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ABSTRACT: 
Non-Dimensional star pattern recognition uses planar angles as its recognition feature. This feature is independent of 
image focal length and optical axis offset. However, this independency doesn’t mean that the algorithm conserves its 
robustness in presence of any type of errors. These errors arise from poor hardware calibration and software 
inaccuracy that causes the angles to differ from their true amounts stored in the database. In order to evaluate the 
effect of angle differences on algorithm performance, overall disposition of bright point centers is modeled. The 
monte-carlo simulation method is then used to evaluate the algorithm’s performance for different amounts of error. 
Results demonstrate that 0.1 pixel size error is admissible in conserve the trade-off between desired update 
frequency, hardware accuracy and algorithm’s robustness. 
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1. INTRODUCTION 
In the past few decades, it has been proven that 

one of the most accurate attitude determination tools 
in space navigation is the star tracker. Star trackers 
use the information of recognized stars available in 
the field of view (FOV) in order to determine the 
spacecraft attitude with respect to Earth Inertial 
Reference frame. For this purpose, a photo of stars in 
FOV is taken, processed and recognized; afterwards, 
the relation between the photo frame and star inertial 
information is derived to determine the attitude. 

Up to date, several star pattern recognition 
algorithms have been developed, which use different 
types of recognition features. These features are 
mainly related to star arrangements and their numeral 
configuration in the image plane. For example, the 
area of a triangle (which is created using 3 stars on 
the image) [1], triangle’s polar moment or the most 
popular feature, the inter-star angle between stars in 
three-dimensional space, with focal length being the 
third dimension.  

After 1976 that Junkins et al. [1] introduced the 
inter-star angle as the main feature in pattern 
recognition, the scientists have been looking for a 

pattern feature which is totally independent of prior 
attitude information and has the least dependency on 
the interference parameters such as image plane size, 
focal length, optical axis offsets, star magnitude or 
centroiding algorithm  accuracy. 

In 2006, Samaan et al. [1] introduced the Non-
dimensional algorithm which uses the planar angles 
of a star triangle as a pattern feature. It is obvious that 
a planar angle is independent of focal length, and 
optical axis offset variations. While the algorithm 
doesn’t need the calibration information, it is capable 
of determining the focal length as well. [1] 

However, the independency of the camera 
parameters doesn’t conclude in right recognition 
under all circumstances. Camera calibration 
parameters are not the only parameters affecting 
algorithm’s performance. If for any reason, the input 
information such as centroiding data is not valid 
enough and the angles computed, differ from the 
inertial combination, the algorithm might return no 
match or even worse, the wrong match. So a close 
study on the reasons manipulating the errors is 
necessary. 

To be brief, the overall error budget of a star 
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tracker can be listed as below [1]:  
1) Optic errors including Ground Calibration, 
Thermal Distortion, Chromaticity, Point Spread 
Function (PSF) Distortion.  
2) Centroiding error including Pixel Non-Uniformity, 
Quantization error, Centroid algorithm Uncertainty.  
3) Noise Equivalent Angle: errors including Read out 
Noise, Dark Current Noise, Stray Light Noise and 
Photon Noise. 

To be able to study the effect of each error 
sources mentioned above, one must have accurate 
knowledge of their behavior and various parameters 
related to them which is more than this paper’s 
intention. 

The overall effect of the hardware and software 
errors is the difference between the inertial angles 
computed from star catalog and planar angles 
computed from image information. This difference is 
caused by various reasons but the goal here, is to 
determine the algorithms robustness in the presence 
of a certain amount of planar angle variation. 

So instead of modeling the error sources 
individually, which won’t provide us any fruitful 
information as well, we assume that a finite source of 
error has caused an angle difference and the 
algorithm is supposed to distinguish the real 
combination from its database. Similar error analyze 
has been performed such as [1] for Pyramid 
algorithm which uses inter-star angle as its 
recognition feature. 

In the second section there will be a brief 
explanation of Non-Dimensional star pattern 
recognition performance, in the third section database 
considerations are discussed, in the fourth section a 
brief explanation of search method and error analysis 
is presented and in the fifth section the conclusions 
can be seen. 

 
2. NON-DIMENSIONAL STAR PATTERN 
RECOGNITION ALGORITHM 

As mentioned before, the non-dimensional 
algorithm uses the planar angles of star triangles on 
the image plane to recognize the star combination. It 
is proved that the star triangles from inertial 
coordinates are relevant to the star triangles on the 
image plane and by benefiting this relation, a star 
pattern can be collated to inertial reference without 
accurate calibration of camera.  

