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ABSTRACT: 
All oscillators are periodically time varying systems, so to accurate phase noise calculation and simulation, time 
varying model should be considered. Phase noise is an important characteristic of oscillator design. It defined as the 
spectral density of the oscillator spectrum at an offset from the center frequency of the oscillator relative to the power 
of the oscillator. In this paper, we study linear time invariant (LTI) and linear time variant (LTV) model’s to calculate 
phase noise. Moreover, we propose a simple method for Impulse Sensitivity Function (ISF) calculation. Different 
oscillators have been selected to evaluate the proposed method.  Simulation results show that the proposed method is 
simpler than other methods, and we can easily simulation ISF.  
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1.  INTRODUCTION 

With the growth of wireless communication 
systems and stringent performance requirements, the 
issue of exact phase noise calculation in oscillators has 
become an important consideration for oscillators 
design. Phase noise is closely related to the 
performance of oscillators. Naturally, the phase noise 
of a whole complex system can be measured, but it can 
be closely approximated by adding the phase noises of 
different oscillators together. Phase noise describes 
how the frequency of an oscillator varies in short time 
scale. Effects of phase noise in the time domain, is 
timing jitter and in the frequency domain, is reciprocal 
Mixing. Hajimiri and Lee [1] have proposed a time 
varying model based on the impulse sensitivity 
function, ISF, to predict phase noise. This technique 
provides insight to the oscillators design. However, the 
main problem in their theory is ISF simulation. 

In this article, we proposed a simple method for ISF 
calculation. This method can be applied for all radio 
frequency oscillators. 

This article is including five parts. The oscillator 
phase noise theories (LTI and LTV models) are 
examined in section 2. The proposed method is 
demonstrated in section 3. Simulation results are 
presented in section 4 and conclusions are 
presented finally. 

 
2.  OSCILLATOR PHASE NOISE THEORIES 

The spectrum of an ideal oscillator with no random 
fluctuations is like a pair of impulses at 	. In a 
practical case, the output is more generally given by: 

 

. ∅  (1)
where ∅  is a random phase which is a function of 
time, and f is a periodic function with period 2 ⁄ . 
As a consequence of the fluctuation represented 
by	∅ , the spectrum of practical oscillator has 
sidebands close to the frequency of oscillation. To 
quantify phase noise, we consider a unit bandwidth at 
an offset ∆  with respect to , calculate the noise 
power in this bandwidth, and divide the result by the 
signal power, Fig. 1. 
 

 

 
Fig. 1. The definition of phase noise. 

 

∆ 10
∆ ,

, 	  (2) 
 

where  is the noise power and  is the signal 
power. 
2.1.  LTI Models 

In sub-section 2.1 and sub-section 2.2 LTI and LTV 
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phase noise models have been studied respectively. 
These models are named with the author's name. 

 
2.1.1. Leeson 

Leeson’s phase noise model [2] is by far the most 
cited phase noise model and is based on an LTI 
assumption for tuned tank oscillators. Phase noise 
value, ∆ 	 , which is based on lesson modified 
model is given by: 

 

∆ 	 10 	
2

∙ 1 	
2 ∆ 	

∙ 1 	
∆ ⁄

|∆ |	
 

(3) 

 

where F is an empirical parameter (often called the 
“device excess noise number”), k is Boltzmann’s 
constant, T is the absolute temperature,  is the 
average power dissipated in the resistive part of the 
tank circuit,  is the oscillation frequency,	  is the 
effective quality factor of the tank with all the loadings 
in place, ∆  is the offset from the carrier and ∆ ⁄  is 
the frequency of the corner between the 1⁄  and 1⁄  
regions. Since lesson’s model is based on LTI model, it 
is not suitable for cyclostationary noise sources. Also 
this model has an empirical parameter. 
 
2.1.2. Razavi 

B. Razavi proposed a phase noise model for 
inductorless VCOs and is well suited for CMOS ring 
oscillators. In [3] and [4], he proposed a new definition 
for Q factor, which makes Leeson’s model applicable 
to inductorless oscillators. If an oscillator is modeled as 
in   Fig. 2 and open loop transfer function is assumed as 

∅ , an open-loop Q factor is defined 
as follows: 

 

2
	

	
	
∅
	

 (4) 

 

 
Fig. 2. Linear oscillatory system [3]. 

