
Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

13

Hardware Implementation of 128-Bit AES Image Encryption

with Low Power Techniques on FPGA

Ali Farmani1, Hossein Balazadeh Bahar2
1- Department Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

 Email: Ali_Farmani88@ms.tabrizu.ac.ir (Corresponding author)
2- Department Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

Email: hbbahar@tabrizu.ac.ir

Received: April 2012 Revised: July 2012 Accepted: August 2012

ABSTRACT:
This paper describes the implementation of a low power and high-speed encryption algorithm with high throughput for
encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced
Encryption Standard), in order to decrease the power using retiming and glitch and operand isolation techniques in
four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and
simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption.
Implementation of a 128-bit AES on FPGA of Altera Company has been done, and the results are as follows:
throughput, 6.5 Gbps in 441.5 MHz and 130mw power consumption. The time of encrypting in tested image with
32*32 sizes is 1.25ms.

KEYWORDS: Advanced Encryption Standard (AES), Pipelining, Image Encryption, Decryption Retiming, Galios
Field, FPGA, Glitch.

1. INTRODUCTION

Information is significant in every aspect of human
life. Like any other property, it needs protection. There
are different cryptographic algorithms available to secure
information. However, most of them are computationally
intensive, either deals with huge numbers and complex
mathematics or involves several iterations. Advanced
Encryption Standard (AES) is a cryptography algorithm
proved to have the best quality between 15 candidates by
National Institute of Standards and Technology (NIST).
AES has high security with relatively little memory and
CPU resource requirements. It is easier to apply
cryptographic solutions on computer-based
communication systems than on conventional systems
like telephone, fax and radios. It is not feasible to
dedicate a general computer for each of such systems.
Instead, a cheap and portable embedded system can be
developed to ensure the communication security.
Microcontroller, DSP, or ASIC is used in the
construction of embedded systems. Microcontroller
based embedded systems have the lowest cost, which is
one of the basic criteria of an embedded system design.
Variety of microcontrollers available, each has different
processor and peripheral devices inside them.
ARM7TDMI is a popular embedded processor that has
a lion’s share on the market. It is reliable, that has low
cost, low power consumption and small physical size
[1]. AES is implemented in different ways. Many of

the implementations are freely available [2] [3].
However, these implementations do not run fast enough
for real-time applications, like voice encryption. In
such applications, the encryption has to be done in a
timely manner. Otherwise, it affects the quality of
service of the communication, in a way that it cannot be
tolerated by the users. In this case, most developers go
for a DSP or ASIC, which can run the available
implementations faster so that it can meet the required
speed. To encrypt the image in [4] add one key stream
generator (A5/1, W7) to AES to ensure improving the
encryption performance; mainly, for images
characterised by reduced entropy, which has increased
the AES security for the image encryption. In [5] used
AES 32-bit for encryption of image. AES encryption is
an efficient scheme for both hardware and software
implementation, and FPGA is used for AES
implementation. In most approaches, a RAM/ROM-
based lookup table (LUT) is used, such as SubByte [6]
[7], and MixColumn [6], which operates on a 4-byte
column and corresponds to multiplications and
additions in GF (28). Addroundkey is simply performed
by xoring each state with each key. In [7] MixColumn
transformation is based on a chain of xor units. In [8]
architecture is used, which speeds up the AES
algorithm with no feedback by duplicating hardware for
implementing each round unit. These approaches are
based on pipelining, subpipelining and loop-unrolling.

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

14

In [9] ShiftRow unit is implemented based on a 4-bit
counter and two memories (ROMa, ROMb). In [7] and
[14] the inner and outer pipelining and loop-unrolling
has made it possible to achieve the throughput of 30 to
70 Gbps using 0.18µm CMOS technology. In [11] the
implementation of S-BOX is based on Finite Field. In
[12] use of only one S-BOX instead of four has made
the hardware and area to be reduced but also the speed
to be decreased by 4 times. The rest of the paper is
structured as follows: Section 2 gives a brief summary
of AES algorithm and presents the system architecture
adopted in our implementation. Comparison of our
implementation with those done is given at section3.
Finally, section4 provides the conclusion to this paper.

2. AES ALGORITHM

The AES algorithm is a symmetric block cipher that
processes data blocks of 128-bits using a cipher key of
length 128,192 or 256 bits each data-block consists of a
4*4 array of bytes called the state, on which the basic
operations of the AES algorithm are performed. The
AES encryption procedure is shown in Fig.1.

