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ABSTRACT: 
Minimal stopping distance, guaranteed steering ability and stability are the three most important purposes in Anti-lock 
Braking System (ABS) realm. The ABS system is a nonlinear, time variant and multivariable system with some 
uncertainties. Some research work has been carried out on ABS control systems using intricate methods, which are 
expensive to implement.   In this paper at the first step, the system interference is decreased via decoupling matrix and 
the ABS is controlled with a robust diagonal controller. In fact, a decentralized control technique is used for our ABS 
control mechanism. At the second step, we exploit a multivariable technique in linear control to attack the problem. 
This is the Designed Linear Control with Multivariable Technique. The Optimal Eigenstructure assignment with the 
Genetic Algorithm (GA) method is also applied. Simulation and comparison studies are used to show the effectiveness 
of the proposed methods. 
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1.  INTRODUCTION 

The car industry has undergone Major changes 
during the past decades. Advanced technical 
developments have radically changed the present car. 
These differences are in convenience, safety and 
performance. An important part in the car is its braking 
system. Braking system can ensure a safe and reliable 
drive and save lives. Anyone with a driving experience, 
especially in rainy and slippery roads, knows that 
controlling the vehicle in this condition is very difficult 
and causes the danger of slipping and losing control. 
This Importance of Anti-lock Brake in the slippery 
road, specifies the response of a driver with fear and 
shows the errors of another driver and the passer-by. 
ABS avoids the locking of the wheels and leads to 
increased steering ability and guarantees the stability 
the car. The first application of the anti-lock brake 
system was in bomber B-47 in 1947, followed using 
anti-lock brake in BMW and Mercedes Benz in 1978. 
In ABS brake, with chary of the continued moment of 
brake, we try to decrease the measured distance and 
keep the balance of the car.  Up to now many 
procedures for controlling ABS have been proposed. 
Examples of these are fuzzy control [1-2], adaptive 
control [3-4], intelligent control [5-7] and nonlinear 
control [2, 8-9] have been used. In this paper, two new 
methods consisting of decentralized control and 

eigenstructure assignment with genetic algorithms have 
been proposed. This is the generalized state feedback 
method (consisting of the eigenvalues and the 
associated eigenvectors). Advantages of this procedure 
are the simple operation of the controller and its 
moderate cost.  In part 2, the four-wheel system will be 
demonstrated, and the brake and vehicle systems are 
modeled. In part 3, the decentralized control procedure 
will be studied and then the parameters of the PID 
controller will be tuned using the Cohen-Coon method. 
Eigenstructure assignment & genetic algorithm (GA) 
will be finally considered as it will be needed to learn 
GA to find the state feedback matrix. In part 4, the 
results of simulations will be discussed. Finally, the 
paper is concluded in part 5. 
 
2.  MATHEMATICAL MODELING 

To demonstrate the system, we need to find the 
dynamic equations of body, wheels, hydraulic brake 
and tire. The body dynamic equations have 3 degree of 
freedom consisting of longitudinal speed, side speed,  
and yaw rate [10-11]. 
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Dynamic equation of each wheel (ω) without 
consent rate motion energy of engine [1,4] is:       
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Tire, when we focus on low contact area with road 
have special importance. The famous tire Model for 4 
wheel system is the Calspan model under normal force 
( ZF )   which is [5,11]:b   
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The longitudinal and lateral friction forces ( yx FF , ) 
are obtained by Describing the Figures 2 and 3. The 
equation of changes in output pressure of hydraulic 
brake system will be given by (4) with regard to figure 
4 [2, 12] and the slip in each wheel is as in (5)[12]. 
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Fig.1.  Four-Wheel Model. 

 

 
Fig.2. Normalized longitudinal force vs. slip. 

 

 
Fig. 3.  Normalized lateral force vs.  slip. 

 

     
Fig. 4.  Hydraulic brake system. 

  
The slip angle (α ) and speed of generating ( V )of 

each vehicle are as in the following:2                222       
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Table 1. List of symbols and parameters. 