 
 

Consequently, the phase noise for an N-stage ring 
oscillator is given by [5]: 

 

∆ 	
2

	
2 ∆ 	

 (5) 
 

The Q factor for a 3-stage ring oscillator is 1.3 and 
the Q factor for a 4-stage ring oscillator is 1.4. 
However, Q is not the only factor that determines the 
phase noise. A 4-stage ring oscillator has more noise 

sources than a   3-stage ring oscillator because of more 
delay stages. It also has to dissipate more power than a 
3-stage ring oscillator with the same load capacitance 
[5]. 
 
2.1.3. Jing Zhang 

Jing Zhang has applied linear modeling technique to 
distributed oscillators [6], [7]. A generalized distributed 
oscillator is shown in Fig. 3. 

 
 

 
Fig. 3. Generalized distributed oscillator [8]. 

 
According to this model, the phase noise is given by: 

 

∆ 10 , ,  (6) 
 

, , ⋯
2 2⁄ ⋯

∆ 	
∅

	

(7) 

 

where  is carrier power, 8 3⁄  is the 
thermal noise power density of a MOSFET,  is 
transmission line characteristic impedance,  is 
attenuation constant of drain line and n is number of 
stages.  

 
2.2.  LTV Models 
2.2.1. Hajimiri and Lee 

The model of Leeson and Razavi suppose the 
oscillator circuit as a linear system; therefore, they are 
not precise. Hajimiri and Lee develop a general theory 
for phase noise calculation [1]. The advantage in this 
model is it does not depend on any oscillator topology, 
and presents a normalized metric, the Impulse 
Sensitivity Function, with which one can compare 
relative performance between different oscillators. As 
an example, consider an ideal parallel LC oscillator as 
it is shown in Fig. 4 (a). If a current impulse injected to 
the circuit, the amplitude and phase of the oscillator 
will be affected similar to Fig. 4 (b) and Fig. 4(c).  
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 4. (a) LC oscillator, (b) Current impulse injected at 
the peak changes the amplitude and has no effect on the 
phase, (c) Current impulse injected at zero crossing 
changes the phase and has minimal effect on the 
amplitude [10]. 

 
 

The instantaneous voltage change is given by [9]: 

 

∆
∆

 (8) 
 

where ∆  is the total injected charge due to the current 
impulse and  is the effective capacitance on that 
node at the time of charge injection. Phase shift is 
proportional to the voltage change ∆ , and hence to the 
injected charge ∆ . Therefore ∆∅ can be written as [9]: 

 

∆∅
∆ ∆

 (9) 
 

where 	and  is the voltage 
swing across the capacitor. The function , is the                
time-varying “proportionality factor”. It is called the 
impulse sensitivity function, since it determines the 
sensitivity of the oscillator to an impulsive input. It is a 
dimensionless, frequency- and amplitude-independent 
periodic function that describes how much phase shift 
results from applying a unit impulse at any time [1]. 
Suppose the unit impulse response of the system as the 
amount of phase shift per unit current impulse, as [1], 
[10]: 

 

∅ ,
Γ

 (10) 
 

Using equation (10) and the superposition integral, 
we can calculate excess phase ∅  by the following 
equation: 

∅ ∅ ,

1
Γ  

(11) 

The ISF is a periodic function, so it can be 
expanded into a Fourier series: 

 

2
 (12) 

where the coefficients are real valued, and  is the 
phase of the  order harmonic, that can be 
overlooked. We can consider what happens when we 
inject a sinusoidal current            

∆ , 0,1,2, … into a node. 
Suppose that ∆ ≪ , therefore ∅  is given by [1], 
[10]: 

 

∅
2

∆  

∆ 	  

(13) 

 

The only component of the integral which is 
preserved is for n = m. Therefore: 

∅
∆

2 ∆
⋯ 

2 ∆
2 2 ∆

⋯ 

∆
2 ∆

 

(14) 

 

Note that first and second terms are the negligible if 
m  0, and if m = 0, the second and third terms are zero 
since the lowest Fourier coefficient  is . Final 
value for ∅  can be presented as [1], [10]: 

∅
∆

2 ∆
 (15) 

 

Mathematically, the phase noise at a ∆  offset from 
 arising from a white noise source of square 

magnitude ∆  is equal to: 

∆ 10
∆

8 ∆
∙  (16) 

