.0744  

0.9357   0.3858   0.4818   0.4177    0.2614   0.5137   0.9845   0.6134   0.3000   0.5170 

SLL=-26.11 

3dB BW=20 

CRPSO[9] 

0.6779   0.3910   0.6668   1.0000   1.0000   0.3036   0.9360   0.9757   0.5663   0.2201   

0.2306   0.6152   0.6135   0.8425   0.1443   0.1248   0.6574   0.5085     0.4546   0.2234  

0.9887   0.2936   0.4100   0.4502    0.3979   0.4542   1.0000   0.3310   0.4025   0.5632 

SLL=-27.0223 

3dB BW=27.023

54.40 

HEP[10] 

0.3356   0.1697   0.2629   0.2719   0.3039   0.1342   0.3562   0.4342   0.3223   0.0657   

0.0444   0.1575   0.1418   0.1738   0.0445   0.0721   0.3286   0.2282     0.1509   0.1533  

0.3812   0.0685   0.1776   0.1759    0.1427   0.1064   0.3736    0.1897   0.1265   0.1526 

SLL=-27.20 

3dB BW=20 

54.40 

BBO 

0.5010   0.2061   0.7080   0.9853   0.7087   0.2578    0.4922   0.2692   0.1598   0.0875  

0.0988   0.7985    0.5707   0.8017   0.1171   0.1028   0.1845   0.2894    0.2793   0.1256  

0.8306   0.4473   0.3715   0.3938    0.3647   0.4450   0.8956   0.1373   0.2646   0.4306 

SLL=-28.80 

3dB BW=19.6 

51.2 
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