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ABSTRACT: 
Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is 
hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, 
already some fuzzy systems proposed to control the important structural parameters of basic PSO. However, in those 
researches no effort were reported for optimizing the structural parameters of the designed fuzzy controller. In this 
paper, a new algorithm called Fuzzy Optimum PSO (FOPSO) has been introduced. FOPSO utilizes two optimized 
fuzzy systems for optimal controlling the main parameters of basic PSO. Extensive experimental results on many 
benchmark functions with different dimensions show that the powerfulness and effectiveness of the proposed FOPSO 
outperforms other versions of PSO. 
 
KEYWORDS: Optimized Fuzzy Controller, Particle Swarm Optimization, Fuzzy Logic. 
  
1. INTRODUCTION 

PSO algorithm is a global intelligence technique 
which was discussed and developed by Kennedy and 
Eberhart in 1995. The global intelligence of social 
behavior of a society's individuals is as a corresponding 
collaboration to achieve the final goal. This approach is 
more effective than individuals separately struggle to 
achieve the final goal. PSO may be assumed as a 
society, including an organized exhibition of particles, 
which have simple structure and interact and 
collaborate interchangeably. The structure of PSO 
algorithm like the other similar global intelligence 
algorithms is extracted from neutral`s cooperation. In 
PSO, the particles stream in investigation space so that 
their displacement in investigation space is subject to 
their own experience and knowledge or those of their 
neighbors.  

In PSO, the position of other particles of the society 
affects the way an individual particle investigates. 

The modeling result of this social behavior is an 
investigation process which leads the particles to 
successful areas. Utilizing the gained knowledge, the 
particles of the society learn to move towards the area 
of their best neighbors. 

In this paper, a compound algorithm of fuzzy and 
PSO has been used so that the problems concerned with 
the standard algorithm have been noticeably dealt and 
have caused an increase in convergence as well. 
 

2. OPTIMIZATION ALGORITHM OF THE 
PARTICLES OF THE SOCIETY 

PSO is asserted to a family of algorithms, which 
can be applied to discover the optimum responses of 
various functions. These functions can be the problems 
defined either numerically or quality. Many scholars 
have researched about PSOs introduced by Kennedy 
and Eberhart in recent years. Out of them, we can 
mention Mahfout and Lie_Abraham whose findings 
have been used in this paper. [1][2][3] 

Standard PSO should be pointed at once in order to 
consider the influence of new factors based on new 
fuzzy controllers in this algorithm. 

 
2.1. Standard PSO 

What referred to as basic PSO, is that particles 
move through investigation space, and each particle 
maintains its best individual experience such as 
location vector and velocity vector, as well as the 
whole particle communities intrinsically providing and 
maintaining the best group experience as a whole. 

What referred to as the velocity vector in this 
algorithm, is actually the output of three components, 
including the velocity in previous step, the best 
individual experience and the best group experience, 
which have been updated and yield the next speed 
[1][8]. 

The first value is the best experience that the 
particle itself has ever acquired, which is denoted by P-
best. The second value is the best experience gained 
among all particles in the neighborhood, which is 
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denoted by G-best. In some versions of PSO, the 
particle chooses parts of population from the 
neighborhood nearby and shares its trend only with 
them. In this case, L-best is used instead of G-best [4]. 

In general, the PSO algorithm and the principle 
relations for speed update and particle location 
influence can be shown as follows. 

 
While (not termination) 
        Update Local Bests () 
        Update Global Bests () 
        For each particle 
            R1=Uniform random number 
            R2=Uniform random number 
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           End for 
End While    

 

In order to prevent the algorithm divergence, the 
final value of speed has also been confined to an 
interval as [Vmin, Vmax]. 

The algorithm termination condition is as 
convergence achievement to a specified limit. The 
achievement to the number of iterations is already 
defined. 
 
3. STANDARD PSO PARAMETERS AND THE 
NECESSITY FOR IMPROVEMENT 
APPLICATION 
 
3.1. Acceleration factor, α 

Regarding Mahfout statements in his paper, in 
method which he refers to as AWPSO, the influence of 
a parameter called acceleration factor or α has been 
discussed. In fact, this parameter incorporates the factor 
of a kind of a virtual acceleration into the main PSO 
equation. Thus, with the influence of this parameter, 
the following change will apply to the speed update 
relevant equation. 
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α defines as an acceleration factor as follows. 

