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ABSTRACT: 
In this paper, a new full rate, full diversity 2 2 STBC with linear complexity in the receiver is introduced for keyhole 
channels, where the rank-deficiency of the channel matrix degrades system performance. This code is optimized based 
on the known criteria for these types of the channels. Simulation results demonstrate that the proposed code 
outperforms some of the well-recognized STBCs when BPSK and 4-QAM constellation are utilized. 
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1.  INTRODUCTION 

Multi input multi output (MIMO) systems such as 
space time codes (STCs) encounter a phenomenon, 
known as keyhole or pinhole, in some real 
environments that lead to rank-deficiency of the 
channel matrix. In this phenomenon, the transmitted 
signal must pass through a keyhole and then propagate 
to the receiver (Fig.1). An example of a keyhole in a 
realistic environment arises in a hallway or a tunnel [1]. 

According to this rank-deficiency, maximum 
achievable diversity of a STC is the minimum number 
of transmit and receive antennas, so the system 
performance will be degraded in comparison with usual 
i.i.d channels.  

We know that various analytical studies of space 
time block codes (STBCs) under this condition 
(keyhole) have already taken place. For example, in 
[2], a general analysis of orthogonal STBCs (OSTBCs) 
over keyhole channels is undertaken, where error 
probability expressions involving integration of hyper 
geometric function is put forward by using orthogonal 
property of OSTBCs. Furthermore, authors in [3] 
focused on closed form error probability expressions of 
OSTBCs based on a systematic analysis. The design 
criteria for STCs with two transmit antennas and one 
receive antenna in keyhole channels are presented in 
[4]. These criteria have been generalized based on the 
analysis of the pair wise error probability (PEP) in the 
asymptotic of high signal to noise ratio (SNR) [5]. 

 
Fig. 1. Keyhole channel 

 
It is worth mentioning that the design of STCs for 

keyhole channels has not been studied extensively to 
date. Although some space time trellis codes (STTCs) 
such as super orthogonal STTC are modified in [4] and 
[5], there are no STBCs for keyhole channels that could 
satisfy all the design criteria in [5]. 
   In this paper, the aim is to modify the proposed 
STBC in [6], which is a full rate and full diversity code 
with linear complexity in the receiver, for keyhole 
channels based on the criteria in [5]. Simulation results 
illustrate that our STBC’s performance is far superior 
to some of well-known STBCs, when BPSK and 4-
QAM constellations are utilized. The remainder of this 
paper is organized as follows: next section describes a 
wireless communication system and briefly discusses 
the general design criteria for STCs in keyhole 
channels. Section 3 details the proposed STBC and also 
defines its properties. In section 4, simulation results 
are revealed and compared with results from a couple 
of big names in this arena to validate our approach. The 
paper then draws toward a close by outlining its 
contribution. 
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Fig. 2. Diversity order of i.i.d Rayleigh channel when 
4. 

 
2. SYSTEM MODEL AND DESIGN CRITERIA 
2.1. System Model 

Let us consider a MIMO channel with  transmit 
antennas;  receive antennas and quasi-static flat 
fading of block length T. The channel state information 
(CSI) is assumed to be known at the receiver, but 
unknown at the transmitter (perfect CSI). Moreover, we 
assume that the keyhole doesn’t lose the energy of 
captured signal. The received matrix is: 

               (1)       

where X s  is the T	  complex matrix of the 
transmitted signal, 	is the average SNR at each receive 
antenna, and W denotes the T	  noise matrix in 
which all entries are i.i.d 	 0,1  (zero mean, unit 
variance, complex Gaussian). Since each transmitted 
signal has to pass through the keyhole and then 
propagate to the receiver,  is modelled as: 

	 		                (2) 
where  (multipath gains at the transmitter) and  
(multipath gains at the receiver) are  column  vectors 
( 1  with entries  and ( 1  with entries 

, respectively. All the entries of these vectors are 
also i.i.d 	 0,1 . 

2.2 Design Criteria 
We now discuss the design criteria for STCs in keyhole 
channels [5] and differences between these criteria and 
the well-known design criteria for STCs in common 
channels [7]. 
   In order to obtain these criteria, moment generating 
function (MGF) analysis for PEP is used, which leads 
to the following upper bound for error probability in 
high SNR [5]: 
 

∏
																																											 	 	

∏
																																											 		

∑ 	 ∏ 						 		

 (3) 

 
where λ  ̓s are eigenvalues of the codeword difference 
matrix A X s X s X s X s , X s
X s . It is also assumed that they are strictly positive 
and distinct. 

Fig. 3. Diversity order of keyhole Rayleigh channel 
when 4. 

