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ABSTRACT: 
Design of a robust controller via single objective constrained optimization using differential evolution (DE) is 
presented in this paper. A set robust feedback controller gain is optimized based on plant’s linear model having 
structured parametric uncertainty such that the closed-loop system would have the maximum stability radius. A wedge 
region is assigned as the optimization constraint to specify the desired closed-loop poles location which is directly 
related to the desired time-domain response. The proposed controller design is applied to a two-mass system which is 
known as the benchmark problem for robust controller design. The simulation results show that the robustness 
performance is achieved in the presence of parameter variations of the plant. The proposed controller performs than 
the conventional LQR (linear quadratic regulator) controller. 
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1. INTRODUCTION

Robustness has been an important issue in any 
control system design. A successfully designed control 
system should be always able to maintain stability and 
performance level in spite of uncertainties in system 
dynamics including, parameter variations of the plant. 

In the robust control theory, H∞ optimization 
approach and the μ-synthesis/analysis method are well-
developed and elegant [1]. They provide systematic 
design procedures of robust controllers for linear 
systems. However, the mathematics behind the theory 
is not trivial and is not straightforward to formulate a 
practical design problem into the ܪஶ or ߤ design 
framework. These conventional robust controller 
designs are also followed by a lengthy parameters 
tuning, i.e. weighting functions. 

In this work, an alternative technique of the robust 
feedback control design via modern constrained 
optimization is proposed. Differential evolution (DE) as 
a modern optimization algorithm is employed, which is 
considerably fast and reasonably robust. 

A number of researches have proposed modern 
optimizations, particularly GA (genetic algorithm), DE 
or PSO (particle swarm optimization), in order to 
overcome the difficulties in the conventional robust 
control design.  

Alfaro-Cid et al. [2] uses GA to tune the weighting 
functions’ parameters for a Hஶ controller. The 
controller is applied to propulsion and navigation 
control of a ship. A low-order controller with good 

tracking capability and smooth actuator signal can be 
obtained. However, the computation time required for 
the optimization using GA is usually excessive. 

In other work by Thanh and Parnichkun (3), PSO is 
proposed in balance control of Bicyrobo, which is an 
unstable system with a variety of uncertainties. 
Specifically, PSO is used to search for parameters of a 
structure-specified controller which satisfies mixed 
  performance index. The efficiency of the	ஶܪ/ଶܪ
proposed algorithm is compared with GA. 

Furthermore, some researches on design of a robust 
control using DE are found. For example, Neumann 
and Araujo [4] used hybrid DE (by combining DE and 
Evolutionary Gradient Search) to solve mixed Hଶ/Hஶ 
control problem combined with pole placement 
constraint in LMI regions. One of their motivations in 
using DE is the interesting global search properties of 
the DE algorithm. 

In another work by Smirnov and Jastrzebski [5], DE 
is used to select weighting functions in Hஶ loop to shap 
controller for active magnetic bearing system. 
Objective functions and constraints were developed 
based on singular values of the system. The results 
show that the proposed algorithm can improve all the 
objectives compared with a system tuned by a human 
operator. 

This work combines the advantages of modern 
optimization algorithm with robust control theory. To 
deal with the plant’s parameter uncertainty the complex 



Majlesi Journal of Electrical Engineering                   Vol. 6, No. 3, September 2012 
 

19 
 

stability radius as a tool of measuring system 
robustness is used. In addition, the desired response is 
automatically defined by assigning a regional closed 
loop poles placement. This region will be incorporated 
in the DE-based optimization as a constraint. In other 
word, the proposed controller design technique is 
search for a set of robust feedback controller gains such 
that the closed-loop system would have maximum 
complex stability radius. 

At the end of the work, the simulation results ofthe 
proposed robust control designfor two-mass system is 
presented. This two-mass system iscommonly known 
as a benchmark problem for robust control design [6-
10].  
 