T

t
 0                                                             (4) 

In this relation, t is the number of current iterations, 
and T is the number of overall iterations. 

α0 is a random number between 0.5 and 1. Through 
the experiments performed iteratively, better 
convergence can be achieved by replacing this value as 
follows, which can be caused more in effect through 
the final stages of convergence [3]. 
 
 

3.2. The personal parameters C1 and group 
parameters C2 

As seen in main equation of standard PSO, the 
values C1 and C2 have been used for speed 
improvement. These two parameters together with 
random vectors R1 and R2 specify the personal and 
social parameters influence on random investigation. 
These parameters could be introduced as particles 
reliance parameters. The factor C1 determines how 
much a particle is dependant on its experiences, 
whereas the parameter C2 determines how much how 
much a particle relies on its neighbors experiences. 

In general, the tendency of each member towards 
local and global optimum points is determined by these 
two factors. Various experiences offer the number 2 for 
both of these parameters, which by moving toward the 
global optimum point the influence of these factors 
gradually decreases and convergence of algorithm is 
fulfilled [1]. 

In fact, our point of view in this paper is the control 
of these two parameters by using one of the fuzzy 
controllers so as to provide the variations of these 
parameters with use of a smooth and appropriate fuzzy 
logic. 
 
3.3. Inertia weight parameter, W 

Of very important parameters in searching location 
and PSO investigation ability, which is multiplied by 
previous stage speed within the speed update equation, 
is W or the inertia factor. What Liu-Abraham had 
previously dealt with in their paper was the standstill 
and statics influence of lazy particles and the loss of 
dynamics to search other particles, which all together 
lead to termination of a huge category of some particles 
neighborhood experiences. The point of view of 
improving PSO investigation which is mentioned in 
this paper is the use of a speed threshold to provide the 
particles with more acceleration and increase their 
stimulation within neighborhood of particles in such 
case that the particles are slower than this threshold. 
They introduced this PSO as TPSO or PSO with 
turbulence capability. [2] 
 
4. RELEVENT FUZZY SYSTEMS  
4.1. A preface over fuzzy systems 

Fuzzy logic is a relatively novel technology which 
is implemented more appropriately and more 
comfortably in comparison with complicated 
mathematical methods and those requiring advanced 
mathematical possibilities. This logic was presented by 
Professor Zadeh for the first time in 1960. 

The Fuzzy logic provides a general concept for 
description and measurement. Most fuzzy logic 
systems encode human reasoning into a program to 
make decisions or control a system. Fuzzy logic 
compromises fussy sets, which are a way of 
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representing non-statistical uncertainty and 
approximate reasoning, which includes the operations 
used to make inferences in fuzzy logic. Fuzzy rule-
based systems have been successfully applied to 
various engineering problems [9].  

In this section the basic concepts and definitions of 
fuzzy systems are alluded to. 
 
4.1.1. Membership Functions  

Fuzzy logic-based systems are expressed using 
simple conversational linguistic variables and applying 
personal and linguistic knowledge. Each fuzzy system 
has several rules which declare the relationship 
between the inputs and outputs generation using 
conditional rules. Each linguistic phrase in a fuzzy 
system represents a membership function [6]. 

Unlike traditional two-valued logic, in fuzzy logic, 
fuzzy set membership occurs for a fuzzy variable by 
degree over the range [0,1]. This is represented by a 
membership function. The function can be linear or 
nonlinear. Commonly used are the left-trapezoidal, 
right-trapezoidal, triangle, Gaussian, and sigmoid 
functions, as shown in fig. 2. Definitions of these 
membership functions as used in this chapter are as 
follows.  

a) Left-trapezoidal membership function: 
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b) Right-trapezoidal membership function: 
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c) Triangle membership function: 
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d) Gaussian membership function: 
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e) Sigmoid membership function: 

ab
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f) Reverse-sigmoid membership function: 
)(1)( xMFsigxMFRsig                               (10) 

 
From the definitions, it can be seen that each above 

mentioned membership function is determined by two 
values (the start-point is a, and the end-point is b). 
Theoretically, each fuzzy variable can have many fuzzy 
sets with each having its own membership function, but 
commonly used are three, five, seven, or nine fuzzy 
sets for each fuzzy variable. Fig. 1 shows a fuzzy 
variable with triangular membership functions. 