The algorithm starts by comparing the smallest 
angle of a typical star triangle generated on the image 
plane. The comparison is done using k-vector search 
technique [1,2], a novel search method proposed by 
Mortari et al. to accelerate the comparison of 
elements. 

While the search method provides the algorithm 
with a range of certain triangle combinations, the 
biggest planar angle of the star triangle on the image 
plane is compared. This leads the algorithm to a 
unique answer. 

A small portion of the database created for 15 
degree square FOV and stars brighter than magnitude 
5 using Hipparcos catalogue [4], can be seen in 
Table.1 

Hipparcos catalogue contains 5044 stars brighter 
than magnitude 6. While trying to develop a database 
such as the portion shown in Table 1, the number of 
valid triangles exceeded 10 million after perusing 
only 1884 stars! And by valid, the probability of 
triangle’s existence in FOV and having angles more 
than 1 degree is meant. Meanwhile it must be noticed 
that in order to create the database, we assume that in 
each loop, the star tracker boresight is pointed at each 
one of the 5044 stars of the sky and the triangles are 
formed using the boresight star as a fixed vertex.  

By reviewing a few commercial star tracker 
brochures, one can easily realize that industrial star 
tracker databases usually contain less than 500,000 
elements depending on the pattern feature their 
algorithm uses. This is beside the fact that “the bigger 
the database gets, the slower the recognition is 
performed”, meanwhile the recognition will be less 
accurate because of the closeness of planar angles as 
shown in Table 1. 
 

Table 1. A Portion of Non-dimensional Method 
Database 

Triangle 
Index 

Smallest 
Angle 

Biggest 
Angle 

Star 
ID 

Star 
ID 

Star 
ID 

263185 28.60397 92.51451 61199 47391 58867 

263186 28.604 94.80227 63724 67234 60260 

263187 28.60408 115.8236 92041 88635 87936 

263188 28.60409 112.2487 31125 30788 25859 

263189 28.60415 122.2483 92818 94481 95372 

263190 28.60425 97.75082 7588 2484 17440 

263191 28.60495 81.76284 44816 47175 38827 

263192 28.605 119.8081 90139 88128 88765 

263193 28.60506 100.1218 40091 40706 37819 

263194 28.60535 113.4421 87220 90595 86736 

263195 28.60536 77.09538 86170 86736 89642 

263196 28.60546 109.1302 80763 78104 83574 

263197 28.60556 110.0415 25142 27511 22549 

263198 28.60558 89.95953 73165 75379 69269 

263199 28.60572 113.8923 27989 25142 25247 

 
3. DATABASE DEVELOPMENT 
CONSIDERATIONS 

In order to make sure that in any orientation, at 
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least 5 stars exist in a typical field of view, Monte-
carlo sky simulation is used. Calculating the number 
of stars in each FOV and specified magnitude is done 
using ten thousand random boresights (Iterations) and 
self developed sky simulator software. Choosing 5 
stars is the consequence of the fact that recognizing 
only one triangle (3stars in FOV) is not considered 
reliable in any pattern recognition procedure so there 
must be at least one or two more stars present in the 
FOV to validate the first recognition. In this research 
having at least 5 stars within FOV was inspired by 
the same usage in patterns like Pyramid [1] which is 
reduced to four in further considerations. The results 
show that for 15 degree square FOV, the stars having 
magnitude 6 or less must be used to create database, 

The histogram showing the number of stars for 15 
deg square FOV and magnitudes 5, 5.5 and 6 are 
shown in Figures 1 to 3. The probability of having at 
least 5 stars in the mentioned FOV, for magnitude 6, 
is about 98%. But still decreasing the database 
volume is prior. 

 
Figure 1. Histogram for 15 degree FOV and 

magnitude 6 
 

For decreasing the database content, there exist a 
few solutions in two categories: 
 Reduction of catalogue stars: 

1- Eliminating double stars. 
2- Reduction of magnitude. 
3- Sky uniformity. 

 Reduction of database elements: 
1- Eliminating triangles with planar angles 
less than 1 degree. 
2- Eliminating triangles with small area. 

By double star, two stars having small inter-star 
angle that they appear as one star in night sky 
imaging is meant. Their combination is as bright as 
sum of the both magnitudes. For magnitude 6, the 
Hipparcos catalogue contains 582 double stars that 

eliminating them doesn’t help much in reducing the 
database content. But the results of magnitude 
reduction accompanied by eliminating double stars 
are shown in Table 2. 
 