2. PRELIMINARIES 
2.1. Problem Statement 

Considera plant model of linear time-invariant 
continuous-time system: 
xሶ ሺtሻ ൌ Axሺtሻ ൅ Buሺtሻ  
ሻݐሺݕ	 ൌ   ሻ              (1)ݐሺݔܥ
with  ܣ ∈ Թ௡௫௡,  ܤ ∈ Թ௡௫௠, ܥ ∈ Թ௟௫௠, ݔሺݐሻ ∈ Թ௡,  
ሻݐሺݑ ∈ Թ௠,  and  ݕሺݐሻ ∈ Թ௣ are state matrix, input 
matrix, output matrix, state vector, control input and 
output vectors, respectively.  It is assumed that the 
system given by equation (1) is completely state 
controllable and all state variables are available for 
feedback. One can use state feedback controller with 
feed-forward integral gain as shown in Fig. 1. The 
control signal (ݑ) is given by a linear control law: 
ሻݐሺݑ ൌ െ݇ݔሺݐሻ ൅ ݇௜ߦሺݐሻ           (2) 
where݇ ൌ ሾ݇ଵ, ݇ଶ, ݇ଷ, … ݇௡ሿ is the state feedback gain, 
݇௜ is integral feedforward gain and ߦ is output of the 
integrator. The controller gains for the system in Fig.1 
consists of the feedback gain kand integral feedforward 
gain ݇௜,which can be computed using some 
conventional techniques such as pole placement or 
optimal control method which is well-known as linear 
quadratic regulator (LQR). However, these 
conventional techniques do not consider plant’s 
parametric uncertainty explicitly. 
 

 
Fig. 1. State feedback controller with feed-forward 

integral gain 
 

In feedback controller design in with diagram in 
Fig.1, the main objective is to locate the closed-loop 
poles into a specific region such that the time-domain 

performance is satisfactory. In addition, the obtained 
feedback system is also robust to parameter variation of 
the plant. Therefore, it is naturally a bi-objective 
problem.  

To simplify the design process, the aforementioned 
problem is transformed into a single objective 
constrained optimization. In this work, a single 
objective constrained optimization using DE is 
employed to find a set of robust controller gains (ܭ ൌ
ሾ݇		݇௜]) such that closed-loop system would have 
maximum stability radius (explained inSection 2.2). 
Plant’sparametric uncertainty is automatically handled 
with the use of stability radius. In addition, a wedge 
region for closed-loop poles is incorporated as 
optimization constraint to allow the designers to specify 
the desired time-domain control performance.  For 
efficiency of the constrained optimization, a dynamic 
constraint handling technique (explained in Section 3.3) 
is adopted instead of common constraint handling 
technique such as penalty function approach.   

 
2.2.Stability radius 

In this section, a tool of measuring system 
robustness called stability radius [11] is presented. 
Stability radius is the maximum distance to instability. 
Equivalently, a system with larger stability radius 
implies that the system can tolerate more perturbations. 
In general, stability radius is classified as complex 
stability radius and real stability radius. Compared to 
real stability radius, complex stability radius can handle 
a wider class of perturbations including nonlinear, 
linear-time-varying, nonlinear-time-varying and 
nonlinear-time-varying-and-dynamics perturbations [8]. 
For this reason, complex stability radius is used as a 
measure of robustness for the feedback system. 

The definition of complex stability radius is given 
here. Let ԧ denote the set of complex numbers. ԧି ൌ
ሼݖ ∈ ԧ|ܴ݈݁ܽሺݖሻ ൏ 0ሽ and ԧା ൌ ԧ\ԧି; is the closed 
right half plane.  Consider a nominal system in the 
form: 
ሻݐሶሺݔ ൌ  ሻ               (3)ݐሺݔܣ

