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ABSTRACT: 
This paper describes the implementation of a low power and high-speed encryption algorithm with high throughput for 
encrypting the image. Therefore, we select  a highly secured symmetric key encryption algorithm AES(Advanced 
Encryption Standard), in order to decrease the power using retiming and glitch and operand isolation techniques in 
four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and 
simultaneous production  keys and rounds. Such procedure makes AES suitable for fast image encryption. 
Implementation of a 128-bit AES on FPGA of Altera Company has been done, and the results are as follows:  
throughput, 6.5 Gbps in 441.5 MHz and 130mw power consumption. The time of encrypting in tested image with 
32*32 sizes is 1.25ms. 
 
KEYWORDS: Advanced Encryption Standard (AES), Pipelining, Image Encryption, Decryption Retiming, Galios 
Field, FPGA, Glitch. 
  
1.  INTRODUCTION 

Information is significant in every aspect of human 
life. Like any other property, it needs protection. There 
are different cryptographic algorithms available to secure 
information. However, most of them are computationally 
intensive, either deals with huge numbers and complex 
mathematics or involves several iterations.  Advanced 
Encryption Standard (AES) is a cryptography algorithm 
proved to have the best quality between 15 candidates by 
National Institute of Standards and Technology (NIST).  
AES has high security with relatively little memory and 
CPU resource requirements. It is easier to apply 
cryptographic solutions on computer-based 
communication systems than on conventional systems 
like telephone, fax and radios. It is not feasible to 
dedicate a general computer for each of such systems. 
Instead, a cheap and portable embedded system can be 
developed to ensure the communication security. 
Microcontroller, DSP, or ASIC is used in the 
construction of embedded systems. Microcontroller 
based embedded systems have the lowest cost, which is 
one of the basic criteria of an embedded system design. 
Variety of microcontrollers available, each has different 
processor and peripheral devices inside them. 
ARM7TDMI is a popular embedded processor that has 
a lion’s share on the market. It is reliable, that has low 
cost, low power consumption and small physical size 
[1].  AES is implemented in different ways. Many of 

the implementations are freely available [2] [3]. 
However, these implementations do not run fast enough 
for real-time applications, like voice encryption. In 
such applications, the encryption has to be done in a 
timely manner. Otherwise, it affects the quality of 
service of the communication, in a way that it cannot be 
tolerated by the users. In this case, most developers go 
for a DSP or ASIC, which can run the available 
implementations faster so that it can meet the required 
speed. To encrypt the image in [4] add  one  key stream 
generator (A5/1, W7) to AES to ensure improving the 
encryption performance; mainly, for images 
characterised by reduced entropy, which has increased 
the AES security for the image encryption.   In [5] used 
AES 32-bit for encryption of image.  AES encryption is 
an efficient scheme for both hardware and software 
implementation, and FPGA is used for AES 
implementation. In most approaches, a RAM/ROM- 
based lookup table (LUT) is used, such as SubByte [6] 
[7], and MixColumn [6], which operates on a 4-byte 
column and corresponds to multiplications and 
additions in GF (28). Addroundkey is simply performed 
by xoring each state with each key.  In [7] MixColumn 
transformation is based on a chain of xor units.  In [8] 
architecture is used, which speeds up the AES 
algorithm with no feedback by duplicating hardware for 
implementing each round unit. These approaches are 
based on pipelining, subpipelining and loop-unrolling. 
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In [9] ShiftRow unit is implemented based on a 4-bit 
counter and two memories (ROMa, ROMb). In [7] and 
[14] the inner and outer pipelining and loop-unrolling 
has made it possible to achieve the throughput of 30 to 
70 Gbps using 0.18µm CMOS technology. In [11] the 
implementation of S-BOX is based on Finite Field. In 
[12] use of only one S-BOX instead of four has made 
the hardware and area to be reduced but also the speed 
to be decreased by 4 times.  The rest of the paper is 
structured as follows:  Section 2 gives a brief summary 
of AES algorithm and presents the system architecture 
adopted in our implementation. Comparison of our 
implementation with those done is given at section3. 
Finally, section4 provides the conclusion to this paper. 

 
2.  AES ALGORITHM 

The AES algorithm is a symmetric block cipher that 
processes data blocks of 128-bits using a cipher key of 
length 128,192 or 256 bits each data-block consists of a 
4*4 array of bytes called the state, on which the basic 
operations of the AES algorithm are performed. The 
AES encryption procedure is shown in Fig.1. 
 