Symbol Value Parameter 

xif   Longitudinal friction force 

fT
 

0.78 M Half front axel 

rT  0.78 M Half rear axel 

I  4.07 KGM Moment of inertia of wheel 

h  0.53 M Height of the sprung mass 

R  0.33 M Wheel radius 

B 0.02KM/S Viscous friction coefficient 
 

xa   Vehicle linear acceleration 

 
fC

 KgF

m5
10  

Coefficient of the flow and the 
time derivative function of 
hydraulic pressure 

lowP  
2

6000
cm

KgF
 

Constant reservoir pressure 

 
  3

1
m

Kg
 

Fluid density 

yif
 

 Lateral friction force 

m  1301  KG Total Mass 

rfm ,  40 KG Front and rear wheel mass 

fL
 

1 M Distance from center of     
gravity to front axle 

rL  1.45 M Distance from center of     
gravity to rear axle 

zI  1627 KGM Inertia  moment 

iTb   Brake torque 

1A  2003.0 m  Effective orifice aria of the 
build valve 

2A  2006.0 m  Effective orifice aria of the 
dump valve 

 
pP

 
5 2cm

KgF  
Constant pomp pressure 

iP   Hydraulic Pressure 

2,1Cd  0,1 The coefficient 

 
Linearization will be done with constant 

longitudinal speed and little , i.e.,  sin  and 

1cos  .Therefore
1XF , 

2XF will be as on the figures 

2 and3  and iX RV  . 
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So we can show (8) (note that the dynamic 
equations of body, wheels and tire and see table 1)        
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In this system we have two uncontrollable and three 
unobservable poles. Tracking goal is S=0.2 to have 
maximum longitudinal friction force in this slip. As the 
tracking system is uncontrollable, we can’t use 
Eigenstructure assignment. This is due to the system 
uncertainties (longitudinal speed, side speed and yaw 
rate).  After reducing the state space equations from 11 
to 8(see equation 8), the system will be controllable and 
observable and the method will be applied. 
 
3.  CONTROL DESIGN  

We use two methods for control design. In the first 
method we use the diagonal matrix and two PID 
controllers. PID controllers are mainly implemented by 
two amplifiers and ten Op-Amps in the industry. In the 
second method we use the modern and linear method 
because Eigenstructure Assignment serves the three 
purposes and will be discussed in section 3.2. 
 
3.1.   Decentralized control 

In a MIMO system there is a phenomenon called 
interference. This phenomenon causes all of the inputs 
to influence all of the outputs. Mayne suggested that, 
before starting to design the individual loop 
compensators, a cross-coupling stage of compensation 
should be introduced. This stage should consist of 
either a constant gain matrix or a sequence of 
elementary operations and its purpose is to redistribute 
the “difficulty of control” among the loops. Mayne 
proposes three compensations or decoupling matrix 
[13]. Figure5 shows the structure of the decentralized 
control. 
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Fig.5. Decentralized control 

 
One way that is effective in these systems is the 

decentralized control procedure in which the system 
interference is reduced through the decoupling matrix, 
and then the control of the system is similar to a SISO 
model [13]. To design 4321 ,,, kkkk  we implement the 
PID system controller, and for controller tuning we 
offer Cohen-Coon method. Regarding (9), the 
proportional gain of the diagonal controller times the 
decoupling matrix, which itself is also diagonal, must 
be greater than 150 times the identity matrix to reduce 
the interference of the system i.e. 

150 pre
iiii Kk                                                           (9) 

We tune the PID parameters with the help of the C-
C (Cohen- Coon) method, in which the minimum of 
error integral specifies where to apply the poles. The 
intuitive design criterion is to omit the disturbance 
effect. The controller’s parameters are appointed as (8) 
[14]. The process model is considered with three 
parameters. 

TS

Ke
sG

LS

p





1
)( .   

We can specify T, L, and K by the step response of 
the system. 

)
1

18.0
1(

35.1








a
K p  , 

T

KL
a  ,

TL

L


  

LTd




81.01

37.037.0




  , LTi





39.01

25.2




                      (10) 

In the ABS system, parameters are specified as: 

13.0,05.1,94.2

33.05.0115.0
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3.2.   Eigenstructure Assignment 

  We are now intended to follow the analysis of the 
conditioning of the pole placement problem in           
[13, 15-18] with the multi-input case which is called 
the generalized state feedback. State feedback matrix 
not being unique in the MIMO system, there are many 
degree freedoms (DF) in this choice.  

These degrees of freedoms are used for the 
following purposes: 1) consisting of the eigenvalues 

and the associated eigenvectors, 2) Designing K (gain 
feedback matrix) as decrease control cost, 3) designing 
K for system robustness. The multi-input time-invariant 
linear system is as the following:                 

0 x  x(0)Bu(t);  Ax(t)   x                                        (11)              

With mnnn CB , C  A . For which the        
following problem will be considered:                             
PROBLEM: Multi-input pole placement (MIPP): 
Given a set of n complex 
numbers:  CP n   ,,, 21   find a matrix 

mnC K such that the set of eigenvalues of A − BK 
be equal to P (we assume in the real case that P is a 
closed complex conjugation set). It is well-known [18] 
that a feedback gain matrix K that solves this problem 
for all possible sets CP   exists if and only if (A, B) is 

controllable,     rank Cn,B] ,[  
n

IA            (12)                            

or rank nB],...,,[ 1-n AABB                                      (13) 
State feedback equation with tracking system is: 
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eigenvectors [15-16]. Then 
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i
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i qv ][  must be at null space 

][)( BIAs iii    so that the feedback gain matrix 

is ][][ 2121 nn vvvqqqK   .   