Fig. 1. 128 bit encryption AES algorithm.

The AES decryption procedure is shown in Fig. 2.

Round function consists of different transformations:
SubBytes, Shiftrows, MixColumns and Addroundkey.
The four transformations are described briefly as
follows[21]:
1. SubByte: every byte in the state is replaced by
another, using the Rijndael S-Box. It is a non-linear
substitution that operates independently on each byte of

the state using a substitution table (S-Box). The S-Box
is invertible and is constructed by composition of two
transformations. For example, multiplicative inverse in
a finite field GF(28) is followed by the affine
transformation [16].

Fig. 2. 128 bit decryption AES algorithm.

Calculating entries of the S-Box is computationally

expensive, and its values are independent of the input.
For most applications, S-Box values are pre-calculated
and stored in a 16*16 byte (256 byte) memory. Each
byte of state is mapped into a new byte in the following
way: The left most 4 bits used as a row value and the
right most 4 bits are used as a column value. These row
and column values serve as indexes into the S-Box to
select a unique 8-bit output value as shown in the Fig.3.
In our implementation, S-Box is based LUT as a way of
increasing the speed. This implementation is shown in
Fig. 3.

Fig. 3. S-BOX transformation (LUT)

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

15

2. ShiftRow: every row in the state is shifted a certain
amount to the left. In this operation, each row of the
state is cyclically shifted to the left, depending on the
row index. The first row is not shifted, the second
shifted 1 byte position, the third 2 byte and the fourth 3
byte position. A graphical representation of shiftrows
and inverse shiftrows is shown Fig.4 and Fig.5.

Fig. 4. ShiftRows transformation.

Fig. 5. Inverse ShiftRows transformation.

In our implementation, 16*8-bit registers have been

used, and in the Verilog program, each output byte is
placed in the position as it has to be after shift
operation, making a 128-bit register, which can also be
used as one of the pipeline registers. Fig.6 shows the
implemented shiftrow.

Fig. 6. ShifitRows/inverse ShiftRows design.

3. MixColumns: the data within each column of state
are mixed. It operates on the state column wise, treating
each column as a four term polynomial over GF(28).
The column polynomial is multiplied module x4+1 with

fixed polynomial, p(x) giving by
p(x) ={03}x3+{01}x2+{01}x+{02}.

The transformation can be defined by the following
matrix multiplication on state (Fig.7):

Fig. 7. Mixcolumns transformation

Multiplication of a value by x (i.e, by

{02}and{03}) can be implemented as a 1-bit left shift
followed by a conditional bitwise xor with (0001 1011)
if the leftmost bit of orginal value is 1. (Oprator ^
stands for Exclusive OR) for example,
{02}*{87}=(00001110)^(00011011)=(0001 0101)
and
{03}*{6E}={6E}^({02}*{6E})=(01101110)^(1101110
0)= (10110010).

Our implementation is based on multiplication by 2
and 3 (multi2, multi3) and Xor operation, and these two
multiplications have been written as a function.

Fig. 8 shows our Mixcolumn implementation. The
equation of multiplication of each row by each column
has been fully pre-calculated; therefore, the operations
are only based on shift and Xor. This has resulted in an
increase of speed in this transformation.
Implementation of Mixcolumn is shown in Fig. 8.

InvMixcolumns is the inverse of the Mixcolumns

transformation. Our implementation inverse
Mixcolumn is shown in Fig.9. InvMixcolumns operates
on the State column-by-column. The InvMixcolumne
can be written as a matrix multiplication shown below:

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

16

Fig. 8. Our implementation Mixcolumn base of mult3

and mult2.

Fig. 9. Our implenetation inverse Mixcolumn base of

mult2.

4. AddRoundkey: a round key is added to a state. In
this operation, round key is applied to the state by a
simple bit wise XOR. The round key is extracted from
the cipher key using the mean of key schedule. The
operation is viewed as a column wise operation
between the 4byte of a state column and word of the
round key. It can also be viewed as a byte-level
operation. Fig.10 shows AES key expansion.

Fig. 10. AES key expansion

The function g consists of the following

subfunctions:
1. Rotword performance a one-byte circular left

shift on a word. This means that an input word
[b0,b1,b2,b3] is transformed into[b1,b2,b3,b0].
2. Subword perfoms a byte subtitustion on each byte of
its input word using the S-box.
3. The result of steps 1 and 2 is XORed with a round
constant shown in table1.

