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ABSTRACT: 
An integration technique based on the use of Monte Carlo Integration (MCI) is proposed for the analysis of the 
electromagnetic radiation from apertures. The technique that can be applied to the calculation of the aperture antenna 
radiation patterns is the equivalence principle followed by physical optics, which can then be used to compute far-field 
antenna radiation patterns. However, this technique is often complex mathematically, because it requires integration 
over the closed surface. This paper presents an extremely simple formulation to calculate the far-fields from some 
types of aperture radiators by using MCI technique. The accuracy and effectiveness of this technique are demonstrated 
in three cases of radiation from the apertures and results are compared with the solutions using FE simulation and 
Gaussian quadrature rules. 
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1.  INTRODUCTION 

A problem that is often of interest in 
electromagnetics is the radiation fields out of the 
aperture antennas, such as slots, open-ended 
waveguides, horns, reflectors, and lens. The geometry 
of the aperture may be any shape. Aperture antennas 
are very popular for aircraft applications because they 
can be flush mounted onto the surface and the aperture 
opening can be covered with a radome to protect the 
antenna from the environmental conditions [1]. This is 
implemented to maintain the aerodynamic profile of      
the high-speed aircraft. 

In order to evaluate the far-field radiation patterns, 
it is necessary to know the surface currents on the 
radiating surfaces of the antenna. Field equivalence [2] 
is a principle by which the actual sources on an antenna 
aperture can he replaced by the equivalent sources on 
an external closed surface outside of the antenna 
aperture. The fictitious sources are equivalent within a 
region if they produce the same fields within that 
region. Huygen's principle [3] states that each point on 
a primary wave front can be considered to be a new 
source of a secondary spherical wave and that a 
secondary wave front can be constructed as the 
envelope of these secondary spherical waves. 

Using these concepts, the electrical and magnetic 
fields in the equivalent aperture region are determined, 
and the fields are assumed to be zero elsewhere. In the 
most applications the closed surface is selected so that 
the most of it coincides with the conducting parts of the 

physical antenna aperture structure. This is preferred 
because vanishing  the tangential electrical components 
over the conducting parts of the surface reduces the 
limits of the integration. 

This is often circumvented by using the equivalence 
principle to determine the far field by equivalent 
currents generated in the near field. However, these 
transformations are often complex mathematically. The 
Gaussian quadrature rules are used to evaluate the 
radiation integrals which provide the appropriate 
weights and evaluation points for the integration [4]. 
Moreover, many numerical full-wave methods have 
been proposed for the solution of the electromagnetic 
radiation from apertures. There are three primary full-
wave methods used in the electromagnetics; the Finite 
Element Method (FEM) [5], [6], the Method of 
Moments (MOM) [7], and the Finite Difference Time 
Domain (FDTD) method [8]. All three techniques have 
been applied to aperture antenna analysis [9]-[12]. This 
paper presents an extremely simple method for 
calculating the fields from some types of the aperture 
radiators. It is proposed to introduce a new fast and 
efficient algorithm to perform the numerical integration 
by Monte Carlo Integration (MCI) technique [13]. The 
MCI technique proposed in this paper is not only 
capable of solving the radiation problem but also deals 
efficiently with the problem of singularity. 

The application of MCIs in the electromagnetic 
radiation and scattering problems has been limited to 
evaluate the statistical average of the physical 
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quantities over randomly oriented bodies. In [14], the bi 
static radar scattering cross section of randomly 
oriented wires has been determined using the MCI 
methods, whereas the averaging fields in dense random 
media with dielectric spheroids with random positions 
and orientations have been evaluated in [15]. A Monte 
Carlo simulation is used for the problem of the 
electromagnetic scattering by a collection of random 
distributed vertical cylinders over a half-space 
dielectric in [16]. The use of MCI methods to integrate 
the functions in the moment of the method solution of 
the electric field integral equation formulation of the 
scattering problems has been reported in [17], [18]. 
However, the use of MCI for determining the far-field 
radiation pattern from an aperture in a metal plate has 
not been presented so far. 

In this paper, the MCI technique has been proposed 
to solve the radiation integrals for the rectangular, 
circular, and elliptical apertures. The field distributions 
over the apertures are considered as the uniform and 
TE10/TE11/TEc11-modes on an infinite ground plane. 
The radiated field is obtained by the integration of the 
currents on all the surfaces in much the same way as it 
is obtained in the physical optics approaches. The 
numerical simulation based on the FEM for radiation of 
the aperture antennas is also presented and compared 
with available data. A good agreement in the 
comparison confirms the applicability of the method 
developed in this paper. 
 