                                     
Fig. 1. 128 bit encryption AES algorithm. 

 
The AES decryption procedure is shown in Fig. 2. 

Round function consists of different transformations: 
SubBytes, Shiftrows, MixColumns and Addroundkey. 
The four transformations are described briefly as 
follows[21]:             
1.  SubByte: every byte in the state is replaced by 
another, using the Rijndael S-Box. It is a non-linear 
substitution that operates independently on each byte of 

the state using a substitution table (S-Box). The S-Box 
is invertible and is constructed by composition of two 
transformations. For example, multiplicative inverse in 
a finite field GF(28)  is followed  by  the affine  
transformation  [16]. 

  
Fig. 2. 128 bit decryption AES algorithm. 

 
Calculating entries of the S-Box is computationally 

expensive, and its values are independent of the input. 
For most applications, S-Box values are pre-calculated 
and stored in a 16*16 byte (256 byte) memory. Each 
byte of state is mapped into a new byte in the following 
way: The left most 4 bits used as a row value and the 
right most 4 bits are used as a column value. These row 
and column values serve as indexes into the S-Box to 
select a unique 8-bit output value as shown in the Fig.3. 
In our implementation, S-Box is based LUT as a way of 
increasing the speed. This implementation is shown in 
Fig. 3.      
          

 
 

Fig. 3. S-BOX transformation (LUT) 
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2.  ShiftRow: every row in the state is shifted a certain 
amount to the left.  In this operation, each row of the 
state is cyclically shifted to the left, depending on the 
row index. The first row is not shifted, the second 
shifted 1 byte position, the third 2 byte and the fourth 3 
byte position. A graphical representation of shiftrows 
and inverse shiftrows is shown Fig.4 and Fig.5. 
 

 
Fig. 4. ShiftRows transformation. 

 

 
Fig. 5. Inverse ShiftRows transformation. 

 
In our implementation, 16*8-bit registers have been 

used, and in the Verilog program, each output byte is 
placed in the position as it has to be after shift 
operation, making a 128-bit register, which can also be 
used as one of the pipeline registers. Fig.6 shows the 
implemented shiftrow. 

 
Fig. 6. ShifitRows/inverse ShiftRows design. 

 
3. MixColumns: the data within each column of state 
are mixed. It operates on the state column wise, treating 
each column as a four term polynomial over GF(28). 
The column polynomial is multiplied module x4+1 with 

fixed polynomial, p(x) giving by                            
p(x) ={03}x3+{01}x2+{01}x+{02}.           

The transformation can be defined by the following 
matrix multiplication on state (Fig.7):    
 

 
Fig. 7. Mixcolumns transformation 

 
Multiplication of  a value by x (i.e, by 

{02}and{03}) can be implemented  as a 1-bit left shift 
followed by a conditional  bitwise xor with (0001 1011)  
if the leftmost bit of orginal value is 1. (Oprator ^ 
stands for Exclusive OR) for example, 
{02}*{87}=(00001110)^(00011011)=(0001 0101)     
and 
{03}*{6E}={6E}^({02}*{6E})=(01101110)^(1101110
0)= (10110010). 

Our implementation is based on multiplication by 2 
and 3 (multi2, multi3) and Xor operation, and these two 
multiplications have been written as a function. 

Fig. 8 shows our Mixcolumn implementation. The 
equation of multiplication of each row by each column 
has been fully pre-calculated; therefore, the operations 
are only based on shift and Xor. This has resulted in an 
increase of speed in this transformation.                            
Implementation of Mixcolumn is shown in Fig. 8.  
 

 
InvMixcolumns is the inverse of the Mixcolumns 

transformation. Our implementation inverse 
Mixcolumn is shown in Fig.9. InvMixcolumns operates 
on the State column-by-column. The InvMixcolumne 
can be written as a matrix multiplication shown below: 
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Fig. 8. Our implementation Mixcolumn base of mult3 

and mult2. 

 
Fig. 9. Our implenetation inverse Mixcolumn base of 

mult2. 
 