We can use this method if 
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

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
 C

AB

0
is full rank. 

ABS system has eight states plus four additional 
states due to the use of integrators (see Figure 6).  

 

 
Fig. 6.  Tracking system. 
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3.3.   GENETIC ALGORITHM (GA) 
  GA simulates the survival of the fittest among 

individuals over consecutive generation for solving a 
problem. Each generation consists of a population of 
character strings that are analogous to the chromosome 
that we see in our DNA. Each individual represents a 
point in a search space and a possible solution. The 
individuals in the population are then made to go 
through a process of evolution. GAs are based on an 
analogy with the genetic structure and behavior of 
chromosomes within a population of individuals using 
the following foundations: Individuals in a population 
compete for resources and mates. Those individuals 
most successful in each 'competition' will produce more 
offsprings than those individuals that perform poorly. 
Genes from `good' individuals propagate throughout 
the population so that two good parents will sometimes 
produce offspring that are better than either parent. 
Thus each successive generation will become more 
suited to their environment. A population of individuals 
is maintained within search space for a GA, each 
representing a possible solution to a given problem. 
Each individual is coded as a finite length vector of 
components, or variables, in terms of some alphabet, 
usually the binary alphabet {0, 1}. To continue the 
genetic analogy these individuals are likened to 
chromosomes and the variables are analogous to genes. 
Thus a chromosome (solution) is composed of several 
genes (variables). A fitness score is assigned to each 
solution representing the abilities of an individual to 
`compete'. The individual with the optimal (or 
generally near optimal) fitness score is sought. The GA 
aims to use selective `breeding' of the solutions to 
produce `offspring' better than the parents by 
combining information from the chromosomes. The 
GA maintains a population of n chromosomes 
(solutions) with associated fitness values. Parents are 
selected to mate, on the basis of their fitness, producing 
offspring via a reproductive plan. Consequently highly 
fit solutions are given more opportunities to reproduce, 
so that offspring inherit characteristics from each 
parent. As parents mate and produce offspring, room 
must be made for the new arrivals since the population 
is kept at a static size. Individuals in the population die 
and are replaced by the new solutions, eventually 
creating a new generation once all mating opportunities 
in the old population have been exhausted. In this way 
it is hoped that over successive generations better 
solutions will thrive while the least fit solutions die out. 
New generations of solutions are produced containing, 
on average, better genes than a typical solution in a 
previous generation. Each successive generation will 
contain more good `partial solutions' than previous 
generations. Eventually, once the population has 
converged and is not producing offspring noticeably 
different from those in previous generations, the 

algorithm itself is said to have converged to a set of 
solutions to the problem at hand [19-20].  

The ABS system output is 1,2,3,4, iSi . We 
therefore have 48 (each state produce four null 
space), so State feedback matrix not being unique in the 
MIMO system, hence α will be very difficult to be 
calculated. Therefore we get help from Genetic 
Algorithm (GA).  
 
4. RESULTS AND DISCUSSIONS 

We trained two different ABS controllers using 
different training scenarios. The first (decentralized 
control) and second (optimal eigenstructure) ABS 
controller was trained with two road surfaces, We first 
set the speed of the car to 115 km/h in dry road 
with 85.0nom   (dry asphalt) (please see fig. 7,8,9 
and 10), we uses simulink6.0 in matlab 7.  

 

 
Fig. 7. Simulation results of the nonlinear system in a dry 

road, with 115km/h, and 150Kk
pre

iiii  . 
 

The results are depicted in Fig. 7 and 8 with 
proportional gains variable in the decentralized control. 
The vehicle’s parameters are specified according to 
Table 1.  

Fig. 7 shows decentralized control in the dry and 
uniform road with decoupling matrix( 150 times the 
identity matrix) . maximum of slip is 0.3, suspend time 
is 2.8(sec), suspend distance is 60 (meter), yaw rate is 
0(degree) and maximum of torque brake is 1500 (n.m). 
in this controller maximum of control signal is 30. 

Fig. 8 shows decentralized control in the dry and 
uniform road with decoupling matrix( 1161 times the 
identity matrix) . maximum of slip is 0.22, suspend 
time is 2.56(sec), suspend distance is 53 (meter), yaw 
rate is 0(degree) and maximum of torque brake is 1496 
(n.m). in this controller maximum of control signal is 
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232. 
 

 
Fig. 8. Simulation results of the nonlinear system in a 

dry road, with 115km/h, and 1161Kk
pre

iiii  . 
 
The fig. 9 and 10 show the speed and slips of 4 

wheels, torque brake and yaw rate of vehicle in the dry 

road based on minimizing 


0

2
dte and  



0

22 )( dtue .   