A(t) is assumed to be stable. The perturbed open-loop 
system is assumed as: 
ሻݐሶሺݔ ൌ ሺܣሺݐሻ ൅  ሻ          (4)ݐሺݔሻܪሻݐሺ߂ܧ
where ߂ሺݐሻ is a bounded time-varying linear 
perturbation. ܧand ܪ are scale matrices that define the 
structure of the perturbations. The perturbation matrix 
itself is unknown. The stability radius of (4) is defined 
as the smallest norm of Δ for which there exists a ߂ that 
destabilizes (3) for the given perturbation structure 
  .(ܪ,ܧ)

For the controlled perturbed system in the form (3), 
let: 
ሻݏሺܩ ൌ ܫݏሺܪ െ  (5)            ܧሻିଵܣ

be the “transfer  matrix” associated with ሺܣ, ,ܧ  ,ሻܪ
then the complex stability radius is defined by the 
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following definition. 
Definition 1: [11] The complex stability radius, ݎ௖: 

,ܣ௖ሺݎ ,ܧ ,ܪ ԧାሻ ൌ ቂ
max

ݏ ∈ ∂ԧା
ሻ‖ቃݏሺܩ‖

ିଵ
      (6) 

where  is the boundary of ԧା.  In other words, a 
maximum ݎ௖ can be achieved by minimizing the ܪஶ 
norm of the “transfer matrix” [12] ܩ. 

Proposition 1: Using Definition 1, the complex 
stability radius of the feedback system as shown in 
Fig.1 is given as:  

,ሚܣ௖൫ݎ ,෠ܧ ,෡ܪ ԧା൯ ൌ ቂ
max

ݏ ∈ ∂ԧା
ቛܪ෡൫ܫݏ െ ሚ൯ܣ

ିଵ
෠ቛቃܧ

ିଵ
 (7) 

where  ܣሚ ൌ መܣ െ ෠ܤ መ andܣ , ܭ෠ܤ  are given by the 
following equations: 
መܣ ൌ ቂ ܣ 0

െܥ 0
ቃ,      ܤ෠ ൌ ቂܤ

0
ቃ. 

For the structure of perturbation given by ܧ෠  and ܪ෡, 
a robust control system can be obtained by maximizing 
 ௖ described by equation (7). Therefore, a suitableݎ
controller gain ܭ can be optimized by min-max 
optimization algorithms. 
 
3. DE-BASED CONTROL DESIGN 
3.1.Brief Overview of DE 

A DE algorithm is a stochastic search optimization 
method which is fast and reasonably robust in handling 
non-differentiable, non-linear, and multimodal 
objective functions.DE is a one of the most promising 
novel evolutionary algorithms for solving global 
optimization problems [13]. It was proposed by Storn 
and Price not long ago in 1995 [14].  

The structure of DE is similar to other evolutionary 
algorithms. The first generation is initialized randomly 
and further generations evolve by applying the 
evolutionary operators: mutation, recombination and 
selectionto every population member until a stopping 
criterion is satisfied. 

There are some variants (strategies) of DE. The DE 
variant called DE/rand/1/bin [15] is used here.DE 
stands for differential evolution algorithm, rand means 
that the vector (solution candidate) to be perturbed is 
chosen randomly, 1isthe number of difference vectors 
considered for perturbation and binis the binomial type 
ofcrossover being used (other type is exponential). This 
DE variant (DE/rand/1/bin) isconsiderably simple and 
the most competitive variant in solving various 
applications as reported in [16]  

Furthermore, there are only few parameters defined 
by user in DE. Similar to other evolutionary algorithms, 
users have to select number of population, NP. The 
other control parameters are F (mutation scaling factor) 
and CR(crossover rate factor) which are valued 
between [0,1]. Outlining an absolute value for CR is 
difficult.Howevera few guidelines have been laid down 
[17]. It is largely problem dependent.When using 
binomial scheme, intermediatevalues of CR produce 

good results.In addition, the general description of F is 
that it should be at least above 0.5, in order to 
providesufficient scaling of the produced value [18]. 
 
