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ABSTRACT 

The moderately fluctuating Rayleigh and 
2
 targets represent an important class of practical targets. The illumination 

of this class by a coherent pulse train will return a train of correlated pulses with a correlation coefficient in the range 

01 (intermediate between SWII and SWI models in the case of Rayleigh targets).and (intermediate between SWIV 

and SWIII models in the case of 
2
 targets). Therefore, it is interesting to adaptively detect this class of partially-

correlated targets. On the other hand, the constant false alarm rate in the presence of variable levels of noise is usually 

a requirement placed on any modern radar. The CA and OS schemes are the most familiar candidates in this category 

of detection techniques. Our goal in this paper is to analyze their detection performances for the case where the radar 

receiver post-detection integrates M pulses of an exponentially correlated signal from targets which exhibit 
2
 statistics 

with two and four degrees of freedom. Exact formulas for the detection probabilities are derived, in the absence as well 

as in the presence of spurious targets. As predicted, the CA detector has the best homogeneous performance while the 

OS scheme gives the best target multiplicity performance when the number of outlying targets is within its allowable 

values. 

 

Keywords: post-detection integration, partially correlated 
2
 targets, Swerling fluctuation models, CFAR detection 

techniques, target multiplicity environments. 

 

1. Introduction 

Radar’s target characteristics are the driving force in 

the design and performance analysis of all radar 

systems. The target is said to be fluctuating if there is a 

variation in its signal’s amplitude, caused by changes in 

target aspect angle, rotation, vibration of target 

scattering sources, or changes in radar wavelength. The 

fluctuation rate of a radar target may vary from 

essentially independent return amplitudes from pulse-

to-pulse to significant variation only on a scan-to-scan 

basis. Swerling I (SWI) targets have constant amplitude 

over one antenna scan; however, its amplitude varies 

independently from scan to scan according to a χ
2
 

probability density function with two degrees of 

freedom. The amplitude of Swerling II (SWII) targets 

fluctuates independently from pulse to pulse according 

to a χ
2
 probability density function with two degrees of 

freedom. Target fluctuation associated with a Swerling 

III (SWIII) model is similar to SWI, except in this case 

that the target power fluctuates independently from 

pulse to pulse according to a χ
2
 probability density 

function with four degrees of freedom. Finally, the 

fluctuation of Swerling IV (SWIV) targets is from pulse 

to pulse according to a χ
2
 probability density function 

with four degrees of freedom. Swerling showed that the 

statistics associated with SWI and SWII models apply 

to targets consisting of many small scatterers of the 

comparable radar cross-section (RCS) values, while the 

statistics associated with SWIII and SWIV models 

apply to targets consisting of one large RCS scatterer 

and many small equal RCS scatterers. The advantages 

of the Swerling target models are that they bracket a 

large number of real target classes [1-6]. However, 

recent investigations of the target cross section 

fluctuation statistics indicate that some targets may 

have probability of the detection curves which lie 

considerably outside the range of cases which are 

satisfactorily bracketed by the Swerling cases. An 

important class of targets is represented by the so-called 

moderately fluctuating Rayleigh and 
2
 targets [7],  

when illuminated by a coherent pulse train, return a 

train of correlated pulses with a correlation coefficient 
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in the range 01. The detection of this type of 

fluctuating targets is therefore of the great interest.  

Generally, target fluctuation lowers the probability 

of the detection, or equivalently reduces the SNR. Pulse 

integration improves SNR and correspondingly the 

detection probability, but the amount of improvement 

depends upon the method of integration, which may be 

accomplished in either the IF section prior the square-

law device or in the video section after the square-law 

device of the radar receiver. There is a considerable 

difference between the two types of integration. 

Integration before the device is defined as coherent or 

Pre-detection integration, while the second type is 

known as Non-coherent or Post-detection integration. 

Coherent integration requires the phase of the echo 

signal to be preserved during the summing process; that 

is the phase of the received signal must remain constant 

with respect to the phase of a known sinusoid. Thus, all 

Doppler information about the target and Doppler 

information introduced by the relative target and radar 

motion into the signal must also be preserved. On the 

other hand, the Non-coherent integration is the most 

common type of integration used in the radar systems. 

If M pulses were integrated non-coherently, the final 

SNR would be less than that for coherent integration, 

which is less than M times that of a single pulse. The 

relative increase in the noise energy is caused by the 

rectifying characteristic of the square-law detector, 

which prevents some of the noise self cancellation that 

would otherwise occur. The integration efficiency of a 

post-detection integrator is thus always less than that of 

a Pre-detection integrator. Furthermore, Non-coherent 

integration cannot preserve information such as 

Doppler data that is already lost. However, the ease of 

implementing a Post-detection pulse integrator usually 

outweighs any advantages achieved by the 

improvement of the integration efficiency that would be 

obtained by the use of a Pre-detection pulse integrator. 