Table 2. Number of database triangles 

Magnitude FOV 
No. of 
stars 

No. of 
Triangles 

5.5 15 2851 3581282 
5.5 without 
double stars 

15 2492 1220462 

 
It can be seen that neither the magnitude 

reduction nor the double star elimination doesn’t 
reduce the database content enough, plus the fact that 
elimination of double stars is not as helpful as it 
might sound. For example consider the Orion 
constellation; The Orion belt contains three stars of 
magnitude 2.4 (Mintaka), 1.65(Alnilam) and 
1.85(Alnitak). But two of these three stars are 
considered as double stars; Mintaka accompanied by 
a star of magnitude 6.8 and Alnitak accompanied by 
a star of magnitude 9.5. As you can see, the second 
stars aren’t even included in the mission catalogue 
but by eliminating the stars holding a double flag, we 
are actually eliminating stars that could result in a 
good triangle leading the algorithm to a true, fast and 
accurate recognition! 

So regardless of double star elimination, the 
database content reduction is continued using the 
magnitude reduction solution; 

 
Figure 2. Histogram for 15 degree FOV and 

magnitude 5.5 
 

If we consider that an accurate recognition can 
also be made by at least 4 stars in FOV, then the 
magnitude reduction can be more useful. In Figure 1, 
the probability of having 4 stars in FOV is about 
99.8%. For magnitude 5.5 or less, as it can be seen in 
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Figure 2, the percentage reduces to 97% and for 
magnitude 5 or less, the probability is about 90.11%. 

Hipparcos catalogue contains 1627 stars brighter 
than magnitude 5. This amount of stars, results in a 
database of 436646 triangles which appears to be 
acceptable. 

It must be noticed that triangles with angles more 
than 1 degree are accepted in all above database 
information. 

Uniforming the sky is also implied to the 
catalogue with magnitude less than 6 in two ways, 
using Spherical patches method [1]: 

 5 closest stars to center of each FOV which 
returned 2135 valid stars 

 5 Highest magnitudes in each FOV which 
returned 2885 valid stars. 

The first combination returned a database of 
2656695 triangles and the second one returned 
2544479 triangles. 

Figure 3. Histogram for 15 degree FOV and 
magnitude 5 

 
So far the best result is produced by reducing the 

magnitude to 5 and FOV of 15 degrees.  
 
4. SEARCH METHOD 

A star pattern recognition performance beside the 
pattern feature is very dependent on the search 
method. To be able to compare a pair of data with its 
equivalent pair in database, the k-vector search 
method creates a margin around the smallest angle 
and returns a range of possible triangles. This margin 
is produced by adding a specific scalar, “αerror” to 
the smallest angle. For a small amount of αerror, the 
range will be small and comparison is done faster but 
the critical issue here is the error on the angle itself.  

It can be seen in Table.1 that the small angles are 
barely different in the third decimal. The very close 

distribution of angles of totally different triangles 
makes the action of αerror more critical. Consider a 
specific amount of error on the angles calculated 
from image information, if αerror is less than the 
mean variation of angles in the database, the true 
combination will not be placed in search range and 
by comparing the biggest angle, algorithm will either 
end up in No match or even worse returns a Wrong 
match.  

As mentioned in section 1 the error sources will 
eventually affect the planar angles. So instead of 
modeling the errors, random error on the triangle’s 
vertices is implied which causes the planar angles to 
vary from their true amount. 

It must be noticed that the amount an angle might 
vary according to this random error is dependent on 
the size of the triangle and the spot the vertices are 
located with respect to the image. To clarify this 
subject let’s assume both big and small typical 
triangles in a typical sized image (although the 
concept can be extended to any image size but it must 
be mentioned that a 512*512 pixel image plane with 
pixel size of 9 micrometers was assumed which 
equals to a 4.6 mm square image plane and is a 
realistic assumption). By big and small, the area of a 
typical triangle is assumed. If a random error (in 
means of moving the vertex of triangle sideways 
randomly) is implied in thousand iterations, the 
variation of triangle shapes (and though the planar 
angles) can be seen in Figure 4. Please notice that for 
more resolution, Figure 4 was produced with less 
than thousand runs but the data used to produce the 
following histograms is the result of mentioned 
amount of iterations. 

 

 
Figure 4. Angle variation for a typically big triangle. 
 