Table 1. The value RC[j] in hexadecimal

J 1 2 3 4 5 6 7 8 9 10
RC[J] 01 02 04 08 10 20 40 80 1B 36

Our implementation of Addroundkey non-pipelining is

shown in Fig.11 and Fig.12.

Fig. 11. Rotword (rotate)

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

17

Fig.12. Addroundkey non-pipelining

Inverse Addround key non-pipelining is shown in Fig.13
and inverse R-con is shown in table 2:

Table 2. Inverse R-con

J 1 2 3 4 5 6 7 8 9 10
RC[J] 36 1B 80 40 20 10 08 04 02 01

Fig. 13. Inverse Addroundkey non-pipelining

To implement Addroundkey, pipelining technique

has been used, and its control unit has been
implemented using logic gates. These two factors lead
to an increase in speed and throughput of the unit, and

it is controlled in the way that in each state, A key is
generated. This means that steps of the data shifting in
Addroundkey, and round are done simultaneously.
Finally, each key is XORed with its corresponding
round. The use of 4 stage pipelining, and control unit
based on logic gates, design of MixColumn unit based
on multiplications by 2 and 3, hardware implementation
of multiplication of each row by each column, and
simultaneous generation of each key and each round
have made this implementation to be high in terms of
speed and throughput. Control unit of this system, the
result generated in the end of each round and key
expansion should be produced simultaneously, in order
to prevent to happen a cycle difference and
subsequently, no wrong number is produced at this
stage. Therefore, the control unit of this design is such
that control signals of 4 performed operations in each
round and also their multiplexers are simultaneous and
done step-by-step with the performed operations in
each phase of key production in key expansion, in order
to ensure the synchronization and speed increase and
that the key production takes place just in the last
phase. The number is just produced in the last phase of
round. To achieve this aim, control signals have been
ordered and arranged accordingly. In other words,
because of using 4 stage pipelining both in key
expansion unit and in each round, and provided that
their control signals are defined correctly, a perfect
harmony will be created between these stages.
Moreover, this unit is implemented by logic gates,
which again cause the production speed of each round
and key to be increases. Fig.14 and Fig 15 show the
implemented encryption and decryption algorithm.

Fig. 14. Implementation of AES encryption

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

18

Fig 15. Our implementation of AES decryption

2.1. Power Optimization Techniques

Platform dependent power optimization techniques
are implemented by using the opportunities, which are
provided by the implementation platform. One of the
power optimization techniques is sleep mode operation,
which is called as power gating. The static power
consumption of a CMOS circuit is caused by the
leakage currents of transistors and P-N junctions [25].
Especially SRAM based FPGA platform causes the
circuit consumes a huge amount of static power caused
by the leakage currents when the circuit is off. Power
gating method prevents the power consumption by
using sleep mode for the states that the circuit is off
[22]. There are memory blocks in the FPGA’s,
which cause the dynamic power consumption. If
there are input ports to read or write on these memory
blocks, these inputs are allowed to disable for the
memory blocks, which are not used at that time. In this
way, dynamic power consumption of unused
memory blocks is prevented [22]. The clock signal in
the FPGA has to reach for every single sequential
block; so it has a long routing line. These long
routing lines causes power dissipation by charging
and discharging the nodes capacitance, which is
referred to the capacitive power dissipation. It is also
obvious that clock signal has a high frequency of logic
level change; this is why its dynamic power
consumption is high. So there is a way of power
optimization by preventing of clock routing to the
blocks which are unused. This feature is available on
some of FPGA platforms [22].

2.2. Glitching

Glitches are unwanted transitions of a signal after
an input change until the final output value is reached.
This behavior is due to different arrival times of signals
to a gate, called logic hazards. Figure 16 shows the
circuit for the logic equation Q = AB + BC, which

exhibits a static-1 hazard. When the inputs A and C are
logic 1, any change on B will cause a transition on Q.
There are two paths for B to the output Q where one
path contains an inverter. This causes a slightly longer
delay, resulting in a glitch in the output Q [25]. More
complex circuits, e.g. ripple carry adders, amplify this
problem. In typical combinational circuits glitching
accounts for between 10% and 40% of the dynamic
power consumption. Hazards and glitches can be
avoided at the cost of more circuitry [26].