Post-detection pulse integration, therefore, is usually 

implemented although not ideally preferred. Non-

coherent integration can be applied to all four Swerling 

models; however, Coherent integration cannot be used 

when the target fluctuation is either SWII or SWIV, 

because the target amplitude de-correlates from pulse to 

pulse (fast fluctuation) for SWII and SWIV models, 

and thus phase coherency cannot be maintained. 

Many radar systems operate in an environment 

where the noise generated within its own receiver is not 

the dominant source of interference. Undesired echoes 

from rain, clutter, and unwanted signals from other 

radiating sources often exceed the receiver noise level. 

These sources of interference may completely obliterate 

the radar display, or they may overload a computer that 

is making Yes/No decisions as to which echoes are 

valid targets of interest. To reduce this problem, radar 

detection processing can use an algorithm to estimate 

the clutter energy in the target test cell and then adjust 

the detection threshold to reflect changes in this energy 

at the different test cell positions. The threshold 

algorithms use the detection cells near the target test 

cell to estimate the background clutter level, and then 

set the threshold to guarantee the desired false alarm 

probability. This technique approaches a constant false 

alarm rate (CFAR) in most clutter backgrounds. The 

CFAR system uses the fact that the amplitude variation 

of the weather and sea clutter has a Rayleigh 

distribution, and is capable of reducing the clutter 

output to about the same level as the receiver noise 

level.  As a consequence, much attention has been paid 

to the task of designing and assessing these adaptive 

detection techniques. The CA- and OS-CFAR detectors 

are the most widely used ones in the CFAR world [8-

11]. While the performance of the CA detector is 

optimum in homogeneous situations, this performance 

degrades rapidly in non-ideal conditions caused by 

multiple target and non-uniform clutter. The OS 

processor, on the other hand, is a CFAR technique, 

which is relatively immune to non-homogeneous cases 

caused by outlying targets and clutter edges. This 

technique relies on ordering the samples in the 

reference window and takes an appropriate reference 

cell to estimate the clutter power level. The OS trades a 

small loss in detection performance, relative to the CA, 

in the ideal conditions for mush less performance 

degradation in the non-ideal conditions. 

From this brief discussion, it is obvious that there is 

a need of considering the performance of various CFAR 

algorithms, which coherently process received signals 

that are multi-dimensional in nature. In the CFAR 

context, the results of such analysis may be useful in 

assessing the potential benefits of utilizing the 

capability of radar systems that can acquire and process 

multi-dimensional (or vector) signals. Our goal in the 

present paper is to analyze the performance of CA- and 

OS-CFAR detectors for partially-correlated 
2
 targets 

with two and four degrees of freedom in the absence as 

well as in the presence of the spurious targets. In 

section II, we formulate the problem and compute the 

characteristic function of the post-detection integrator 

output for the case where the signal fluctuation obeys 
2
 

statistics with two and four degrees of freedom. The 

performance of the schemes under the consideration is 

analyzed, in the ideal (homogeneous) background 

environment, in section III. Section IV deals with the 

problem of multiple-target environment and the 

performance evaluation of the CA and OS detectors in 

these situations. In section V, we present a brief 

discussion along with our conclusions. 

 

2. Statistical Model Description 
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Let the input target signal and noise to the square-

law detector are represented by the complex vectors u + 

jv and a + jb, respectively. u and v represent the in-

phase and quadrature components of the target signal at 

the square-law detector, a and b represent the in-phase 

and quadrature components of the noise, respectively. 

The target is assumed to be independent of the noise 

and the in-phase samples are assumed to be 

independent and identically distributed (IID) with the 

Gaussian probability density function (PDF), while the 

target samples are assumed to be identically distributed 

but correlated. The output of M-pulse non-coherent 

integrator, normalized to the noise power, is 
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Let the in-phase received target signal and noise 

vectors be U and A, respectively, where 
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In the above expression, pU(u) and pA(a) denote the 

joint probability density functions (PDF’s) of U and A, 

respectively. From our previous assumptions, one can 

write the joint PDF of A as 
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The substitution of Eq.(4) in Eq.(3) yields 
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A radar target whose return varies up and down in 

amplitude as a function of time is known as a 

fluctuating target. The fluctuation rate may vary from 

essentially independent return amplitudes from pulse-

to-pulse to significant variation only on a scan-to-scan 

basis. Because the exact nature of the change is difficult 

to predict, a statistical description is often adopted to 

characterize the target radar cross section. There are 

many probability density functions for target cross 

section which are used to characterize fluctuating 

targets. The more important PDF is the so-called 
2
 

distribution with 2κ degrees of freedom. This 
2
 model 

approximates a target with a large reflector and a group 

of small reflectors, as well as a large reflector over a 

small range of aspect values. The 
2
 family includes the 

Rayleigh (Swerling cases I & II) model, the four-degree 

of freedom model (Swerling models III & IV), the 

Weinstock model (κ <1) and the generalized model (κ a 

positive real number). The 
2
 models are used to 

represent complex targets such as aircraft and have the 

characteristic that the distribution is more concentrated 

about the mean as the value of the parameter κ is 

increased. The SWI and SWIII models represent scan-

to-scan fluctuating targets, while the SWII and SWIV 

cases represent fast pulse-to-pulse fluctuating targets. 