It must be also mentioned that Figure 4 is resulted 
from moving the vertices for about 0.5 pixel (using 
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normal random error) around their current position.  
Figure 4 demonstrates that 0.5 pixel size error on 

bright point positions causes the angles of a typically 
big triangle to vary less than a typically small 
triangle. Afterwards the difference between the 
produced angle and the true amount is calculated and 
its normal distribution is plotted according to Figures 
5 and 6. These figures demonstrate that 3σ of this 
Probability Distribution Function (PDF) is about 0.04 
degrees. It means that for 0.5 pixel random error 
implied on a typically large triangle vertex, the planar 
angles vary for about 0.04 degrees from their true 
amount. 

 

 
Fig. 5. Effect of 0.5 pixel size error on angle of a 

typically big triangle 
 

 
Fig. 6. Effect of 0.5 pixel size error on angle of a 

typically small triangle 
 
The same procedure is repeated for a typically 

small triangle showed in Figure 4. 3σ of the current 
PDF is about 0.1 degrees which is more than big 
triangle’s variation. 

According to these results, bigger triangles 

(relative to image size) destabilize the algorithm 
performance less than small triangles but choosing a 
bigger triangle requires the stars on the image plane 
to be far from each other. In other words stars chosen 
would be closer to the image borders where the lens 
distortion can affect their true position systematically. 

Meanwhile, 0.5 pixel error for determining the 
centroids of bright points on the image plane is 
considered a big value. The centroiding algorithms 
today, have reported accuracy of less than 0.1 pixel 
sizes. 

 
Table 3. Monte-carlo test results 

Bright 
point 

position 
error 

(pixels) 

Angle 
difference 
between 
measured 
and true 

angle 
(deg) 

Right % Wrong % No match 
% 

0.02 0.001 99.5265 0.46 0.0135 
0.04 0.002 99.0834 0.9028 0.0138 
0.1 0.006 97.2544 2.7317 0.0138 
0.12 0.01 95.4898 4.4959 0.0143 
0.13 0.012 66.7616 5.7714 27.467 
0.135 0.0125 61.499 6.0468 32.4542 
0.14 0.013 56.849 6.2518 36.8992 
0.142 0.0132 55.1188 6.3277 38.5535 
0.2 0.015 42.8486 6.9079 50.2435 

 
For the rest of the analysis, a moderate sized 

triangle is considered. The size is considered between 
big and small triangles mentioned above to include 
both effects.  

Table 3 shows the algorithm’s performance in the 
presence of different pixel size errors. The monte-
carlo test results for 10 rounds of 1000 runs can be 
seen in Table 3. 
The algorithm’s performance is shown in Figure 7. 

 

 
Fig. 7. Monte-carlo 10000 runs test results. 
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For 0.1 pixel error, the same procedure causes 
0.006 degree error on planar angles which leads to 
97% true recognition. 

Table 4 shows the computing time required for 10 
iterations of 1000 monte-carlo rounds. The computer 
characteristic is a PC Intel(R) Core™ i7 CPU 
12Gbyte RAM. It can be seen from Figure 8 that the 
less accurate the bright point positions gets, the more 
computing time is required for triangle recognition. 

So far it is showed that the Non-dimensional star 
pattern recognition algorithm can recognize true star 
combinations in the presence of a total error of 0.1 
pixel size error. 
 
5. CONCLUSION 

In this paper Non-Dimensional star pattern 
recognition performance is studied. Although by 
increasing the total hardware and software accuracy, 
one can obtain more accurate bright point positions 
from centroiding algorithms but this overall 
improvement can increase the final production cost of 
a typical star tracker. By using an accuracy of 0.1 
pixel size of centroiding algorithms, it has been 
shown that the non-dimensional algorithm is robust 
and conserves the trade-off between required 
accuracy and hardware capacity. 
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Table 4. Time variance with respect to pixel size 
error 

 CPU time (sec) 

Pixel error 
/ Runs 0.1  0.5  1  

1 51.32 117.26 466.06 
2 51.45 116.42 453.11 
3 51.84 115.44 460.05 
4 51.89 117.2 455.09 
5 51.52 115.52 459.24 
6 52.2 114.35 462.78 
7 51.63 115.71 467.23 
8 52.16 115.83 455.4 
9 51.44 116.54 466.54 
10 51.37 117.26 466.06 

 

 
Fig. 8. Time consumption with respect to pixel error 
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