Fig.16. Glitch caused by hazard.

There are two types of ways in order to solve this

glitching problem in the circuit: The first method is to
place register blocks between large combinational
circuits, which is widely used in our implementation.
These register blocks not only decreases the logic
deepness in the circuit, but also increases the clock
frequency in the circuit. However, to place these
register blocks increases the data processing time. This
method is shown in Figure 17.

Fig. 17. Reducing glitches by adding register blocks.

Second method is to solve the glitch problem by

reducing the logic deepness of the circuit. This solution
is applied to the circuit during the HDL code
implementation by using some coding hints. For
example, the circuit in Figure 5 can be converted into a
circuit as Figure 18 by doing some changes in the HDL
where if, elseif and else blocks are stated. In this way,
both the logic deepness of the circuit and the amount of
the glitches are reduced [27].

Fig. 18. The circuit that has unbalanced routing delays.

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

19

Fig. 19. The circuit that has balanced routing delays.

2.3. Clock gating

Figure 20 shows a typical implementation of a
synchronous register with enable. We assume that a
register is multiple bits wide and consists of one flip-
flop per bit. The register is disabled when the enable
signal is at logic 0. Its output is fed back to its input
through the multiplexer. When the enable signal is at
logic 1 the register can load new values from data in. In
this design, each flip-flop of the register requires a
multiplexer at its data input [25].

Fig. 20. Enable register with multiplexer.

Furthermore, the clock network has to drive each

flip-flop. Clock gating provides a way to disable
the clock signals for a register, and therefore,
eliminating the need to separate multiplexers for each
input bit. Figure 21 shows such a design. The enable
signal is usually the output of some combinatorial logic
and may contain glitches. The latch prevents glitches
from the enable signal to propagate to the clock input of
the register. The AND gate performs the actual gating.
Clock gating replaces the multiplexers with a single
clock gating cell and isolates the register clock from the
global clock. The clock gating cell, containing a latch
and an AND gate, consumes more power than a single
bit multiplexer. However, when this technique is
applied to the multiple bit registers, it can conserve
both static and dynamic power. We observed savings
even at registers that were only 8-bits wide [25].

Fig. 21.Clock gated register.

2.4. Operand Isolation
Operand Isolation is a method to stop data

selectively from entering a block of complex
combinatorial logic, causing many transitions, and
dynamic power consumption, when the output is
discarded by either an unselected multiplexer or a
currently disabled register. Figure 22 shows an example
where changes to the input A consume power even
when the output A’ is not used.

Fig. 22. Design without operand isolation.

To prevent this unnecessary power consumption

isolation logic can be added at the input to the complex
combinatorial logic. It prevents changes to input A
from propagating through the combinatorial logic. The
isolation logic usually consists of either AND or OR
gates depending on the specific application. The
example in Figure 22 uses an AND gate for
operand isolation. The combinatorial logic only
receives the input A when its output A’ is selected by
the multiplexer. Otherwise, its input is 0. In this way, it
is prevented unnecessary power consumption when
selected control signal is not logic 1, which means the
output of combinatorial logic is not used [25].

Fig. 22. Design with operand isolation.

2.5. Re-timing

Retiming for low-power is the process of
positioning new or moving existing flip-flops so they
separate parts of the circuit that cause glitching from
parts which have high input capacitance. As glitches
do not get propagated through flip-flops this
technique significantly reduces the switching activity
of the high input capacitance part of the circuit and
reduces the dynamic power consumption [25]. The
critical path in Figure 23 is decreased by changing the
places of registers. The circuit in Figure 11 is
redrawn in Figure 24 after being applied this
retiming method [27].

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

20

Fig. 23.Design without re-timing.

Fig. 24. Design with re-timing.

2.6. Implementation of AES Algorithm

Block of k-to-w is register that gets 128bit input,
and output includes w1, w2, w3, w4 that each is 32 bits.
The original image can be regenerated using the
encrypted image, and the final key produced at the last
stage of encryption by the image decryption circuit,
which is also implemented. In this implementation, the
image used is of 32*32 sizes and the Hex code of the
image is given to the designed AES encrypting.
Encrypted data of the original image, which is the
encrypted image, are obtained. The time needed to
generate the encrypted image is 1.25 ms which is very
shorter of [20]. Figure 25 shows the original image and
the encrypted image obtained by this implementation.
The histograms of the original and encrypted images
are shown in Figure 26. We can see that the histogram of
the ciphered image is fairly uniform and is significantly
different from the original image. Therefore, it does not
provide any indication to employ any statistical attack on
the image under consideration.