4. AddRoundkey: a round key is added to a state. In 
this operation, round key is applied to the state  by a 
simple bit wise XOR. The round key is extracted from 
the cipher key using the mean of key schedule. The 
operation is viewed as a column wise operation 
between the 4byte of a state column and word of the 
round key. It can also be viewed as a byte-level 
operation. Fig.10 shows AES key expansion.       
                                                                    

 
Fig. 10. AES key expansion  

  
The function g consists of the following 

subfunctions:          
1. Rotword performance a one-byte circular    left 

shift on a word. This means that an input word 
[b0,b1,b2,b3] is transformed into[b1,b2,b3,b0].                                
2. Subword perfoms a byte subtitustion on each byte of 
its input word using the S-box.                                
3. The result of steps 1 and 2 is XORed with a round 
constant shown in table1. 

                                                                                               
Table 1. The value RC[j] in hexadecimal 

J 1 2 3 4 5 6 7 8 9 10 
RC[J] 01 02 04 08 10 20 40 80 1B 36 

 
Our implementation of Addroundkey non-pipelining is 

shown in Fig.11 and Fig.12. 
 

 
Fig. 11. Rotword (rotate) 
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Fig.12. Addroundkey non-pipelining 
 

Inverse Addround key non-pipelining is shown in Fig.13 
and  inverse R-con is shown in table 2:  

 
Table 2. Inverse R-con 

J 1 2 3 4 5 6 7 8 9 10 
RC[J] 36 1B 80 40 20 10 08 04 02 01 

 

 
Fig. 13. Inverse Addroundkey non-pipelining 

 
To implement Addroundkey, pipelining technique 

has been used, and its control unit has been 
implemented using logic gates. These two factors lead 
to an increase in speed and throughput of the unit, and 

it is controlled in the way that in each state, A key is 
generated. This means that steps of the data shifting in 
Addroundkey, and round are done simultaneously. 
Finally, each key is XORed with its corresponding 
round. The use of 4 stage pipelining, and control unit 
based on logic gates,  design of MixColumn unit based 
on multiplications by 2 and 3, hardware implementation 
of multiplication of each row by each column, and 
simultaneous generation of each key and each round 
have made this implementation to be high in terms of 
speed and throughput. Control unit of this system, the 
result generated in the end of each round and key 
expansion should be produced simultaneously, in order 
to prevent to happen a cycle difference and 
subsequently, no wrong number is produced at this 
stage. Therefore, the control unit of this design is such 
that control signals of 4 performed operations in each 
round and also their multiplexers are simultaneous and 
done step-by-step with the performed operations in 
each phase of key production in key expansion, in order 
to ensure the synchronization and speed increase and 
that the key production takes place just in the last 
phase. The number is just produced in the last phase of 
round. To achieve this aim, control signals have been 
ordered and arranged accordingly.  In other words, 
because of using 4 stage pipelining both in key 
expansion unit and in each round, and provided that 
their control signals are defined correctly, a perfect 
harmony will be created between these stages. 
Moreover, this unit is implemented by logic gates, 
which again cause the production speed of each round 
and key to be increases. Fig.14 and Fig 15 show the 
implemented encryption and decryption algorithm. 
 

Fig. 14. Implementation of AES encryption 
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Fig 15. Our implementation of AES decryption 

 
2.1.  Power Optimization Techniques 

Platform dependent power optimization techniques 
are implemented by using the opportunities, which are 
provided by the implementation platform. One of the 
power optimization techniques is sleep mode operation, 
which is called as power gating. The static power 
consumption of a CMOS circuit is caused by the 
leakage currents of transistors and P-N junctions [25]. 
Especially SRAM based FPGA platform causes the 
circuit consumes a huge amount of static power caused 
by the leakage currents when the circuit is off.  Power 
gating method prevents the power consumption by 
using sleep mode for the states that the circuit is off 
[22]. There are memory blocks   in   the   FPGA’s,   
which cause   the   dynamic   power consumption. If 
there are input ports to read or write on these memory 
blocks, these inputs are allowed to disable for the 
memory blocks, which are not used at that time. In  this  
way,  dynamic  power  consumption  of  unused  
memory  blocks  is  prevented [22]. The clock signal in 
the FPGA has to reach for every single sequential 
block; so it has a long routing line.  These  long  
routing  lines  causes  power  dissipation  by  charging 
and  discharging  the  nodes  capacitance,  which  is  
referred  to  the capacitive power dissipation. It is also 
obvious that clock signal has a high frequency of logic 
level change; this is why its dynamic power 
consumption is high. So there is a way of power 
optimization by preventing of clock routing to the 
blocks which are unused. This feature is available on 
some of FPGA platforms [22]. 
 