The 
2
- distribution with 2κ degrees of freedom is 

given by 
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 represents the average cross section over all 

target fluctuations and U(.) denotes unit step function. 

When κ=1, the PDF of Eq.(6) reduces to the 

exponential or Rayleigh power distribution that applies 

to the Swerling case I. Swerling cases II, III, and IV 

correspond to κ=M, 2, and 2M, respectively. When κ 

tends to infinity, the 
2
- distribution corresponds to the 

non-fluctuating target. It is finally of important to note 

that the 
2
- distribution with 2κ degrees of freedom can 

be obtained by adding squared magnitude of κ complex 

Gaussian random variables.  

 

2.1.
2
-Distribtion with two-degrees of freedom 

If κ=1, then σ may be generated as σ=w1
2
+w2

2
, 

where wi’s are independent and identically distributed 

(IID) Gaussian random variables, each with zero mean 

and /2 variance. The magnitude of the in-phase 

component u (u=w1) has a PDF given by 
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To accommodate an Mx1 vector of correlated chi-

square RV’s with two degrees of freedom, we introduce 

the PDF of the M-dimensional vector W1. Therefore, 

the joint PDF of ui’s, i=1. 2, ….. , M, has a form given 

by  
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ww

dwwpduup
TM

wU 1

1

1

1

2
1

2

11
1 2

exp
1

2

1
)()(













 
















          (8) 

 is the correlation matrix of u1, u2, …., uM and T 

denotes transposition. With I denoting the identity 

matrix, the substitution of Eq.(8) into Eq.(5) yields 
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If we let the average signal-to-noise ratio (SNR) 

α/ψ=Ω, Eq.(9) can be re-expressed as 
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λi’s are the non-negative eigenvalues of Λ. The CF 

of Eq.(10) for the SWI target fluctuation model is 

represented by choosing 1=M, i’s=0, i=2, 3, …, M, 
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and that for the SWII case can be modeled by letting 

i’s=1, i=1, 2, …, M. For the CFAR processor 

performance analysis to be simple, the above equation 

can be put in another clarified form as 

j
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2.2.
2
-Distribtion with four-degrees of freedom 

If κ=2, then σ and the squared magnitude of its in-

phase component, u, may be generated as follows: 

Let wi’s, i=1, …, 4, be IID Gaussian random 

variables, each one is of zero mean and of =σ/4 

variance, σ anduare given by 
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Since w1 and w2 are IID, one may write 
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Therefore, the joint PDF of u1, u2, ….., uM is of the 

form 
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Where  is the correlation matrix of w1 and w2. 

Note that w1 and w2 are uncorrelated, but components 

of w1 are correlated with each other, as the components 

of w2. Therefore, Eq. (5) can be rewritten as 
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 If we let the average SNR (2) as Ω, the above 

equation can be re-expressed as 
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The CF of Eq.(16) for the Swerling III target 

fluctuation model is represented by choosing 1=M, 

I’s=0, i=2, 3, …, M, and that for the Swerling IV case 

can be modeled by letting I’s=1, i=1, 2, …, M.  To 

simplify the detection performance evaluation of the 

CFAR processors, the above equation can be 

reformatted to have an easily mathematical form such 

as   
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In view of Eqs.(11 & 17), the solution for partially-

correlated case requires the computation of the eigen-

values of the correlation matrix . It is assumed here 

that i) the statistics of the signal are stationary, and ii) 

the signal can be represented by a first order Markov 

process. Under these assumptions,  is a Toeplitz 

nonnegative definite matrix . Thus,  
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Eqs.(11, 17 &18) are the basic formulas of our 

analysis in this manuscript. 

The PDF of the output of the ith test tap is given by 

the Laplace inverse of Eq. (11), in the case of 


2
distribution with two degrees of freedom, or Eq.(17), 

in the case of 
2
 fluctuation with four degrees of 

freedom, after making some minor modifications. If the 

ith test tap contains noise alone, we let Ω=0, that is the 

average noise power at the receiver input is. If the ith 

range cell contains a return from the primary target, it 

rests as it is without any modifications, where Ω 

represents the strength of the target return at the 

receiver input. On the other hand, if the ith test cell is 

corrupted by interfering target return, Ω must be 

replaced by I, where I denotes the interference-to-noise 

(INR) at the receiver input. 