Fig. 25.Original image and the encrypted image.

Fig. 26. Histogram of the original and encrypted image.

2.7. COMPARISONS

This design is accomplished via Verilog HDL
hardware description language by QuartusΙΙ9.0
software simulated with MATLAB, and finally
implemented on FPGA in Stratix ΙΙ family. This design
has a high speed, high throughput and low power
consumption. It is really suitable for highly secured
image encryption; and also the time of its converting is
low. Table 3 shows the comparison of the frequency
throughputs, Numbers of registers and devices and the
type of devices that have been used in different articles.
Table 4 presents the characteristic of our encryption
image.

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

21

Table 3. Compare implementation of different AES
algorithm

Implementation

Device Freque
ncy

(mhz)

Throughput

(mbps)

Nbr of
register

M.zeghid[4] ------- 129 1651 -------

l.thulasimani
[19]

Xc2v600
bf957-6

------- 666.7 2943

Parhi[20] xc2vp30 150.5 221.4 536

Wang[17] ------- 125.38 1604 395

f.burns[18] ------- 132 156 4800

Parikh[13] Xcv1000
e-8

168.4 30556 11022

Chang[9]

Spartan-
3xc3s20

0

287 647 148

Cheng[15] Vertex-

2pxc2vp
2273

273 749 104

Elkeelanv[16] Single
core

------- 12.6 1475

Our measurement result of implementation image

encryption by AES is shown in table 4.

Table 4.Our result of impelementation of image
encryption by AES

Implementation Nbr of
register

Frequency

(mhz)

Throughput

(mbps)

Encryption
time(ms)

Proposed
method

-- 441.5 6500 1.25

(32*32)
Kuo-huang

[20]
104 273 749 8243

(120*160)

2.8. CONCLUSION

 In this article hardware implementation of AES
algorithm is used to encrypt the image. For decrease
power applying 4 retiming,glitch and operand isolation
stages, designing the control unit based on logical
gates, Implementation of mixcolumn and
invmixcolumn by mult 2 and mult 3 units and
synchronizing the key production phase with each
round phase. This algorithm has been improved in
terms of hardware and is appropriate for encrypting an
image in a short time with low power that is 130mw.

3. ACKNOWLEDGMENT

Special thanks to my advisors Dr. Ghader Karimian
and Dr. Javad Fronchi, professors in the Department of
Computer Science Engineering, university of tabriz for
allowing me to choose such an interesting area of
security in VLSI Design. I am also very thankful to
Professor kozeh kanani, the Dean of department
electrical and computer for advise me in this section.

REFERENCES
[1] N. Sloss, D. Symes, and C. Wright, “ARM System

Developer’s Guide, Designing and Optimizing
System Software”, Morgan Kaufmann, 2004.

[2] B. Gladman, A specification for Rijndael, the AES
Algorithm. Available at http://fp.gladman.plus.com,
May 2002.

[3] XYSSL Crypto Library, GNU Lesser General Public
License, 2003.

[4] M. Zeghid, M. Machhout, L. Khriji, A. Baganne, and
R. Tourki, “A Modified AES Based Algorithm for
Image Encryption”, International journal of computer
science engineering IEEE ,2007.

[5] Kuo-huang chang,yi-cheng,chung-cheng, “Embedded
a Low Area 32-bit AES for Image
Encryption/Decryption Application” IEEE 2009.

Majlesi Journal of Electrical Engineering Vol. 6, No. 4, December 2012

22

[6] Shuuen-shyang wang and wan-sheng ni, “Anefficient
FPGA implementation of advanced encryption
standard algorithm”, IEEE 2004.

[7] Alireza hodjat,david d.hwang,bocheng lai,Ingrid
verbauwhede, “a 3.84 gbits/s AES crypto
corprocessor with modes of operation in a0.18um
cmos technology”, IEEE 2005.

[8] Xinmiao Zhang and Keshab K. Parhi, “High-Speed
VLSI Architectures for the AES Algorithm”
published in IEEE Transactions OnVery Large Scale
Integration (VLSI) Systems,VOL. 12, NO. 9,
September 2004.

