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ABSTRACT: 
Control of biped walking robots based on designated smooth and stable trajectories is a challenging problem that is 
the focus of this article. Because of highly nonlinear dynamics of biped robots, minor uncertainties in systems 
parameters may drastically affect the system performance, leading to a chattering phenomenon. To tackle this, a new 
Sliding Mode Control (SMC) approach is proposed privileging a chattering elimination method based on Fuzzy logic 
to regulate the switching gain. To this end, first a desired trajectory for the lower body will be designed to alleviate the 
impacts due to contact with the ground. This is obtained by fitting proper polynomials at appropriate break points. 
Then, the upper body motion is planned based on the Zero Moment Point (ZMP) criterion to provide a stable motion 
for the biped robot. Next, dynamics equations will be obtained for both single support phase (SSP) and double support 
phase (DSP). Finally, the SMC approach is applied for both the SSP and the DSP, while a new chattering elimination 
method using Fuzzy logic will be proposed based on regulating a constant switching gain. Obtained simulation results 
show that the performance of the system is properly accurate in terms of the tracking errors even in the presence of 
considerable uncertainties and exerted disturbances. Furthermore, the new proposed method substantially reduces 
chattering effects and avoids the instability of the biped robot due to this phenomenon, resulting in stable smooth 
motion control of this complicated system. 
 
KEYWORDS: Biped Robots, Fuzzy Systems, Sliding Mode Control, Stability, Gait Planning. 
  
1.  INTRODUCTION 
      Control of biped robots requires appropriate gait 
planning that can generate smooth stable walking. One 
of the earliest criteria to investigate the stability of such 
systems is the Zero Moment Point (ZMP) criterion,   
[1-2]. The ZMP is a point where the horizontal 
components of the resultant moment of all external 
forces, including gravity and inertial forces, becomes 
zero.  According to the ZMP criterion if that point is 
inside the support polygon, which is defined as the foot 
supporting surface on the ground, the robot will be 
stable; otherwise the robot will tend to tip over. 
Goswami has introduced the Foot Rotation Indicator 
(FRI) criterion [3-4]. The FRI corresponds with a point 
where the net ground reaction force would exert to 
keep the foot stationary. According to this criterion if 
the FRI point is inside the support polygon, the robot 
will be stable, otherwise the robot will tend to tip over.                 
The FRI criterion has been introduced only for the 
single support phase (SSP). Various compensation 

methods have been also proposed that use the upper 
body motion to compensate the stability of the biped 
robots and yield stable gate planning [5-6]. 
Vukobratovic has used the prescribed synergy method 
to obtain the upper body motion [6]. According to the 
prescribed synergy method, the nonlinear differential 
equations for upper body motion are obtained and 
solved by iteration method, where the dynamics 
equations in single and double support phases are 
different. Because of complexity of equations of 
motion and short time of double support phase (DSP), 
most researchers have only investigated these robots in 
SSP [7-8]. However, when a biped robot walks with 
low speed, the effect of the DSP becomes more 
important.  

To track planned trajectories by a biped robot, 
various control strategies have been suggested and 
implemented. These include linear control [9], 
Computed Torque Method (CTM) [10-11], adaptive 
control [12], and robust control [13-14]. One of the 
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most popular controllers is CTM that is a model-based 
controller, and requires perfect knowledge of the 
system dynamics. Therefore, the main disadvantage of 
CTM and similar algorithms is performance 
deterioration due to parameter uncertainties. Because of 
highly nonlinear dynamics of biped robots, minor 
uncertainties in systems parameters may drastically 
affect the system performance. To overcome this 
problem exploiting robust control strategies is 
recommended. Robust control strategy has low 
sensitivity to uncertainties such as parameter 
uncertainty, disturbances and unmodeled dynamics. 
Among different robust controllers, the Sliding Mode 
Control (SMC) is a suitable control approach that 
ensures good tracking performance despite parameter 
uncertainties. Both CTM and SMC have been applied 
for the single support phase (SSP) of a 5 DOF biped 
robot, where the SMC results in a better performance 
compared to CTM [7]. The SMC has been also applied 
for the double support phase (DSP) of a 5 DOF biped 
robot (without active feet) [13-14]. However, the SMC 
experiences chattering problem that is due to switching 
process. Chattering problem excites undesired flexible 
dynamics, and deteriorates the system performance 
[15]. Furthermore, because of unstable nature of biped 
robots, the chattering effects on the ZMP position may 
even cause instability. In order to alleviate the SMC 
chattering problem, various approaches have been 
proposed. A common solution is replacing 
discontinuous sign function by continuous saturation 
function in a thin boundary layer around the switching 
surface [15]. Choosing a thinner boundary layer, makes 
the controller more robust but chattering amplifies, 
while with a larger boundary layer, chattering alleviates 
but tracking error increases. To resolve this 
contradiction, varying boundary layer approach [16], 
and replacing discontinuous control low by PID-like 
structure [17] have been proposed. Furthermore, a 
regulating routine has been proposed to determine 
proper positive values for the coefficient of sliding 
condition [18-19]. Adding a low pass filter on the 
sliding mode controller command to the actuator [20-
21], and using hybrid control strategies such as 
designing a neural SMC [22], or fuzzy SMC [23], have 
been also proposed. However, most of these hybrid 
control strategies are complex and require a great 
extent of mathematical computations.  