 
Fig. 1. A fuzzy variable with triangular membership 

functions 
 

 
Fig. 2. Left-trapezoidal, right-trapezoidal, triangle, 

Gaussian, and sigmoid membership functions 
 
4.1.2. Fuzzy Rules 

Determination of the fuzzy membership values of 
the inputs is often called fuzzification. In these systems 
the process is performed by deductive reasoning in 
which simple fuzzy rules IF_THEN play the decisive 
role. There are two chief methods to deduction fuzzy 
rules in fuzzy systems. The first model is Mamdani 
type fuzzy deduction which was presented by Ibrahim 
Mamdani in 1975. The second type is the Takagi Sogno 
method presented in 1985. These two methods are the 
same in many aspects [6][9]. 

However the main difference between these two 
methods is their outputs. The Sogno's output is member 
of functions which may be linear or constant, while the 
membership functions outputs are fuzzy in Mamdani 
deduction. In this paper we have applied the Mamdani 
deduction to both of the relevant fuzzy systems design. 
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[5][6]  
The general form of a Mamdani-type fuzzy rule in a 

fuzzy system is:  
IF 1x  is 1A AND 2x  is 2A , …, nx  is nA  THEN 1y  

is 1C ,…, AND ky  is kC                                         (11) 

where each yi is the consequent (output) variable whose 
value is inferred, each xi is an antecedent (input) 
variable and each Ai and Ci is a fuzzy represented by a 
membership function. The antecedents are combined 
by AND fuzzy operator. AND's antecedents are usually 
calculated by T-norm. Other fuzzy operators are 
defined (e.g. OR, Aggregation operator, and 
Implication operator) [6]. In our application, a fuzzy 
system is utilized as a fuzzy parameters controller. In 
our fuzzy systems the most utilized operator for 
controlling parameters is AND operator. All the fuzzy 
rules in a fuzzy system are fired in parallel.  

The fuzzy system works as follows: 
1. Determine the fuzzy membership values 

activated by the inputs. 
2. Determine which rules are fired in the rule set. 
3. Combine the membership values for each 

activated rule using the AND operator. 
4. Trace rule activation membership values back 

through the appropriate output fuzzy 
membership functions. 

5. Utilize defuzzification to determine the value 
for each output variable. 

6. Make decision according to the output values. 
 
Each input may activate one or more fuzzy sets of 

that input variable according to the definitions of the 
fuzzy membership functions. Only the rules with at 
least one antecedent set activated are said to be fired by 
the inputs. The AND operator is typically used to 
combine the membership values for each fired rule to 
generate the membership values for the fuzzy sets of 
output variables in the consequent part of the rule. 
Since there may be several rules fired in the rule sets, 
for some fuzzy sets of the output variables there may be 
different membership values obtained from different 
fired rules. There are many ways to combine these 
values. One commonly used way is to use the OR 
operator, that is to take the maximum value as the 
membership value of the fuzzy set. Next, a 
defuzzification method is used to produce a single 
scalar value for each output variable. A common way 
to do the defuzzification is called centroid method. 
Then according to the output values, some decisions 
can be made to solve the problem [5][6][9]. 
 
4.2. Proposed fuzzy systems inputs and outputs 
introduction 

Of chief problems in standard PSO is to fall within 

local optimums trap and slow down the convergence 
rate. Various methods have been proposed to improve 
the PSO. But the thing that should be in mind about 
gaining appropriate fuzzy outputs for C2, C1 and W is 
that these values must be chosen in such a way that at 
least the value gained for Vij(t+1) is meaningful [2]. In 
the other words, inappropriate values for Vij(t+1) can 
lead to the ith member kickoff from the investigation 
space. This occurs because the ith member location 
coordinates in step t+1 is calculated by sum of the two 
vectors Vij and Xij. The proposed optimized fuzzy 
algorithm is referred to as FOPSO. This algorithm 
makes use of two separate fuzzy systems.  