2.  MATHEMATICAL CONCEPT OF THE MCI 
TECHNIQUE 

Monte Carlo integration is a mathematical 
technique that relies on the statistical properties of the 
random variables and sampling to numerically estimate 
the integrals. It is well suited for the high-dimensional 
integrals arise from the light transport problem. While 
standard numerical integration techniques do not work 
very well on the high-dimensional domains, especially 
when the integrand is not smooth.  

The MCI methods have advantages over the other 
numerical integration methods, because of: 

 The simplicity: The MCI is simple since only two 
basic operations are required, namely sampling and 
point evaluation. 

 The independence of the dimension: Their 
efficiencies relative to the other methods increase when 
the dimension of the problem increases e.g. the 
quadrature formula becomes very complex while the 
MCI technique remains almost unchanged in more than 
one dimension [17], [18]. 

 The possibility of the integration on the bad shapes 
and volumes: It is also suited for the large structures 
and highly complex problems for which definite 
integral formulation is not obvious and standard 
analytical techniques are ineffective [17], [18].  

 The troubleshooter for the singularity points: 
Sampling can be used even on the domains that are not 
well-suited to the numerical quadrature [18]. 
The idea of the MCI is to evaluate the integral using the 
random sampling as: 

∫Ω= dxxfI )(                   (1)

Where f is a function of vector x, Ω is the domain of 
integration. The MCI is popular for complex f and/or 
Ω. In its basic form, this is done by independently 
sampling N points x1, . . . , xN according to some 
convenient density function p, and then computing the 
estimate: 
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Where p(xi) is the probability density function or pdf. 
Here the notation FN is used rather than I to emphasize 
that the result is approximate, and that its properties 
depend on how many sample points are chosen. If p(xi) 
is the uniform probability density, then the integral is 
simply 
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In terms of handling the singularity problem in the 
integrand, the MCI technique outperforms many of the 
existing techniques. It handles this problem very easily, 
effectively and efficiently even in situations where 
there is no analytical transformation available to 
remove the singularity without changing the form of 
the kernel of the integrand. There is also no need for 
any analytical preprocessing or employing any 
corrective technique. The singularity problem can be 
handled very efficiently by just preventing the 
randomly generated points falling in the neighborhood 
of the singular point [19], [20]. The singular domain 
can be marked as a small circular region about the point 
of singularity in two dimensional problems. Exclusion 
of the singular domain is a straight-forward matter, and 
can often be performed with one MATLAB code 
statement. 

 
3. FORMULATION OF THE RADIATION 
FIELDS FROM APERTURES 

The particular configuration we are concerned with 
in this paper is an aperture in an infinite metal plate, as 
illustrated in Fig. 1. We assume that there is a source 
impinging from the bottom (negative Z axis), which is 
primarily polarized in the X direction, and we are 
interested in calculating the fields on the top (positive Z 
axis). We further assume that the field in the aperture is 
approximately polarized linearly. 
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Fig.1. Radiated fields from a typical aperture. 

 
Begin with the vector potential [22] 
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The H field can be obtained by 
AH ×∇= r                        (6)
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The integrand can be simplified by the following: 
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The )(rr ′×∇ J term can be dropped because )(r′J is 
only a function of r′ . Also, 
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By the principle of duality, we can deduce the 
following equation: 
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We know that the fields in the aperture result from 
an x-polarized plane wave, and the direction normal to 
the aperture. In accordance with the equivalence 
principle and image theory, the magnetic surface 
currents in the aperture are known to be twice the 
tangential electric fields [22]. 

yEzxE

n

aa ˆ2ˆˆ2

ˆ2

−=×=

×= aEM
                  (14)

Where the Ea is total electric field over the aperture 
surface. Hence, 
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From (11) 
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So we can write the E field in terms of the two 
polarizations: 
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Note that xr and zr represent the portions of the unit 
vector r′ in the x and z directions, respectively. We will 
further separate xE  into two terms: 
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Starting with the first term, we will rewrite it as an 
function of x, y and z 
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For the far-field observations R can most commonly 
be approximated by 