In this paper, to alleviate the chattering 
phenomenon, a new method based on fuzzy logic will 
be proposed and applied to control a biped walking 
robot. To this end, smooth trajectories for both feet, and 
the hip joint will be designed. Using of inverse 
kinematics and trajectories of feet and hip joint, the 
joint angles for the lower body will be obtained. To 
fulfill the robot stability, trunk motion will be used, and 
the system will be modeled as an inverse pendulum. 

Therefore, with this simple model, the motion of 
system center of mass (CM) will be expressed by a 
linear deferential equation. Solving this equation, based 
on the desired ZMP as an input, the robot CM will be 
constrained to match this solution. Then, the upper 
body motion will be obtained such that the CM 
constraint will be satisfied. After designing trajectories 
of all joint, dynamic equations will be obtained for both 
the SSP and the DSP, and the SMC algorithm is 
applied to both phases. To alleviate the chattering 
phenomenon, a new method based on fuzzy logic will 
be proposed that regulates the switching gain. Obtained 
results show that the tracking errors of the proposed 
controller will be considerably small even with major 
uncertainties and exerted disturbances. Also, the new 
proposed method substantially reduces chattering 
effects and avoids the instability of the biped robot due 
to chattering. 

 
2.  TRAJECTORY PLANNING 

 
2.1.  Lower Body Motion 
 
2.1.1. Applying the ZMP Criterion 

As shown in Fig. 1, the considered biped robot has 
6 Degrees of Freedom, DOF, defined by six joint 
angles ),,...,( 051  . To apply the ZMP criterion, it 
can be obtained, [1-2]: 
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where vector ],,[ iii zyx  denotes the position of the 

mass center of the link i , im  denotes its mass, 

zmpx and zmpY  denote the position of the ZMP point in 

the original coordinate system, and i  denotes inertial 
moment. As mentioned before, if the ZMP is inside the 
support polygon, the robot will be stable, otherwise the 
robot will tend to tip over. The ZMP criterion will be 
introduced to plan the upper body motion to fulfill 
stability requirements, which will be discussed in 
details in Section IV. Here, the trajectories for the hip 
and the foot are determined. 

The trajectory planning is performed considering 
the two phases of motion; the SSP and the DSP (DSP). 
For a better understanding of how the robot walks; the 
robot’s feet are introduced with the right foot and the 
left foot. Suppose that at the initial step, the right foot is 
the swing one, and the left foot is on the ground, as 
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shown in Fig. 2. So, the SSP starts when the toe of the 
right foot leaves the ground, and terminates when the 
heel of the right foot touches the ground. When this 
phase is completed, the left foot is still in contact with 
the ground. Therefore, when the heel of the right foot 
touches the ground, the DSP starts till leaving the 
ground by left foot. For continuous walking cycle, the 
role of the feet is changed and walking cycle will 
continue. Based on the above, the foot and the hip 
trajectories will be designed below. 