3.2. Constrained Optimization 

The objective of the optimization is to maximize the 
complex stability radius (rc), however in this work the 
rc is converted into minimization mode by putting 
negative sign. Based on our approach, the searching 
procedure of the robust controller gains using 
constrained optimization can be formulated as follows 
(Table 1).  

 
Table 1. Constrained optimization 

Minimize:        )()( XrXf c  

 Subject to constraint:    )(Xn
   for 

n=1,2,… 
 and boundary constraint:  ],[ bb ulX   

 
where X=K=(k1,k2,…,kn,ki) is the vector solutions such 
that .1 nRSX S  is the search space, and SF   is 
the feasible region or the region of S for which the 
constraint is satisfied. The constraint here is the closed 
loop poles region; in the feasible region, the controller 
gains are found such that the closed loop poles (λ)lie 
within a wedge region ( ) of a complex plane as given 
in Fig. 2. The wedge region can be specified by two 
parameters θ and ρ which are related to desired 
transient response characteristics i.e., damping ratio (ζ) 
and settling time (ts). 

 
Fig. 2. A wedge region in complex plane for closed 

loop poles placement 
 
3.3. Constraint Handling 

An efficient and adequate constraint-handling 
technique is a key element in the design of stochastic 
algorithms to solve complex optimization problems. 
Although the use of penalty functions is the most 
common technique for constraint-handling, there are a 
lot of different approaches for dealing with constraints 
[18].  
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Instead of using penalty approach like in [19] where 
the optimizer seemed to be inefficient (high iterations), 
a Dynamic Objective Constraint Handling Method 
(DOCHM) [20]  is adopted here in order to improve the 
efficiency. By defining the distance function F(X), 
DOHCM converts the original problem into bi-
objective optimization problem min(F(X),f(X)), where 
F(X) is treated as the first objective function and f(x) is 
the second (main) one.  

The auxiliary distance function F(X) will be merely 
used to determine whether or not an individual 
(candidate of solution) is within the feasible region and 
how close a particle is to the feasible region.  If an 
individual lies outside the feasible region (at least an 
eigenvalue lies outside the wedge region), the 
individual will take F(X) as its optimization objective. 
Otherwise, the individual will instead optimize the real 
objective function f(X). During the optimization process 
if anindividual leaves the feasible region, it will once 
again optimize F(X). Therefore, the optimizer has the 
ability to dynamically drive the individuals into the 
feasible region. 

The procedure of the DOCHM applied to the 
eigenvalue assignment in the wedge region is illustrated 
in the following pseudo-code (Table 2). Referring to 
Fig. 3let dn is an outer distance of an eigenvalue (λn) to 
the wedge region. It is noted that if an eigenvalue lies 
within the wedge region, dn=0. F(X) is defined by: 







1

1
)))((,0max()(

n

i
nn XdXF           (8) 

 
Fig. 3. Eigenvalue distance to the wedge region in 

complex plane  
 

Table 2. Pseudo-code for constraint handling 
 If   0)( XF  

  )()( XrXf c  

Else   
  )()( XFXf   

End  
3.4. Stopping criterion 

In literatures, mostly two stopping criteria are 
applied in single-objective optimization: either an error 

measure if the optimum value is known is used or the 
number of function evaluations (number of iterations). 
There are some drawbacks for both. The knowledge of 
the optimum has to be known in the first method 
however the second method is highly dependent on the 
objective function. Improper selection of the number of 
iterations to terminate the optimization can lead to 
either premature convergence or expensive 
optimization runs (excessive computational effort).As a 
result, it would be better to use stopping criterion that 
consider knowledge from the state of the optimization 
run. The time of termination would be determined 
adaptively, so the optimization run would be efficient. 
Several stopping criterions are reviewed in [21]. 
Although the authors did not conclude which one is the 
best for all problems, it is believed that performance 
improvement can be obtained with adaptive stopping 
criterion.  