The first system outputs are actually the factors C1 
and C2 for which two inputs including α or acceleration 
factor and Dk or the parameter in charge of the particles 
normalized scatter to control these two outputs, which 
is calculated as below. 

popiiitk NidddDD ,...2,1)/()( minmaxmin       (12) 

pop

N

i
popit NiNdD

pop

,...2,1)/(         (13) 

|| iPbestiGbesti XXd                                               (14) 
In equations above, Npop is the number of whole 

population, di is the difference of the best individual 
and group location for ith particle and Dt is the average 
of whole population di's. 

The second system inputs are the maximum of 
fitness values for pbest of each particle based on own 
experience in each iteration or Fbest and the second one 
is the normalized value of fitness function or Fitt which 
is described in equation below. Fmax and Fmin are 
maximum and minimum of fitness values in each 
iteration. W is the output of our second fuzzy system 
which  is controlled by these inputs.  

)/()( minmaxmin FFFFFitt best                              (15) 
 
5. THE PROPOSED FUZZY SYSTEMS 
INFLUENCE ON PSO 

The two presented fuzzy systems control the 
relevant outputs by taking the inputs previously 
discussed. These outputs influence the PSO algorithm 
behavior. Out of them, we can mention the influence on 
local investigation, global investigation, convergence 
rate and finding an optimum based on less iteration 
steps. For example in the second fuzzy system, if the α 
value is high (considering [0.5,1.5]) it means that we 
are within the final steps and the investigation precision 
must increase; also if the Dk value is low, it means that 
the particles group is located at an inappropriate point. 
When this is the case, the most logical conditions are 
that the social parameter value increase and the 
personal parameter value decrease. Thus with similar 
reasoning we propose the two intended independent 
fuzzy systems together with 9 fuzzy IF-THEN rules as 
follows. 
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Fig. 3. Fuzzy first system membership functions 

 

 

 

 
Fig. 4. Fuzzy second system membership functions 

Table 1. Fuzzy Rules for first system  
If (a is Low) and (Dk is Low) then (C1 is Low) and (C2 is Low) 
If (a is Medium) and (Dk is Low) then (C1 is Medium) and (C2 is 
Medium) 
If (a is High) and (Dk is Low) then (C1 is Low) and (C2 is High) 
If (a is Low) and (Dk is Medium) then (C1 is Medium) and (C2 is Low) 
If (a is Medium) and (Dk is Medium) then (C1 is Medium) and (C2 is 
Medium) 
If (a is High) and (Dk is Medium) then (C1 is High) and (C2 is 
Medium) 
If (a is Low) and (Dk is High) then (C1 is High) and (C2 is Low) 
If (a is Medium) and (Dk is High) then (C1 is Medium) and (C2 is 
Medium) 
If (a is High) and (Dk is High) then (C1 is Low) and (C2 is High) 

 
Table 2. Fuzzy Rules for second system  

If (fbest is Low) and (fitt is Low) then (w is Medium)  
If (fbest is Medium) and (fitt is Low) then (w is Low)  
If (fbest is High) and (fitt is Low) then (w is Low)  
If (fbest is Low) and (fitt is Medium) then (w is High)  
If (fbest is Medium) and (fitt is Medium) then (w is Medium)  
If (fbest is High) and (fitt is Medium) then (w is Low)  
If (fbest is Low) and (fitt is High) then (w is High)  
If (fbest is Medium) and (fitt is High) then (w is Medium) 
If (fbest is High) and (fitt is High) then (w is Low)  

 
6. EXPERIMENTS  

To compare FOPSO with standard PSO and 
AWPSO, we make use of a well-known suite of 
functions, which have appeared in many papers in the 
literature. For a fair competition, 30 particles in 20 
dimension and the other of settings for all algorithms is 
shown in Table 3 in below: 

Each algorithm was tested with 13 numerical 
functions shown in below. Each algorithm (for each 
benchmark) was repeated 10 times with different 
random seeds. The average fitness values of the best 
solutions, the best solution and worst solution were 
recorded and were shown in Table 5 below. 