 

 
Fig. 9. Simulation results of the nonlinear system in a 

dry road, with 115km/h, and fitness function ( 


0

2dte ) 

 
Fig. 9 shows optimal eigenstructure assignment 

method in the dry and uniform road with fitness 
function (square of integral error). Maximum of slip is 
0.29, suspend time is 2.60(sec), suspend distance is 
53.5 (meter), yaw rate is 4.7(degree) and maximum of 
torque brake is 1800 (n.m). In this controller maximum 
of control signal is 240.    

Fig. 10 shows optimal eigenstructure assignment 

method in the dry and uniform road with fitness 
function (square of integral error and control signal). 
Maximum of slip is 0.25, suspend time is 2.80(sec), 
suspend distance is 60 (meter), yaw rate is 0.8(degree) 
and maximum of torque brake is 1400 (n.m). In this 
controller maximum of control signal is 30. 
 

 
Fig. 10. Simulation results of the nonlinear system in a dry 

road, with 115km/h, and fitness function ( 



0

22
)( dte u ) 

 
In non-uniform roads, after the car has passed 35m, 

enters the icy road which has a friction coefficient of 
5.0nom and after passing 25m re-enters the dry 

road. Fig. 11 and 12 show the speed and slips of four 
wheels, brake torques and yaw rates of the vehicles 
wheels in the non-uniform road based on the change of 
proportional gain.  

 

 
Fig. 11.  Simulation results of the nonlinear system in a 
non-uniform road, with 115km/h, and 150Kk

pre

iiii  . 
 
Fig. 11 shows decentralized control in the non-
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uniform road with decoupling matrix (150 times the 
identity matrix). Maximum of slip is 0.46, suspend time 
is 3.45(sec), suspend distance is 72 (meter), yaw rate is 
2.86(degree) and maximum of torque brake is 1500 
(n.m). In this controller maximum of control signal is 
63. 

 

 
Fig. 12. Simulation results of the nonlinear system in a 
non-uniform road, with 115km/h, and 1161Kk

pre

iiii  . 
 
Fig. 12 shows decentralized control in the non- 

uniform road with decoupling matrix (1161 times the 
identity matrix). Maximum of slip is 0.26, suspend time 
is 3.13(sec), suspend distance is 63 (meter), yaw rate is 
0.9(degree) and maximum of torque brake is 1498 
(n.m). In this controller maximum of control signal is 
332. 

 

 
Fig. 13. Simulation results of the nonlinear system in a 

non-uniform road, with 115km/h, and ( 



0

22 )( dte u ) 

 
Fig. 13 shows Optimal eigenstructure assignment 

method    in the non-uniform road with fitness function 

( square of integral error and control signal). Maximum 
of slip is 0.65, suspend time is 3.65(sec), suspend 
distance is 75 (meter), yaw rate is 5.16(degree) and 
maximum of torque brake is 1417 (n.m). In this 
controller maximum of control signal is 66. 

In the first step we compare our methods with fuzzy 
controller by designing a Genetic Neural Fuzzy 
Antilock-Brake-System Controller [5]. Suspend time is 
2 sec (vehicle speed is=72 km/h, vehicle mass 
is=1500kg, and in a dry road).  If we change vehicle 
data according to [5], suspend time will be changed to 
1.75 sec (for Eigenstructure Assignment method). In 
[2] by using robust sliding mode, suspend time is 3.2 
sec (vehicle speed is=100 km/h, vehicle mass 
is=1100kg, dry road) our vehicle with upper speed and 
mass suspend time is 2.8 sec (Figures (7, 10)). In the 
comparison with previous control methodologies, we 
see that the decentralized control and Eigenstructure 
Assignment although simpler and perhaps of lower 
implementation cost, gives acceptable and robust 
performance. 
 
5. CONCLUSIONS 
  In this paper a four wheel system with regard to 
Calspan model for tire and dynamic equation of             
hydraulic brake system was used. In the first step with 
the use of decentralized control method and the 
decoupling matrix, we designed a diagonal PID 
controller with C-C method. It was seen that the 
advantages of decentralized control for ABS is its 
simplicity and cheapness. The results of simulation 
show that systems with disturbance have suitable 
performance under this method. Coefficient friction is 
disturbance in this paper. 
In the second step, we designed a linear control for 
Anti-lock Brake system using eigenstructure 
assignment method and getting help from genetic 
algorithm theory for a low control cost and system 
robustness. The minimization was done with two 
optimal fitness function using GA 

 
( 


0

2
dte and  



0

22 )( dtue ), where longitudinal speed, 

side speed, yaw rate, total mass and normal force (tire) 
have been considered with uncertainty. Disturbance in 
ABS system was considered to be the road change of 
circumstances (non-uniform road coefficient friction  

Has change by 45% with regard to the uniform 
road). The simulation result shows that using control 
signal in the integral will obtain low cost and suitable 
performance. So the goals enumerated in the abstract 
for an ABS system are secure. 
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