 
   According to (3), it is obvious that the maximum 
achie-vable diversity is minimum ( ,  for , 
but the upper bound of  has the form  which 
makes the diversity order to be  with a slightly 
unexpected twist in the case of   [5]. Thus, 
adding the antenna(s) to the minimum ( ,  
until	  is the only way to increase diversity 
order in keyhole channels. As a result, the relation 
between diversity order and the number of transmit (or 
receive) antennas is not always linear in the keyhole 
Rayleigh channels (unlike i.i.d Rayleigh channels) 
where the number of receive (or transmit) is constant 
(Fig.  2-3).  
   According to (3), the coding criteria for designing 
STCs in the keyhole Rayleigh channels is not different 
from the well-known rank-determinant criteria in [7] 
when . Hence, the codes reported for the 
Rayleigh fading channels would also perform well 
under the keyhole channel if 	[5]. 

The main difference between design criteria for 
these two types of channels appears when  ,  
where the coding gain has a different expression. 
Therefore, the STCs in this case should satisfy this 
expression. For example, in [4] and [5] some STTCs 
are modified based on this expression. 
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3. CODE CONSTRUCTION AND ITS 
PROPERTIES 

The structure of the STBC which is used in this 
paper is as follows: 

X s ∗ ∗ ∗ ∗ .                      (4) 

where , , , and  denote the symbols chosen 
from a constellation such as BPSK or 4-QAM. For the 
FRLR STBC, coefficients { , , , } ⊆   have to 
meet the three constraints that are explained below: 
   
Constraint I. Clearly, coefficients , , , and  
must  satisfy following equations: 

0                (5) 
0,                                                        (6) 

except for 0, where  and ∈ . 
Constraint II.    
 | | | | | | | | 1.                           (7) 
   The above condition guarantees that in each time slot 
equal average, power is transmitted. 
 
  Constraint III.               

∗ ∗ .                                     (8) 
                         
   This constraint completely distinguishes the new 
proposed code from the one introduced in [8], and 
reduces the complexity of the ML receiver to linear 
complexity that will be dealt with later. 
   This STBC transmits four symbols over two-time 
slots. Therefore, its symbol transmission rate is equal to 
two, i.e. it benefits from full-rate property. Now, let us 
describe two other important properties of this code. 

3.1. Full-diversity 
In order to prove the full-diversity feature of the 

specified code in (4), the codeword difference matrix 
A  must be full rank for any two different codewords 
X s  and X s . 

In this case, we have: 
det X s X s 	 	| | | ∗ ∗|   
| | | ∗ ∗|                                            
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗                                                                               (9)                                                                     
 
where ́ ∈  for k=1, 2, 3, 4. Since , 

, , and  satisfy Constraint I, sum of the first and 
the second terms of (9) is a positive scalar. Using 
Constraint III, the third term of (9) could be rewritten 
as: 
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗  

∗ ∗ ∗ ∗ ∗ ∗ ∗ . (10) 

  
Clearly, (10) is a non-negative scalar. Consequently, 

full diversity property is achieved by the specified 

STBC in (4). 

3.2 Linear Complexity at the Receiver 

   The major feature of the proposed code is its linear 
decoder which is explained below. 
    For any received signal matrix Y, the coherent ML 
decoder finds: 
  arg min ‖Y X ‖ 	 ,    ℓ=1, 2, …,                 (11) 

where ‖ ∙ ‖  denotes  norm  Frobenius norm  and    is 
the  constellation  size.  Considering  (4)  and  (11), 
should minimize the following expression:  
 

, , , =C + 	 ,  + ,  
+		2 ∗ ∗ ∑ ∗ ∗             (12) 
+ 2 ∗ ∗ ∑ ∗ ∗ .             
 
where C is a constant which is independent of the 
symbols, and ,  and ,  are functions of 

,  and , , respectively. Obviously, the two 
latter terms of (12) are eliminated by choosing	 ∗

∗. Therefore, the ML decoding, as in QOSTBC for 
three and four transmit antennas [11], results in 
minimizing ,  for all values of 	and	 	as well 
as ,  for all values of 	and	 .           
   Although this is a considerable reduction of the 
decoding complexity, it could still be decreased further 
by using conditional decoding for ,  and  

, , (see [8]). In what follows, the conditional 
decoding procedures for ,  and ,  are 
investigated. 
   For simplicity, we concentrate on two receive 
antennas. One could imitate similar procedures 
decoding the received signal for other numbers of 
receive antennas.  
   By using the received matrix Y, ,	 ,	 , and  
are prepared for a given value of symbol 	as follows: 

                                             (13-a) 
∗                                  (13-b)                 

                                             (13-c) 
∗                                              (13-d) 

By substituting , , ,  in the above 
equations, we have: 

        (14-a) 
∗ ∗ ∗        (14-b) 

        (14-c) 
∗ ∗ ∗        (14-d) 

 
Now, | is computed from (14-a) to (14-d) as: 
| ∗ ∗ ∗ ∗ ∗ ∗  

   ∗ | | | | ∗ | | | |  
       ∗ ∗ ∗ ∗          (15)  
       ∗ ∗ ∗ ∗  
       ∗ ∗ ∗ ∗ ∗ ∗ .                               