 
2.1.2. Foot Trajectory 

To obtain the path of both feet, ],,[ ankleankleankle ZX   
should be determined, where ankleankle YandX denote 
the coordinates of the ankle position, and ankle denotes 
the slope of the foot. The following break points will be 
used in the determination of the foot slope: 
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Then, horizontal and vertical foot positions can be 
written as: 
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where, maxT  is the time that the ankle joint reaches to 
its maximum position in vertical direction. With these 
break points the robot is capable to pass any 
encountered obstacle. To alleviate the impact due to 
contact with the ground, the velocity of the foot is near 
zero when the toe of the foot leaves and the heel of the 
foot touches the ground. So, ankleankleankle ZandX  ,  
are taken equal to zero at ckTt   and dc TTkt  )1( . 
A fourth order polynomial will be used for above break 
points.  
 
2.1.3. Hip Trajectory 

The required hip break points are determined as 
follows: 
 

Fig.1. A 6 DOF biped robot. 
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Furthermore in order to obtain a smooth periodic hip 
motion, the following condition is imposed: 
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Therefore, using a fourth order polynomial for 
successive break points, the hip motion will be 
determined. By determining the paths for the feet and 
the hip, trajectories for the robot lower body is 
complete, and based on the inverse kinematics solution; 
the joint angles will be determined. 

 
2.2. Inverse Kinematics 

To determine the joint angles, the inverse 
kinematics equations for both phases, i.e. SSP and 
DSP, are obtained in this section. 
2.2.1. The Inverse Kinematics for the SSP 
The joint angles  54321 ,,,,    will be 
determined using the paths of the swing foot 

 aaara zxX ,,  and the hip ],[ hiphip ZX  in the SSP. 
As shown in Fig. 1, the origin of the coordinate system 
is taken from the ankle joint of the left contacting foot. 
The position of the hip joint is written as:  

   21211 coscos   llxhip  
(9)    21211 sinsin   llzhip  
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Fig. 2. Basic parameters of trajectory 
 

Based on the recent equations, the value of 1  and 

2  are determined as follows: 
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For determining the other joint’s variables, the position 
of the right foot’s ankle with respect to the original 
coordinate is written as follows:  
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Based on equations (13)-(15), the values of 3 , 

4 and 5  can be obtained: 
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2.2.2. The Inverse Kinematics for the DSP 
As shown in Fig. 3, in this phase based on the 

planned paths for the hip joint ),( hiphiphip zxX   and 

the feet ),,( lalalaleftankle zxX   , 

),,( rarararightankle zxX   , the joint angles can be 
obtained. To this end, it can be written: 
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In the above equations, 1  is equal to la that is 
known. Therefore, 1 and 2  can be obtained as 
follows: 
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To determine other joint angles, the position of the 
right foot ankle is written as follows: 
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Fig. 3. The biped robot in DSP. 
 

 
 432114

32113

sin
sin









l

lzz hipra  (25) 

543211  ra
 (26) 

Then, based on these equations, values of 3 , 4  
and 5  will be obtained as: 
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Finally, the following condition is imposed to 
resume the next cycle: 
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2.3. Upper Body Motion 
In determining the lower body motion, the stability 

of the biped robot was not taken into account. So, the 
motion of the upper body will be determined for the 
compensation of robot’s stability. To this end, the biped 
robot is modeled as an inverse pendulum shown in Fig. 
4. To obtain the equation of motion for the inverse 
pendulum model, its height is assumed to be constant 
and since the motion of the robot is considered in the 
vertical plane, the equation of motion will be obtained 
as follows: 
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where CMX  and CMZ  denote the position of robot 
mass center and ZMPX  denotes the x-component of the 
robot’s ZMP position. In fact, CMX  is determined at 
the beginning and the end of each walking cycle and 
Eq. (31) will be solved for the desired ZMPX . Eq. (31) 
is a two boundary value problem and is solved based on 
Linear Shooting Method, [24]. 
 

Fig. 4. The inverse pendulum model. 
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be obtained at each walking cycle, and then the 
obtained constraint is satisfied by the upper body 
motion as follows: 
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where the mass of feet was neglected and im denotes 
the mass of links 0 to 4 and ix  denotes the position of 
center of mass of links 0 to 4 as defined in Fig. 1. 
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Therefore, solving Eq. (32) at each step, the upper body 
motion will be obtained. 

 
3. Dynamic Modeling 

The biped robots exhibit different dynamics 
behavior in single and double support phases. In this 
section, the equations of motion for the considered 
robot will be developed for both phases.  