[9] Chi-jeng Chang, Chi-Wu Husang,Hung-Yun Tai,Mao-
Yuan Lin and Teng-KueiHu, “8-bit AES FPGA
Implementation ussing Block RAM”, The 33 Annual
Conference of the IEEE Industrial Electronics
Society(IECON),Nov.5-8,2007 , Taipei , Taiwan.

[10] carl dreyer, “A pipelined Implementation of AES
for Altera FPGA platforms” 2004.

[11] Chih-Pin Su, Tsung-Fu Lin, Chih-Tsun Huang, and
Cheng-Wen Wu, “A High-Throughput Low-Cost
AES Processor” IEEE Communications Magazine
National Tsing Hua University, December 2003.

[12] Namin Yu, Howard M. Heys , “Investigation of
Compact Hardware Implementation of the
Advanced Encryption Standard”, IEEE
CCECE/CCGEI, Saskatoon, May 2005.

[13] Yi-Cheng Chen,Chung-Cheng Hsieh , Chi-WuHuang
and Chi-Jeng Chang Kuo-Huang Chang, “Embedded
a Low Area 32-bit AES for Image
Encryption/Decryption Application” ,IEEE 2009.

[14] Alireza Hodjat, Student Member, IEEE and Ingrid
Verbauwhede, Senior Member, IEEE, “Area-
Throughput Trade-Off for Fully Pipelined
30to70Gbits/s AES Processors”, IEEE TRANS
ACTIONSON COMPUTERS ,
VOL.55,NO.4,APRIL2006.

[15] Chi-Jeng Chang, Chi-Wu Huang, Kuo-Huang Chang,
Yi-Cheng Chen and Chung-Cheng Hsieh, “High
throughput 32-bit AES implementation in FPGA,
IEEE Asia pacific conference on circuits and
systems”, December 2008 , MACAO , pp.1806-
1809.(EI).

[16] Jyothi Yenuguvanilanka , Omar Elkeelany,
“Performance Evaluation of Hardware Models of
Advanced Encryption Standard (AES)
Algorithm”, 978-1-4244-1884-8/08, IEEE 2008.

[17] Dazhong Wang , Xiaoni Li , “Improved Method to
Increase AES system Speed”, The Ninth
International Conference on Electronic
Measurement & Instruments ,ICEMI’2009.

[18] F.BurnsJ.MurphyA.KoelmansA.Yakovlev, “Efficient
advanced encryption standard Implementation
using lookup and normal basis”, Published in
IET Computers & Digital Techniques, IET Comput
.Digit.Tech., 2009, Vol. 3, Iss. 3, pp. 270–280.

[19] L.Thulasimani, M.Madheswaran, “A single chip
design and implementation of AES 128/192/256
encryption algorithms” International Journal of
Engineering Science and Technology Vol. 2(5), 2010,
1052-1059.

[20] XinmiaoZhang, Student Member, IEEE , and Keshab
K.Parhi , Fellow, IEEE “High-Speed VLSI
Architectures for the AES Algorithm” IEEE
transactions on very large scale integration (VLSI)
systems , VOL.12,NO.9 , September 2004.

[21] Dessalegn Atnafu, “Optimizing AES Implementation
for high-speed embedded Application”, Feb. 2008,
addisa baba.

[22] A.P. Chandrakasan, S.S. and Brodersen, R., 1992.
“Low-power CMOS Digital design”, IEEE Journal
of Solid-State Circuits, Apr., 27(4), pp. 473-484.

[23] McIvor,C., McLoone, M., and McCanny, J.V.,
“Modified Montgomery modular multiplication
and RSA exponentiation techniques”,
Proceedings of Computers and Digital Techniques,
151, pp. 402-408 2004.

[24] Walter, C.D., 1999. Montgomery Exponentiation
Needs No Final Subtraction, Electronic Letters, 35, pp.
1831-1832.

[25] Kaps, J.P., 2006. Cryptography for Ultra-Low
Power Devices, Ph.D. Thesis, Worcester Polytechnic
Institue.

[26] Ghosh, A., Devadas, S., Keutzer, K. and White, J.,
1992. “Estimation of average switching activity in
combinational and sequential circuits”, DAC '92:
Proceedings of the 29th ACM/IEEE conference on
Design automation, pp. 253-259.

[27] Doğan, A.Y., AES Algoritmasının FPGA Üzerinde
Düük Güçlü Tasarımı, M.Sc. Thesis, Istanbul
Technical University, Istanbul 2008.