Note that  represents the peak amplitude, hence        
2⁄ ∆ , for ∆ 1 . Using Parseval’s 

theorem we have: 
 

1
| | 2  (17) 
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where  is the root mean square (rms) value of 
. Hence phase noise for a current noise is: 

 

∆ 10
∆ ∙ Γ

4 ∆
 (18) 

 
 

2.2.1.1. Impulse Sensitivity Function Examples 
a) Ideal LC Oscillator 

Consider the ideal LC oscillator of Fig. 4. The 
voltage across the capacitor and the current through the 
inductor can be written as [10]: 

 (19) 

 (20) 

Where  is the maximum voltage amplitude and           
1 √⁄  is the angular frequency of oscillation. If a 

current impulse with an area of ∆  is injected into the 
tank at , it will induce a voltage change in the 
capacitor voltage, Therefore, the capacitor voltage at  
is ∆ ⁄  and the inductor current 
does not change. The capacitor voltage and the inductor 
current after  will be sinusoids with a phase shift ∆∅, 
and an amplitude change ∆ , with respect to the initial 
sinusoid [10]. 

 

∆ ∆∅  (21) 

∆ ∆∅  (22) 

The voltage and current given by (21) and (22) 
should be equal to the initial condition at : 

∆ ∆∅ ⋯ 
∆ ⁄  (23) 

∆ ∆∅ ⋯ 

 

(24) 

By simplifying the equations (23) and (24) and 
Considering ∆∅ 1, ∆∅ ∆∅ and 
∆ , the following equation is obtained: 

∆∅
∆

 (25) 

By comparing equations (9) and (25), ISF is 
– . To illustrate its significance, the ISF’s 
together with the oscillation waveforms for a typical 
LC is shown in    Fig. 5. 

In the all oscillators, ISF has its maximum value 
near the zero crossings of the oscillation, and a zero 
value at maxima of the oscillation waveform [11]. 

 

 

 
Fig. 5. Waveforms and ISF’s for LC oscillator. 

 
b) CMOS Ring Oscillators 

To calculate phase noise using (18), needs to know 
the rms value of the ISF. To estimate , suppose that 
the ISF is triangular in shape and that its rising and 
falling edges are symmetric [10] as shown in Fig. 6. 

 

 
Fig. 6. Approximate ISF for ring oscillators [10]. 

 
The ISF has a maximum of1⁄ , where  is 

the maximum slope of the normalized waveform f in 
(1). Therefore   is given by: 

 

1
2

⋯

4
2

⁄

3
2

1
 

(26) 

Stage delay is proportional to the rise time: 
 (27) 

Where  is the stage delay normalized to the period 
and  is a proportionality constant, which is typically 
close to unity. The period is 2N times longer than a 
single stage delay: 

2 2
2

 (28) 

Using (26) and (28), the following approximate 
expression for  is obtained: 

2
3

∙
1
.  (29) 

1 .⁄  term in above equation 	is independent of 
the value of  . For single-ended ring oscillator 
0.75 and for differential ring oscillators 0.9.  

 
2.2.1.2. Methods for Calculating ISF 
a) The most accurate way of computing the ISF of 

an oscillator is by using simulations. For a single 

v(t)

ISF
t
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noise source and a single output node, a current 
impulse is injected into the current node from the 
current noise source and the output excess phase 
is measured after a few cycles. In each simulation, 
the moment of injection is varied proportionally to 
the output signal phase such the simulations will 
track on whole period of the waveform [12].  

b) ISF can be calculated using the closed-form 
formula given for an  order system [1]: 

∑
 (30) 

 

a) where  is the normalized waveform at node i,  
is the derivative of this waveform. For ring 
oscillator, the denominator of (30), show little 
variation, resulting in the following simplification 
of the closed-form ISF: 

 (31) 

Advantages and disadvantages of both methods are 
described in Table 1. 

 
Table 1. Comparing both methods 

 Advantages Disadvantages 
Method 

(a) 
1- Most accurate 
2- No limiting 
assumptions 

3- Second order 
effects is considered 
(Such as AM-to-PM 

conversion) 

1- Computationally 
intensive 

Method 
(b) 

1- Quick estimation  
of the ISF 

1- Second order 
 effects is ignored 

 
2.2.2. Dai 

Based on Hajimiri and Razavi’s model, in [13], Dai 
gives a model of phase noise. If the ring structure VCO 
has a very sharp transition and is fully switching with 
rail to rail swing, the amplitude of the oscillator will be 
clipped by the power supply and the ground, as shown 
in Fig. 7. Dai also gives the simplified version of ISF 
and its rms. 