In this work, the stopping criterion which is 
distribution-based criterion which considers the 
diversity in the population is adopted. If the diversity is 
low, the individuals are close to each other, so it is 
assumed that convergence has been obtained [21]. 
Standard deviation (σ) of the best individuals in each 
dimension during iterations is checked. If it is below a 
threshold   (small number) for sufficiently large 
number of iterations  , the optimization will be 
terminated. It can be formulated as in Table 3; where 

j
dbestx ,

represents the best individual in j-th generation 
(iteration) for d dimension.  

 
Table 3.  Stopping criterion 

If    
 

))min()(max()(1
,,

1

2
,, dbestdbest

j
dbest

j
dbestd xxxx  









 

 (for d=1,2,…,D) 
 stop iterations.  
End 
 
4. ROBUST CONTROL DESIGN FOR TWO 
MASS SYSTEM 

In this section, an illustrative example of the 
proposed method to two-mass system is presented. This 
system has been used as benchmark problem for robust 
control design [5]. Consider the two-mass system 
shown in the Fig. 4. A control force (u) acts on body 1 
and the position of body 2 is measured. Both masses 
are equal to one unit (m1=m2=1) and the spring constant 
is assumed to be in the range  0.5≤k≤2. The system can 
be represented in state-space form: 
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       (9) 

where:   x1: position of mass-1 
    x2: position of mass-2 
    x3: velocity of mass-1 
    x4: velocity of mass-2 

 
Fig. 4. Two-mass and spring system  

 
The plant uncertainty is due to variations of the 

spring constant where the nominal value is selected for 
the worst case of k=0.5.Therefore uncertainties appear 
in the rows 3-4 and the columns 1-2 of the state matrix. 
The scale matrices as the perturbation structure for the 
closed loop system are ܧ෠  and ܪ෡whose diagonal 
elements in  rows 3-4 of ܧ෠  and in columns 2-3 of ܪ෡are 
respectively equal to 1. 
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Ê
  

























00000
00000
00000
00010
00001

Ĥ
 

The next is to choose the parameters of the wedge 
region (Fig. 2) to locate the closed loop poles. The 
damping ratio is usually set to ζ=0.7 to produce 
sufficient overshoot damping in the response.  The 
transient margin (ρ) is specified according to the 
desired speed of the response. This is problem-
dependent parameter and the value of asρ=1. In 
addition, the main DE-based optimization parameters 
are listed in Table 4.  

 
Table 4. DE-based optimization parameters 

Dimension of the problem D 5 
Population size NP 100 
Mutation scaling constant F vary 
Crossover rate constant CR vary 
Upper and lower bounds of 
solution ሾ݈௕,  ௕ሿ 50ݑ
Maximum iteration jmax 1000 
Number of iteration for which 
stopping criterion applies η 100 

Standard deviation threshold  for 
which stopping criterion applies ε 1% 

  

In the first experiment, the effect of CR and F for 
DE-based optimization is crucial. Therefore, it will be 
investigated to obtain the best performance for the 
optimization.  The results will be presented in the 
following section. 
 
5. RESULTS 

The optimization run has been performed in 
MATLAB 2006. Since DE is a stochastic optimization, 
a number of optimization runs need to be executed with 
different initial random seeds. To get an optimal 
solution and to evaluate the quality of the solution 
(robustness, convergence, repeatability), 15 runs have 
been executed here. For different value of CR and F, 
the mean value, the standard deviation of the fitness 
value (f(X)=-rc) and other results are recorded in Table 
5 - Table 8.  

 
Table 5. Optimization results with F=0.5 &CR=0.5 

Average f(X) -0.32 
Median f(X) -0.32 
Standard deviation f(X) 0.007 
Range of f(X) -0.31to -0.34 
Average number of iteration 422 
Average computation time 1.84minutes 
 
Table 6. Optimization results with F=0.9 & CR=0.5 
Average f(X) -0.30 
Median f(X) -0.31 
Standard deviation f(X) 0.011 
Range of f(X) -0.28  to -0.32 
Average number of iteration 542 
Average computation time 0.45 minutes 
 