2.2.  Glitching 

Glitches are unwanted transitions of a signal after 
an input change until the final output value is reached. 
This behavior is due to different arrival times of signals 
to a gate, called logic hazards.  Figure 16 shows  the  
circuit  for  the  logic equation  Q = AB + BC, which 

exhibits a static-1 hazard. When the inputs A and C are 
logic 1, any change on B will cause a transition on Q. 
There are two paths for B to the output Q where one 
path contains an inverter. This causes a slightly longer 
delay, resulting in a glitch in the output  Q  [25].  More 
complex circuits, e.g. ripple carry adders, amplify this 
problem.  In  typical  combinational  circuits  glitching  
accounts  for between 10%  and  40% of  the dynamic 
power consumption. Hazards and glitches can be 
avoided at the cost of more circuitry [26]. 

 

 
Fig.16. Glitch caused by hazard. 

 
There are two types of ways in order to solve this 

glitching problem in the circuit: The first method is to 
place register blocks between large combinational 
circuits, which is widely used in our implementation. 
These register blocks not only decreases the logic 
deepness in the circuit, but also increases the clock 
frequency in the circuit. However, to place these 
register blocks increases the data processing time.  This 
method is shown in Figure 17. 
 

 
Fig. 17. Reducing glitches by adding register blocks. 

 
Second method is to solve the glitch problem by 

reducing the logic deepness of the circuit. This solution 
is applied to the circuit during the HDL code 
implementation by using some coding hints. For 
example, the circuit in Figure 5 can be converted into a 
circuit as Figure 18 by doing some changes in the HDL 
where if, elseif and else blocks are stated. In this way, 
both the logic deepness of the circuit and the amount of 
the glitches are reduced [27]. 

 
Fig. 18. The circuit that has unbalanced routing delays. 
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Fig. 19. The circuit that has balanced routing delays. 

 
2.3.  Clock gating 

Figure 20 shows a typical implementation of a 
synchronous register with enable. We assume that a 
register is multiple bits wide and consists of one flip-
flop per bit. The register is disabled when the enable 
signal is at logic 0. Its output is fed back to its input 
through the multiplexer. When the enable signal is at 
logic 1 the register can load new values from data in. In 
this design, each flip-flop of the register requires a 
multiplexer at its data input [25]. 
 

 
Fig. 20. Enable register with multiplexer. 

 
Furthermore, the clock network has to drive each 

flip-flop.  Clock  gating  provides  a way  to  disable  
the clock signals for a register, and therefore,  
eliminating  the  need  to separate multiplexers for each 
input bit. Figure 21 shows such a design. The enable 
signal is usually the output of some combinatorial logic 
and may contain glitches. The latch prevents glitches 
from the enable signal to propagate to the clock input of 
the register.  The AND gate performs the actual gating.  
Clock gating replaces the multiplexers with a single 
clock gating cell and isolates the register clock from the 
global clock. The clock gating cell, containing a latch 
and an AND gate, consumes more power than a single 
bit multiplexer. However, when this technique is 
applied to the multiple bit registers, it can conserve 
both static and dynamic power. We observed savings 
even at registers that were only 8-bits wide [25]. 
 

 
Fig. 21.Clock gated register.     

 

2.4.  Operand Isolation 
Operand Isolation is a method to  stop data 

selectively from entering a block of complex 
combinatorial logic, causing many transitions, and 
dynamic power consumption, when the output is 
discarded by either an unselected multiplexer or a 
currently disabled register. Figure 22 shows an example 
where changes to the input A consume power even 
when the output A’ is not used. 

 

 
Fig. 22. Design without operand isolation. 

 
To prevent this unnecessary power consumption 

isolation logic can be added at the input to the complex 
combinatorial logic. It prevents changes to input A 
from propagating through the combinatorial logic. The 
isolation logic usually consists of either AND or OR 
gates depending on the specific application. The  
example  in Figure  22  uses  an  AND  gate  for  
operand  isolation. The combinatorial logic only 
receives the input A when its output A’ is selected by 
the multiplexer. Otherwise, its input is 0. In this way, it 
is prevented unnecessary power consumption when 
selected control signal is not logic 1, which means the 
output of combinatorial logic is not used [25]. 