 
 

 

 
Fig. 7. Sinusoidal waveform clipped by power supplies 

[13] 
 

Summarizing the Dai’s phase noise model as: 
∆
64 	
9 Δ

														 	 ≪

512 	
27 Δ

				 	 ≫
 (32) 

That, k is the Boltzmann’s constant, T is the 
absolute temperature, F is the noise factor from the 
passive and active devices in the circuit,  is the peak 
to peak voltage level of the output wave and R is the 
resistor. 

 
2.2.3. Tohidian 

In [14] a new phase noise calculation method is 
proposed in which noise sources are modeled with 
single tone sources. This single tone (ST) simulation 
directly calculates noise frequency contributions and is 
much faster than Hajimiri’s impulse sensitivity function 
method. 

 
3.  PROPOSED METHOD 

According to equation (1), ISF can be obtained 
using the following equation approximately: 

1
∙ ,  (33) 

where A is the maximum voltage amplitude and  is 
the oscillation frequency. ,  is the 
normalized oscillator output and since              

, ∗ , therefore: 
1

∙  (34) 

Suppose ⁄ , so  is given by: 
1 1

∙  (35) 

where T is period of ISF. For example, consider the 
output of ideal LC oscillator, equation (19), by using 
equation (33) impulse sensitivity function is – . 
 
4.  SIMULATION RESULTS 

For compares the prediction and simulation of the 
phase noise: 
1- Consider 5-stage single ended 53.9 MHz ring 
oscillator that simulated using ADS software, Fig. 8. 
According to circuit data gate oxide thickness         

9.5  and threshold voltages , 0.665	  
and , 0.9	 . All five inverters are similar 
with ⁄ 8 1⁄ , ⁄ 4 1.5⁄  
and ⁄ 8 1⁄ . Note that 
13.11	 ⁄ , 2	  and the total capacitance on 
each nod 0.1	 , therefore,        0.2	 . 
Using proposed method               0.281while 
using Hajimiri method            0.3577. 
Also ∆ 8 3 ∙ ⁄ 2⁄⁄  
consequently ∆ 17.36 ∗ 10 	 ⁄ . 
With inserting the values in equation (18), ∆
10 0.217/ ∆ ^2	 . 
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Fig. 8. 5-stage single ended 53.9 MHz ring oscillator. 

 
The simulation results are shown in Fig. 9 and Fig. 

10.  

 

 
 

Fig. 9. Output waveform and ISF waveform. 
 

 
Fig. 10. Simulation result.  

 
2- Consider 0.5 to 15GHz bipolar Clapp oscillator in 
ADS software, Fig. 11. According to circuit data              

13.1318	 . Using proposed method                               
0.225 and ∆ 2.1 ∗ 10 	 ⁄ . 

With inserting the values in equation (18),         
∆ 10	log	 0.0647/ ∆ ^2	  . Results of circuit 

simulation are shown in Fig. 12 and Fig. 13. 

 
Fig. 11. Clapp oscillator. 

 

 
Fig. 12. Output waveform and ISF waveform. 

 

 
Fig. 13. Simulation result.  

 
3- Consider 2.45 GHz LC oscillator [15, Figure 13] 
that TSMC 0.18  CMOS Process is used for 
simulation, Fig. 14. According to circuit data
0.1484	  ( 2	 ). Using proposed method 

0.33 and ∆ 39.234 ∗
10 	 ⁄ . With inserting the values in equation 
(18), ∆ 10

.

∆
. Results of circuit 

simulation are shown in Fig. 15 and Fig. 16. 
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Fig. 14. LC oscillator. 

 

 
Fig. 15. Output waveform and ISF waveform. 

 
 

 
Fig. 16. Simulation result. 

 
 

5.  CONCLUSION 
The Hajimiri phase noise analysis employs a linear 

time variant model for the oscillator. It gives physical 
insight into how device noise contributes to the overall 

phase noise. According to Fig. 9 to Fig. 14, proposed 
method in this paper is almost exact and for simulating 
and calculating ISF is easier and faster than other 
methods. Note that proposed method, derived from a 
Hajimiri method and this method is suitable for 
simulating the ISF. 
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