 
3.1. Dynamics Equations in the SSP 

According to Fig. 1, the generalized coordinates and 
generalized forces for the considered biped robot is 
obtained as follows: 
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where 0  denotes the trunk torque, 1  and 2  denote 
the right leg joint torques, 3  and 4 denote the left 
leg joint torques, and 5  denotes the right (supporting) 
foot torque. The robot has 6 DOF in the SSP and the 
general form of dynamics equations in this phase is 
obtained as follows: 

16166666 )(),()(   qGqqqCqqM   (34) 

3.2. Dynamics Equations in the DSP 
Two constraints are added to the considered biped 

robot in the DSP, since horizontal and vertical 
distances between the heel of the right foot and tip of 
the left foot should be taken as constant. Thus, the 
equations of motion in the DSP are different from the 
SSP. According to Fig. 3, the generalized coordinates 
and generalized forces in the DSP are defined as 
follows: 
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where 
1  denotes the left foot torque that its actuator 

is set on ankle joint, and the rest are as defined before. 
In Eq. (35), the vector of generalized coordinates is a 

17  vector and as mentioned before in this phase two 
constraints are added, so the robot has 5 DOF in this 
phase. The constraints are as follows: 
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where 1k  and 2k  are constants. Differentiating from 
the above equations, the results can be written in the 
following form: 

0qAT   (37) 
where A  is a 27  vector. Adding these constraints to 
the previous equations, the dynamics model in the DSP 
is obtained as follows: 

122717177777 )(),()(    AqGqqqCqqM   (38) 
where   denotes Lagrange multipliers. Solving 
Eqs. (38) requires solving Eqs. (38) simultaneously, 
which is not an easy task. Therefore, elimination of 
Lagrange multipliers from Eqs. (38) would be a proper 
solving strategy. To this end, the Natural Orthogonal 
Complement Method can be used, [25]. To use this 
method, a set of independent coordinates is defined as 
follows: 

],,,,[ 03211    (39) 
which can be related to the generalized coordinates as 
follows: 

1517 )(    qq  (40) 
Substituting Eq. (40) into Eq. (37), it can be obtained: 

0000 0   AorAAqA TTTT 
  (41) 

Therefore, multiplying Eq. (38) by T  and making 
required simplifications, the dynamics equations of the 
considered biped robot in the DSP can be obtained as 
follows: 
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4. Sliding Mode Controller 

In this section, a sliding mode controller is 
developed for both the SSP and the DSP. The objective 
is to determine an input   such that in the presence of 
uncertainties, the state  qqQ ,  track the desired 
values  ddd qqQ , . The sliding surface or switching 
function for the biped robot is proposed to be described 
by: 
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where dqqq ~  defines the tracking error,   is an 
nn   diagonal matrix with selected positive constants, 

and " n " is the size of q  (in the SSP 6n  , and in the 
DSP 5n ). It should be noted that we can interpret 
 tQs ,  as velocity error: 
  rqqtQs  ,  (44a) 

where, 

 dTTqqqq
t

dr 
0

2 ~~2  (44b) 

Substituting the dynamics model into   0, tQs , an 
equivalent control input eq  can be obtained by solving 
this equation. So, if the dynamics were exactly known, 
it can be written: 

    0,,  rqqtQs
dt

d
tQs   (45) 

Which yields: 

     qgqqqCqqM rreq ˆ,ˆˆ    (46) 

Where gandCM ,  describe the real robot 

dynamics, gandCM ˆˆ,ˆ  are the derived model and 

gggCCCMMM  ˆ~,ˆ~,ˆ~  describe the 
modeling errors. 

The sliding mode control law is designed as: 
 sKeq sgn  (47a) 

where K  is an nn  diagonal matrix:  

 ni kkkkdiagK ,...,,...,, 21  (47b) 

and ik 's can be determined by using Lyapunov's 

stability theorems. A Lyapunov function candidate is 
chosen as a positive definite function: 
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By differentiating of Lyapunov function, it is obtained: 
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Therefore: 

        sKqgqqqCqqMsV rr
T sgn~,~~

   (50) 

In order to guarantee that sV   (a negative 
definite function), where   is a 1n  vector with 
selected positive elements, the following condition 
must be hold: 

      i
i

rri qgqqqCqqMk  ~,~~   (51)