ψcosrrR ′−≈  for phase  variation,
      (21)

rR ≈  
for amplitude 

variation, 
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Where ψ is the angle between the vectors r  and r′ . 
The term ψcosr′ can be written by [23] 

φθφθψ sinsincossincos yxr ′+′=′         (22)
So, we can write (20) as 
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Similarly for the second term of (19) 
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The total xE field is the sum of the two terms in (23) 
and (24), so (19) now can be written as 
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Obviously, we would obtain identical expressions 
for the calculation of zE  (18), except with a xr  term 

instead of a term zr . Thus   
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The radiated field, as given by (25) and (26), 
involves the integration over the entire domain of the 
problem. In two dimensional problems, the 
conventionally used quadrature rules is time 
consuming. This integration cannot be performed 
analytically or numerically by quadrature rules and 
approximate methods have to be developed. This 
essentially makes the FEM solution an approximate 
one. The function in the integrand is usually modified 
and approximated before performing the integration. 
The technique adopted here is the MCI technique that 
does not require the integrand function to be modified. 
Rather, the singularity problem is removed due to the 
characteristic property of the MCI for example the 
integration based on random number generation. 
For two dimensional integration, the number of the 
evaluations of the integrand performed using the 
quadrature methods is of the order of M2 where M is 
the number of intervals into which the x and y axes are 
divided. On the other hand, the number of the 
evaluations required in MCI is of the order of N, where 
N is the total number of uniformly random distributed 

points generated over the entire domain, independent of 
the dimensionality [24]. For this purpose the image 
processing technique is utilized. So that the image of 
the radiation surface in Mono Color BMP format, with 
the largest dimensions of the plane along the x and y 
directions, is considered. By this idea, each pixel of the 
image represents a specific location of the surface of 
the aperture radiator. The surface can be sampled by 
the random selection of the image pixels. It is shown in 
this paper that the MCI applied for the evaluation of 
radiation gives results which are in good agreement 
with those obtained from Gaussian quadrature rules and 
FEM analysis. 
 
4. VERIFICATION OF THE MCI TECHNIQUE 
ON VARIOUS APERTURES 

Simulations are performed for the formulation of 
the aperture radiation using the MCI technique for 
various apertures. Each of the apertures, in both cases 
of uniform and TE10/TE11/TEc10-modes distributions 
has been studied. A 3D full-wave FE electromagnetic 
field simulator (HFSS v.13) [25] is used for the mode 
distributions. To validate the radiation problem and  the 
implementation of the MCI in the solution of the 
electric fields, the two- and three-dimensional patterns 
of the far-zone fields radiated by the apertures have 
been plotted. In many applications, however, only a 
pair of two-dimensional plots is usually sufficient. 
These are the principal E- and H-plane patterns. The E-
plane pattern is on the y-z plane (φ = π/2) and the H-
plane is on the x-z plane (φ = 0). In addition, in order to 
ensure the accuracy of the results, the fields calculated 
by the proposed technique in this paper, are plotted and 
compared with that of the conventional theoretical and 
quadrature results, with respect to the elevation angle in 
y-z and x-z planes respectively. 
 
4.1 Rectangular Aperture  

 In the first case, a rectangular aperture with 
uniform distribution on infinite ground plane is 
considered with the dimensions of a=2λ and b=3λ, 
where λ is the wavelength. The schematic of this 
aperture is shown in Fig. 2. The tangential E field over 
aperture is given by: 

0ˆ Eya aE =  22
axa

≤′≤−  

22
byb

≤′≤−  
            (27)

 

The results in Figs. 3(a) and 3(b) show the two-
dimensional E- and H-plane patterns, for three different 
numbers N of random points taken for the MCI. These 
figures make two points evident. First, the results for 
all the values of N show a good agreement with the 
results obtained by Balanis [23] using the radiation 
integral equations (theoretical). Second, the evaluation 
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of the radiated fields by the proposed MCI technique is 
in good agreement with the conventional two-
dimensional quadrature rule with M=30 points. 

 
Fig. 2. Rectangular aperture on an infinite electric 

ground plane. 
 

 

 
Fig.3. a) E-, and b) H-plane amplitude patterns with 

a=2λ and b=3λ. 
  