By applying Constraint III to (15) and dividing the 



Majlesi Journal of Electrical Engineering                                       Vol. 7, No. 1, March 2013 
 

63 
 

result by coefficient of	 , say	 , we have: 
| = +                                                            (16) 

where 
∗ ∗ ∗ ∗ ∗

∗ . 
Therefore, we could obtain the ML estimate of 

symbol   conditional on symbol	 , say	 | . 
Hence, instead of minimizing ,  for all possible 
values of  and	 , we just need to minimize the metric 

| ,  for all values of .   
     In a similar way, to minimize ,  
conditionally, we have: 
 | ∗ | | | | ∗ | | | |  
	 ∗ ∗ ∗ ∗ ∗ ∗     
               (17) 
and therefore: 

| +                 (18) 
 where  

∗ | | | | ∗ | | | |  
∗ ∗ ∗ ∗ ∗        

								 ∗  
 

Since |  only depends on symbol  and noise 
terms, minimizing procedure of	 ,   is limited to 
minimizing the cost function | ,  for all 
possible values of symbol . Now, by minimizing 

| ,  for all possible values of , estimations 
of symbols  and  and minimizing | ,  
for all possible values of , estimations of symbols  
and  are obtained. As a result, the suggested STBC in 
(4) leads to a linear complexity at the receiver for an 
optimum decoder. 
 
4. SIMULATION RESULTS 

In this section, we first choose parameters of the 
proposed code according to criteria in section 2 by 
computer search and then compare its performance 
against two well-known STBCs, Alamouti code [9], 
and Golden code [10] in the keyhole Rayleigh fading 

channel. 
For BPSK and 4-QAM constellations, parameters , 
, , and  are tabulated in Table 1 and 2. As these 

tables show, however, the allocated powers for 
different symbols are different, Constraint II being still 
observed. That means the total average power at each 
time slot per transmit antenna is equal.  

We compare the symbol error probability (SER) per-
formances of the new proposed code with Golden and 
Alamouti codes in Fig. 4 and Fig. 5, where the 
bandwidth efficiencies are 2 bits/sec/Hz and 4 
bits/sec/Hz, respectively. Note that two transmit 
antennas and one receive antenna are used in both 
figures.  

According to Fig. 4, our proposed code outperforms 
both Alamouti and Golden codes. For instance, the new 
proposed STBC has contributed almost 2dB reduction 
in SNR at a SER of 10  when throughput is 2 
bits/sec/Hz. A similar scenario occurs in Fig. 5, i.e. 
nearly 2 dB reduction in SNR at a SER of 2 10	  
with throughput equal to 4 bits/sec/Hz. 

It can also be shown that similar results are obtained 
for two transmit and two receive antennas, as in Fig. 6-
7. As it can be seen from Fig. 6, with SER at 10 , the  
proposed  code  performs better than the  Alamouti 
code by almost 1.5dB, when bandwidth efficiency is 2 
bits/sec/Hz. Moreover, the difference in SNR between 
this code and the Alamouti code, is approximately 1dB 
with throughput equal to 4 bits/sec/Hz, when SER is 
10 , as shown in Fig. 7. 
 
5. CONCULTIONS 

In this paper, we have introduced an innovative full 
rate, full diversity 2 2 STBC with linear complexity in 
the receiver for the keyhole channels. This code is 
based on the special criteria of keyhole condition. 
Simulation results also confirm that the proposed code 
performance is outstanding for 4-QAM and BPSK 
constellations. 

 
Table 1. Optimum parameters for the proposed code ( 1). 

   
BPSK .7071 .  .7071

.
.7071 .  .7071 .  

4-QAM .4472 .  .8944 .  .4472 .  .8944 .  

 
Table 2. Optimum parameters for the proposed code ( 2). 

 
 

 
 
 

  
BPSK .6708 .  .7416  .6708 .  .7416  

4-QAM .4472 .  .8944 .  .4472 .  .8944 .  
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Fig. 4. Performance comparison of the proposed code 

with Golden and Alamouti codes with the same 
bandwidth efficiency 2bits/s/Hz. 

 

 
Fig. 5. Performance comparison of the proposed code 

with Golden and Alamouti codes with the same 
bandwidth efficiency 4bits/s/Hz. 

 

 
Fig. 6. Performance comparison of the proposed code 

with Golden and Alamouti codes with the same 
bandwidth efficiency 2bits/s/Hz. 

 

 
Fig. 7. Performance comparison of the proposed code 

with Golden and Alamouti codes with the same 
bandwidth efficiency 4bits/s/Hz. 
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