In general, one of the problems with the SMC is the 
chattering phenomenon due to switching process, 
which may deteriorate the system performance, and 
cause instability. In fact, it can be observed that 
discontinuous function  ssgn  in the sliding control 
law of Eq. (47) could be a main source of chattering. 
To eliminate chattering, it has been proposed to 
smoothen this discontinuity in a narrow layer around 
the sliding surface, [15]: 
    0,,~

 bbtQsQtB   (52) 
where b  is the boundary layer thickness. Therefore, 
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It should be noted that choosing a thinner boundary 
layer, makes the controller more robust but chattering 
amplifies, while with a larger boundary layer, 
chattering alleviates but tracking error increases. So, 
there is a contradiction between tracking performance 
and chattering characteristics.  

The other main cause of chattering is using of a 
constant gain around the sliding surface, i.e. K in Eq. 
(47). Based on Eq. (51), usually the gain ik  is greater 
than i , and greater uncertainties require greater gains. 



Majlesi Journal of Electrical Engineering                                                Vol. 7, No. 1, March 2013 
 

38 
 

On the other hand, higher values of i  causes 
chattering, while lower values lead to longer transient 
time. So, i  should be selected such that (i) the 
stability holds, (ii) the system response time becomes 
reasonable, and (iii) chattering gets alleviated. A 
strategy to achieve these goals is that, when the 
distance from sliding surface increases, making   
positively big enough to make the system move back to 
the sliding surface, and accordingly when the distance 
from sliding surface reduces, [18-19]. Based on this 
strategy, a fuzzy regulator is proposed next. 

 
5. Regulating    Parameter with Fuzzy Logic 

In this section, the   parameter is regulated as 
output of a fuzzy system, [26], as depicted in Fig. 5. 
The input to the system is  TnsssS ,...,, 21 , where in 
case of the SSP 6n  , and in the DSP 5n  . The 
Membership Functions (MF) for the input are defined 
as shown in Fig. 6, in which   is the boundary layer 
thickness. As seen, the Fuzzy sets of input are NBB, 
NB, NM, NS, NSS, Z, PSS, PS, PM, PB, PBB. Here, 
N, Z, and P denote negative, zero, and positive, 
respectively, B stands for big and BB for bigger than 
big, M is medium, S stands for small, and SS for 
smaller than small. The triangular MFs are chosen for 
NB, NM, NS, NSS, Z, PSS, PS, PM and PB, linear S 
shape for PBB, and linear Z shape for NBB. The output 
of the fuzzy system is  Tn ,...,, 21 , that are 
defined in a normalized domain [0 1]. As shown in Fig. 
7, the fuzzy sets of output are Z, PSS, PS, PM, PB, 
PBB. 

Fig. 5. Components of the fuzzy system 
 
To alleviate chattering, as pointed in previous 

section, when the distance from sliding surface 
increases, one should make   positively big enough to 
make the system move back to the sliding surface, and 
accordingly when the distance from sliding surface 
reduces. Fuzzy rules that assure this trend are presented 
in Table 1. 

 
6. Obtained Simulation Results 

For the system depicted in Fig. 1, all geometric, 
mass and gait parameters are given in Table 2, while 
controller parameters are introduced in Table 3. Fig. 9 
shows the designed trajectories for the ankle. As 
mentioned before, the trajectory for the lower body is 
designed to obtain a smooth motion with no impact due 
to contact  with  the  ground.  As  shown  in  Fig. 9,  the  

Table 1. Fuzzy rules 
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Fig. 6. Input fuzzy sets. 
 

Fig. 7. Output fuzzy sets 
  

Fig. 8. Inference system using product max 
 
Table 2. Geometric, mass and gait parameters 

Masses 

(kg) 

M0 

10 

M1 
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M2 
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M3 
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M4 

1 
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Moments of 

Inertia 
(kg.m2) 

I0 

0.208 

I1 

0.021 

I2 

0.021 

I3 

0.021 

I4 

0.021 

Lengths 

(m) 

L0 

0.5 

L1(m) 

0.5 

L2(m) 

0.5 

L3(m) 

0.5 

L4(m) 

0.5 
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0.15 

b1(m) 

0.05 
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0.15 

qe(rad) 

0.262 

qb(rad) 

-0.262 

Ded(m) 

0.15 

Dsd(m) 