Some of these function, for example Rosenbrock 
have a single minimum, while the other functions are 
highly multimodal with multiple local minima. It is 
also useful for us to validate the algorithms without 
knowing the optimal value. Some of the functions have 
the sum of their variables, some of them have the 
product (multiplying) and some of them have 
dimensional effect. Each algorithm for different 
dimensions of the same benchmark function has similar 
solution so that we have represented this turnover as 
table 1 in below. [10] 
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Table 3. The comparison of algorithm `s parameters 
Parameter FOPSO PSO AWPSO TPSO 

Number of 
iterations 

500 500 500 500 

search-space 
[Xmin,Xmax] 

[-10.10] [-10.10] [-10.10] [-10.10] 

Range of velocity 
(Vmax) 

4.0 4.0 4.0 4.0 

w Fuzzy 1.0 1.0 1.0 
C1 Fuzzy 2.0 2.0 2.0 
C2 Fuzzy 2.0 2.0 2.0 

Neighborhood 
topology 

global best global best global best global best 

 
Numerical benchmark functions 
 
Sphere Function :  

2
1
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( )
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i
i
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Booth Function : 
2 2
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Dixon and price Function : 

2 2 2
4 1

0
( ) ( 1) (2 )

n
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Goldstein and Price Function: 
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Griewank Function : 
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Levy function : 
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Powell Function : 
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Rastrigin Function : 
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Rosenbrock Function : 
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Sum squares function : 
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Trid Function : 
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      Zakharov function 
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Table 4. Results of each functions 
FOPSO  AWPSO  PSO  Functions 

1-1.91*10 +11.12*10 3.69 Best Sphere 
3-10×8.88 +110×.576 +210×7.2 Worst  
2-10×1.62 +110×3.24 +210×1.69 Average  

0 0 28-10×3.81 Best Booth 
0  0 26-10×9.94 Worst  
0 0 25-10×2.88 Average  

1.17 3.65 1.67 Best Ackley 
2.69 8.86 3.83 Worst  
2.08 6.37 2.35 Average  

1-10×7.60 +210×1.42 2.24 Best Dixon and price 
6.98 +310×4.06 +310×1.67 Worst  
3.66 +310×1.11 +210×1.79 Average  

3 3 3 Best Goldstein and Price 
3 3 3 Worst  
3 3 3 Average  

4-10×5.63 1-10×4.98 2-10×1.32 Best Griewank 
2-10×1.34 1-10×8.76 1-10×3.25 Worst  
3-10×6.42 1-10×7.42 2-10×7.95 Average  
1-10×1.96 13.23 1.73 Best Levy 

2.35 23.47 +110×1.34 Worst  
1-10×6.25 18.18 5.34  Average  
1-10×6.64 +110×1.02 2.80 Best Powell 

3.98 +110×6.98 +310×3.42 Worst  
1.96 +110×2.94 +310×4.20 Average  

+110×1.95 +110×4.17 +110×5.87 Best Rastrigin 
+110×4.45 +210×1.84 +210×1.08 Worst  
+110×3.04 +110×8.95 +110×8.98 Average  
+110×1.19 +110×2.76 +110×1.62 Best Rosenbrock 
+110×7.94 +210×6.38 +510×1.12 Worst  
+110×3.46 +210×2.99 +310×1.35 Average  
1-10×2.82 3-10×9.39 3-10×2.42 Best Sum squares 

3.94 5.70 11.68 Worst  
1.50 1.64 4.28 Average  

-163.45 -533.28 -740.23 Best Trid 
-156.58 -101.45 -170.89 Worst  
-160.74 -267.27 -480.78 Average  

2-10×1.97 5.58 22.53 Best Zakharov 
1.29 87.85 314.97 Worst  

1-10×5.88 +110×3.42 +210×1.09 Average  
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Fig 5. Comparing convergence the function optimization problems 
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Continue of Fig 5. Comparing convergence the function optimization problems 
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Continue of Fig 5. Comparing convergence the function optimization problems 

 
7. CONCLUSIONS 

In this paper, using an appropriate fuzzy logic, and 
control parameters are initialized such as weight, inertia 
and acceleration parameters. According to obtained 
Results in this study, the proposed algorithm shows 
good behavior in mathematical using. This algorithm 
has been successful in identifying a local optimum and 
it can avoid the jam in local optimum. Although the 
computational cost should be considered according to 
the applications, But in future, Using the indirect 
calculation of parameters using fuzzy logic can be use 
for other matters of computing applications with pso 
algorithm. 
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