Nevertheless it is important to state that how many 
N points are sufficient in the MCI for the problem 
under investigation, thereby decreasing the 
computational burden. For this purpose, the Fig. 3(a) 
for different values of N from 500 to 50,000, with step 
size 500, has been  plotted again and studied. Fig. 4 
shows the error percentage of the changes per Ns than 
the theoretical result. As it is clear from this figure, for 
N=17000 and more there are the errors around 1% and 
even less. Thus this number of random points is enough 

for this kind of problem. This analysis and the obtained 
N=17000 are independent of zone size and shape of the 
aperture. 

 

 
Fig.4. E-plane amplitude patterns of the rectangular 

aperture on the metal plane with different values of N 
and error percentage of  the above compared with 

theoretical result. 
 

The performance of the MCI technique for the 
various sizes of rectangular aperture compared with 
Gaussian quadrature rule is shown in Table 1. The 
radiation integrals are done with a 30/700/25000-points 
Gaussian quadrature integration formula for cases 1 to 
3 in Table 1, respectively. However, the same integrals 
only are solved with N=17000 points by Monte Carlo 
method for these cases. The running time increases 
with larger dimensions for quadrature rules, while it is 
constant for every size of the aperture in the MCI. Both 
methods are implemented on the same PC with 2.8GHz 
Dual Core CPU and 2GB memory.   
 

Table1. The running time of MCI compared with 
Gaussian quadratre rule 

Dimensions Quad MCI 
a=2λ, b=3λ 15.43 sec 1.46 sec 

a=10λ, b=15λ 170.25 sec 1.46 sec 
a=50λ, b=75λ 11586.54 sec 1.46 sec 

 
Fig. 5 shows the results for the three-dimensional 

field pattern. Total number of the random points for the 
MCI to evaluate the three-dimensional field pattern has 
been taken to be 17000. It is found that the results show 
good agreement with those obtained in [23]. 

In practice, a commonly used aperture is that of a 
rectangular waveguide mounted on an infinite ground 
plane. At the opening, the field is usually approximated 
by the dominant TE10-mode. Thus 

)(ˆ 0 x
a

CosEya ′=
πaE  

22
axa

≤′≤−        (28)

(b)
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Fig. 5. Three-dimensional field pattern of a constant 

field with a=2λ and b=3λ. 
 

The rectangular aperture is considered with 
f=15GHz, a=7.5mm and b=15mm, which corresponds 
to the 0.375 and 0.75 wavelength, respectively. Due to 
the limitations of PC system, FE simulation is not 
possible for higher wavelength. The magnitude electric 
distribution for this case is plotted in Fig. 6. 
 

     
                

                   
 

Fig.6. The electric field components maximum value 
envelopes at 15GHz for a rectangular aperture. This 

shows a TE10 field. 
 

The simulated far field with the MCI in this paper is 
plotted and compared with that of the FE simulation, 
with respect to the elevation angle in x-z and y-z planes 
respectively. The results are plotted in Figs. 7(a) and 
7(b) for this case. The running times of MCI and FE 
simulations are 1.46sec and 956sec, respectively.  

 
4.2 Circular Aperture 

In the second case, a circular aperture with uniform 
distribution of a=1.5λ is considered, as shown in Fig. 8. 
The field over the aperture is assumed to be constant 
as: 

0ˆ Eya aE =  a≤′ρ               (29)

 

 
Fig.7. a) E-, and b) H-plane amplitude patterns with 

a=0.375λ and b=0.75λ. 
 

 
Fig.8. Circular aperture mounted on an infinite ground 

plane. 
 
Fig. 9(a) shows the two-dimensional pattern of the 

far-zone fields radiated by aperture versus elevation 
angle (θ) in both of x-z and y-z planes. Total number of 
the random points for the MCI to assess the field 

y–z plane x–z plane

x–y plane 

(a)

(b)
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patterns has been taken to be N=17000. The three-
dimensional radiation pattern of the aperture as the 
function of θ and φ is shown in Fig. 9(b).  

A very practical antenna is a circular waveguide of 
the radius a mounted on an infinite ground plane. The 
field distribution over the aperture is usually that of the 
dominant TE11-mode for a circular waveguide given 
by: 
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Fig.9. a) E-, H-plane amplitude patterns and b) Three-

dimensional field pattern of a constant field with 
a=1.5λ. 

 
In this case f=15GHz and a=7.5mm. Fig. 10 shows 

the distribution of the electric field magnitude entire 
surfaces. Figs. 11(a) and 11(b) show the simulated MCI 
and FE versus elevation angle in x-z and y-z planes, 
respectively. The results shown in Table 2 compare 
running times of these methods for various dimensions 
of the aperture radius. 