Table 7. Optimization results with F=0.5 & CR=0.9 
Average f(X) -0.34 
Median f(X) -0.34 
Standard deviation f(X) 0.005 
Range of f(X) -0.33  to -0.35 
Average number of iteration 515 
Average computation time 21.3 minutes 

 
Table 8. Optimization results with F=0.9 & CR=0.9 
Average f(X) -0.34 
Median f(X) -0.35 
Standard deviation f(X) 0.012 
Range of f(X) -0.32  to -0.35 
Average number of iteration 465 
Average computation time 23.0 minutes 

 
Form Table 5 – Table 8, it can be seen that DE 

produces the best solution when F=0.5 and CR=0.9 
(Table 7), i.e. in terms of the obtained f(X)=-rc, 
although the computation time is considerably long. 
This is due to the time required to compute the solution 
in feasible region. In general, a robust solution with a 
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small standard deviation (good repeatability) can be 
achieved. 

The distribution of eigenvalues for those 15 runs 
(F=0.5 and CR=0.9) can be seen in Fig.5. All 
eigenvalueslie within the specified wedge region. 
Furthermore, to see the controller performance, a set of 
controller gains solution is picked from the median data 
of those 15 runs and it is shown in Table 9. 
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Fig. 5. Distribution of eigenvalues within the wedge 
region for 15 runs 

 
Table 9. Controller gains for two-mass system 

Gains k1 k2 k3 k4 ki 
DEFC 18.49 19.04 47.27 7.30 -10.54 
LQR1 1.57 5.76 3.23 3.54 -3.16 
LQR2 8.96 20.89 5.95 6.54 -31.62 

 
Fig. 6- Fig. 8 show20 random samples of step 

response (position of the mass-2) for values of the 
spring constant 0.5≤k≤2. The robustness performance 
of the proposed DE-based feedback controller (DEFC) 
under parameter variations of the plant is observed. For 
comparison, a conventional control design using LQR 
(linear quadratic regulator) is made. Two different 
LQR-based controllers (LQR1 and LQR2) are designed 
where the controller gains are also listed in Table 6. 
These two are obtained based on the following Q and R 
matrices: 

 
Q1=diag(10,1,1,1,10) and R=1;    for LQR1 
Q2=diag(100,1,1,1,1000) and R=1;  for LQR2. 
 
 

 
Fig. 6. 20 random step response of mass-2displacement 

for DEFC 
 

 
Fig. 7. 20 random step response of mass-2 

displacement for LQR1 
 

 
Fig. 8. 20 random step response of mass-2 

displacement for LQR2 
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The time-domain performance comparison for the 
feedback system with DEFC, LQR1 and LQR2 is 
shown in Table 10. It is presented in terms of settling 
time (ݐ௦) and percentage of overshoot (PO);(both are 
averaged from those 20 random step responses). It is 
clear that the performance of the system with DEFC is 
better as compared to that with LQR1 and LQR2.  
 

Table 10. Performance comparison 
Controller ts(sec) PO(%) 
DEFC 13 2 
LQR1 12 10 
LQR2 22 17 

 
6. CONCLUSIONS 

A robust state feedback control design via single 
objective constrained optimization using DE to 
maximize stability radius has been proposed. The 
designed controller has shown the robust performance 
in the presence of parameter variations of the plant.  

In addition, the DE-based constrained optimization 
effectively locates closed loop poles within a prescribed 
wedge region and able to maximize the stability radius 
with a good repeatability performance (especially when 
F=0.5 and CR=0.9 are set). The results have also shown 
the effectiveness of DE algorithm with the dynamic-
objective constraint handling method adopted in this 
work. 

However, it is necessary to further improve the 
performance of the DE-based optimization. 
Specifically, it is important to improve the computation 
time of DE-based optimization. In addition, it is also 
necessary to compare the performance of DE with other 
modern optimization techniques, such as particle 
swarm optimization, firefly algorithm, harmony search, 
etc., for this specific application. 
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