0.11 

Ts(s) 

3.5 

Td(s) 

0.7 

Tmax(s) 

1.9 

Xmax(m) 

0.25 

Zmax(m) 

0.10 
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velocity of the foot is zero at the start, and end part of 
its vertical motion, and using inverse kinematics, 
trajectory for the joint angles of lower body is 
completed based on the feet and hip trajectories. Then, 
stability compensation is obtained by trunk motion. 
Thus, using of the moving ZMP in Eq. (31), the motion 
of CM is obtained. It should be mentioned that since 
the trunk link has maximum mass, the CM position of 
this link affects the position of the robot CM. An 
animated view of the robot motion is shown in Fig. 10. 

Next, application of the ordinary sliding mode 
controller is investigated during both phases, i.e. the 
SSP and the DSP. The trajectory tracking errors and the 
ZMP variation are shown in Fig. 11 by using the 
proposed SMC without regulating . As it can be seen, 
the system experiences a highly chattering response, 
which causes growth in trajectory tracking errors, 
particularly during DSP. 

Next, the trajectory tracking error and the ZMP 
variation are shown in Fig. 12 by using the proposed 
SMC with Fuzzy regulated . As can be seen in these 
figures by using the proposed regulating method the 
chattering is avoided and the ZMP tracking error 
vanishes in a short period. Also, tracking errors for 
joint angles remain acceptably small, converging to 
zero within the walking cycle. It should be mentioned 
that the response of the system remains almost similar 
to these illustrations for considerable uncertainties of 
up to 100 percent higher than real parameters. 

To investigate the disturbance rejection 
characteristics of the proposed Fuzzy SMC, a constant 
20 (N) force is exerted on the hip joint of the biped 
robot. It should be mentioned that the required joint 
torques during previous investigations are in the order 
of 10 (N.m). As can be seen in Fig. 13, the proposed 
controller can successfully control the stability of the 
robot with confined vanishing errors. Finally, as shown 
in part (d) of this figure, the reaction forces on 
contacting feet is acceptably enough to avoid sliding on 
surfaces with ordinary coefficients of friction. 

 
6. Conclusions 

This paper proposed a Sliding Mode Control 
approach with a new chattering elimination method 
using Fuzzy logic to regulate the switching gain. First, 
smooth trajectories for both feet, and the hip joint were 
designed. Then, using inverse kinematics, the joint 
angles for the lower body were obtained. To fulfill the 
robot stability, trunk motion was used, where the 
system was modeled as an inverse pendulum. 
Therefore, with this simple model, the motion of 
system center of mass (CM) was expressed by a linear 
deferential equation. Solving this equation, based on 
the desired ZMP as an input, the robot CM was 
constrained to coincide this solution. Then the upper 
body motion was obtained such that CM constraint was 

satisfied. After designing trajectories of all joint,  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Planned trajectories for the ankle joint:          
(a) x position, (b) z position, (c) Orientation (joint 

angle), (d) Vertical speed. 
 

Fig. 10. An animated view of the biped robot during a 
walking cycle (SSP and DSP). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 11. Performance of ordinary SMC with constant η; 

(a) Joint angles tracking errors in the SSP, (b) The 
ZMP variation in the SSP, (c) Joint angles tracking 

errors in the DSP, (d) The ZMP variation in the DSP. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 12. Performance of the proposed Fuzzy SMC with 
regulated η; (a) Joint angles tracking errors in the SSP, 

(b) The ZMP variation in the SSP, (c) Joint angles 
tracking errors in the DSP, (d) The ZMP variation in 

the DSP. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Disturbance rejection of the proposed Fuzzy 
SMC with regulated η; (a) The disturbance force, (b) 
Joint angles tracking errors in the SSP, (c) The ZMP 

variation in the SSP, (d) The reaction forces in the SSP. 
 
dynamic equations were obtained for both the  SSP and 
the DSP, and the SMC algorithm was applied to both 

phases. To alleviate the chattering phenomenon, a new 
method based on fuzzy logic was proposed to regulate 
constant switching gain. Obtained results show that the 
tracking errors of the proposed controller were 
considerably small even with major uncertainties and 
exerted disturbances. Furthermore, the new proposed 
method substantially reduced chattering effects and 
avoided the instability of the biped robot due to 
chattering. 
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