 

    
 

            
 

Fig.10. The electric field components maximum value 
envelopes at 15GHz for a circular aperture. This shows 

a TE11 field. 
 

Table2. The running time of the MCI compared with  
the FEM for circular aperture 

Dimensions FE MCI 
a=7.5mm 1042.4 sec 1.65 sec 
a=12mm 3564.2 sec 1.65 sec 
a=18mm 5286.5 sec 1.65 sec 

 

 

 
Fig.11. E-, and b) H-plane amplitude patterns with 

a=0.375λ. 
 
 
 

(b)

(a)

(a)

y–z plane 

x–y plane 

x–z plane

(b)
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4.3 Elliptical Aperture 
In the third and final case, an elliptical aperture of 

a=6λ and b=2λ has been investigated with uniform 
distribution, as shown in Fig. 12. The coordinate 
system in this figure is based on elliptical-cylindrical 
[26]. The field distribution at the aperture is defined as 
[27]: 

0ˆ Eya aE =  )(cosh
22

1

ba
a
−

≤′ −ξ         (31)

The two-dimensional patterns versus elevation 
angle in E- and H-planes respectively are plotted in 
Figs. 13(a) and 13(b). The three-dimensional pattern 
for the aperture is also shown in Fig. 13(c). Theoretical 
result has been extracted from [28-29] for this case. 

 

 
Fig.12. Elliptical aperture mounted on an infinite 

ground plane. 
 

In practical apertures with elliptical cross- sections 
are possible candidates as feed for shaped reflectors 
suitable for satellite antennas giving a shaped beam. 
Fundamental mode in this aperture is TEc11, which c 
indicates that the mode is even for example the 
Mathieu function, ),( ηξT  are solved. The field 
distribution is given by [27]: 
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An elliptical waveguide terminate in an infinite 
ground plane in which f=10GHz, a=7.5mm, and 
b=3.75mm, is considered. Fig. 14 shows the magnitude 
of the electric field in the surface. Figs. 15(a) and 15(b) 
show the comparison between the FE and MCI 
simulated in the E- and H-plane, respectively. In the 
Table 3 run-time of the two methods are shown. 
 

 

 

    
Fig. 13. a) E-, b) H-plane amplitude patterns and c) 
Three-dimensional field pattern of a constant field. 

 
 
 
 
 
 
 
 
 
 
 

(c)

(b)

(a)
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Fig.14. The electric field components maximum value 
envelopes at the 15GHz for an elliptical aperture. This 

shows a TEc11 field. 
 

It is clear from Fig. 7 through Fig. 15 that 
calculated fields by the proposed MCI technique and 
FE implementation in evaluation of the radiation fields, 
is in good agreement with the theoretical and 
quadrature results. 

 

 

 
Fig. 15. E-, and b) H-plane amplitude patterns with 

a=0.0.375λ and b=0.1875λ. 
 
 
 

Table 3. The running time of MCI compared with FEM 
for elliptical aperture 

Dimensions FE MCI 
a=7.5mm, b=3.75mm 1858.2 sec 2.13 sec 

a=10mm, b=5mm 3385.5 sec 2.13 sec 
a=15mm, b=7.5mm 6582.7 sec 2.13 sec 

 
 

5. CONCLUSION 
In this paper, a new technique based on the Monte 

Carlo integration is proposed to solve the problem of 
the far-field integral equation from apertures. This 
technique is capable of reducing the computational 
burden and running time in the integral equation 
compared to the FEM and Gaussian qudrature rule. 
Especially in the case of two and higher dimensional 
problems, the MCI technique is superior to the 
conventional quadrature methods for integration. This 
is because of the fact that this technique is independent 
of the dimensions of the problem, involving only 
uniform generation of the random points inside the 
domain of the integration. In addition to this, the rapid 
convergence of the MCI with respect to the total 
number of the random points, the small number of the 
functions is needed to provide accurate results. To 
verify the technique, it is applied to the problem of the 
radiation from rectangular, circular and elliptical 
apertures. The two and three-dimensional radiation 
patterns over the apertures have been evaluated and 
plotted. Since comparisons are available, it is found 
that this technique yields the results comparable very 
closely to the those of the other numerical integration 
methods. 
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