 

 
Fig. 22. Design with operand isolation. 

 
2.5.  Re-timing 

Retiming for low-power is the process of 
positioning new or moving existing flip-flops so they 
separate parts of the circuit that cause glitching from 
parts which have high input capacitance.  As  glitches  
do  not  get  propagated through flip-flops this 
technique significantly  reduces the  switching activity  
of  the high  input capacitance part of the circuit and 
reduces the dynamic power consumption [25]. The 
critical path in Figure 23 is decreased by changing the 
places of registers. The circuit  in  Figure  11  is  
redrawn  in  Figure  24 after  being  applied  this  
retiming method [27]. 
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Fig. 23.Design without re-timing. 

 

      
Fig. 24. Design with re-timing. 

 
2.6.  Implementation of AES Algorithm 

Block of k-to-w is register that gets 128bit input, 
and output includes w1, w2, w3, w4 that each is 32 bits. 
The original image can be regenerated using the 
encrypted image, and the final key produced at the last 
stage of encryption by the image decryption circuit, 
which is also implemented. In this implementation, the 
image used is of 32*32 sizes and the Hex code of the 
image is given to the designed AES encrypting. 
Encrypted data of the original image, which is the 
encrypted image, are obtained. The time needed to 
generate the encrypted image is 1.25 ms which is very 
shorter of [20]. Figure 25 shows the original image and 
the encrypted image obtained by this implementation. 
The histograms of the original and encrypted images 
are shown in Figure 26. We can see that the histogram of 
the ciphered image is fairly uniform and is significantly 
different from the original image. Therefore, it does not 
provide any indication to employ any statistical attack on 
the image under consideration.  

 
Fig. 25.Original image and the encrypted image. 

 

 
Fig. 26. Histogram of the original and encrypted image. 
 
2.7.  COMPARISONS 

This design is accomplished via Verilog HDL 
hardware description language by QuartusΙΙ9.0 
software simulated with MATLAB, and finally 
implemented on FPGA in  Stratix ΙΙ family. This design 
has a high speed, high throughput and low power 
consumption. It is really suitable for highly secured 
image encryption; and also the time of its converting is 
low. Table 3 shows the comparison of the frequency 
throughputs, Numbers of registers and devices and the 
type of devices that have been used in different articles. 
Table 4 presents the characteristic of our encryption 
image. 
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Table 3. Compare implementation of different AES 
algorithm 

Implementation 

 

Device Freque
ncy 

(mhz) 

Throughput 

(mbps) 

Nbr of 
register 

M.zeghid[4] ------- 129 1651 ------- 

l.thulasimani 
[19] 

Xc2v600
bf957-6 

------- 666.7 2943 

Parhi[20] xc2vp30 150.5 221.4 536 

Wang[17] ------- 125.38 1604 395 

f.burns[18] ------- 132 156 4800 

Parikh[13] Xcv1000
e-8 

168.4 30556 11022 

Chang[9] 

 
 

Spartan-  
3xc3s20

0 

287 647 148 

Cheng[15] Vertex- 

2pxc2vp
2273 

273 749 104 

Elkeelanv[16] Single 
core 

------- 12.6 1475 

 
Our measurement result of implementation image 

encryption by AES is shown in table 4. 
 
 
 
 
 
 
 
 
 
 
 

Table 4.Our result of impelementation of  image 
encryption by AES 

Implementation Nbr of 
register 

Frequency 

(mhz) 

Throughput 

(mbps) 

Encryption 
time(ms) 

Proposed 
method 

-- 441.5 6500 1.25 

(32*32) 
Kuo-huang  

[20] 
104 273 749 8243 

(120*160) 
 
2.8.  CONCLUSION 

     In this article hardware implementation of AES 
algorithm is used to encrypt the image. For decrease 
power applying 4 retiming,glitch and operand isolation 
stages, designing the control unit based on logical 
gates, Implementation of mixcolumn and 
invmixcolumn by mult 2 and mult 3 units and 
synchronizing the key production phase with each 
round phase. This algorithm has been improved in 
terms of hardware and is appropriate for encrypting an 
image in a short time with low power that is 130mw. 
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