The essence of CFAR is to compare the decision 

statistic  with an adaptive threshold TZ, see Fig.(1).  

The threshold coefficient T is a constant scale factor 

used to achieve a desired false alarm rate for a given 

window size N when the background noise is 

homogeneous. The statistic Z is a random variable) 

whose distribution depends upon the particular CFAR 

chosen scheme and the underlying distribution of each 

of the reference range samples. Since the unknown 

noise power level estimate Z is a random variable, the 

processor performance is determined by calculating the 

average values of the false alarm and detection 

probabilities. 

The detection probability of a CFAR processor for 


2
 targets with two degrees of freedom can be obtained 

by substituting Eq.(11) into the definition of Pd, which 

gives 
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In the above expression, res stands for the residue. 
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Fig1. Biock diagram of adaption detector using M- 

pulse non-coherent integration 

 

On the other hand, when the fluctuation of the 

primary target follows the 
2
 distribution with four 

degrees of freedom, C() takes the following 

simplified form 
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Where 
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The substitution of Eq.(25) into the definition of the 

detection probability gives the processor detection 

performance for 
2
 targets with four degrees of 

freedom, which becomes 
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To obtain the relationship between the false alarm 

probability Pfa and the thresholding constant T, it is 

assumed that no target is present in the test cell (A=0). 

Therefore, as M-pulse non-coherent integration is used, 

Pfa can be calculated as 
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In this case, C () has an Mth order pole at =-1. 

Thus, 
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It is important to note that the above expression for 

the rate of false alarm is verified either for 
2
 targets 

with two degrees of freedom or for 
2
 targets with four 

degrees of freedom. Moreover, the characteristic 

function of the noise power level estimate ‘Z’ is the 

backbone of the processor performance analysis, as 

shown in Eqs.(24. 28 & 30), either in homogeneous or 

non-homogeneous background environments. 

Therefore, our scope in the following subsections is to 

calculate this important quantity for the two processors 

under consideration 

 

3. Non-homogeneous Performance Analysis of 

CFAR Schemes 

The performance of the CFAR algorithms for 

uniform clutter model can be considered as special case 

of their behavior against non-homogeneous 

environments. Therefore, the non-homogeneous 

analysis of CFAR detection of the fluctuating targets is 

more general than the homogeneous situation and 

consequently it deserves to be tackled. In the world of 

CFAR detection of the radar targets, there are two basic 

problems associated with non-homogeneous treatment 

of the processor performance: clutter edges and 

multiple-target situations. Clutter edges, on the other 

hand, are used to describe transition areas between 

regions with very different noise characteristics. Since 

we are concerned here with partially correlated 
2
 

targets, this situation is of secondary scope. On the 

other hand, multiple target situations occur occasionally 

in radar signal processing when two or more targets are 

at a very similar range. The consequent masking of one 

target by the others is called suppression. These 

interferers can arise from either real object returns or 

pulsed noise jamming. From a statistical point of view, 

this implies that the reference samples, although still 

independent of one another, are no longer identically 

distributed. Let us now examine the dependence of the 

performance of the CFAR procedures on the accurate 

knowledge of the target fluctuation model when the 

reference window is contaminated with a fluctuating 

interfering target returns. In our study of the non-

homogeneous background, the amplitudes of all the 

targets present amongst the candidates of the reference 

window are assumed to be of the same strength and to 

fluctuate in accordance with the partially-correlated 
2
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fluctuation model with correlation coefficient ρi. The 

interference-to-noise ratio (INR) for each of the 

spurious targets is taken as a common parameter and is 

denoted by I.  

 

a. Cell-Averaging (CA) Detector  

A simple approach to achieve the CFAR condition 

is to set the detection threshold on the basis of the 

average noise power in a given number of reference 

cells where each of them is assumed to contain no 

target. Such a scheme is denoted as cell-averaging (CA) 

CFAR processor. This detector is specifically tailored 

to provide good estimates of the noise power in the 

exponential PDF. In this CFAR detection technique, the 

total noise power level is estimated by the sum of N 

range cells of the reference window. Under the 

assumption that the surrounding range cells contain 

independent Gaussian noise samples with the same 

variance, this sum of the reference cells represents the 

maximum likelihood estimate of the common variance. 

This is a complete, sufficient statistic for the noise 

power  under the assumption of exponentially 

distributed homogeneous background.  

To analyze the CA performance when the reference 

window no longer contains radar returns from a 

homogeneous background, the assumption of statistical 

independence of the reference cells is retained. Suppose 

that the reference window contains r cells from 

interfering target returns with background power of 

ψ(1+I) and N-r cells from clear background with noise 

power ψ. Thus, the estimated total noise power level is 

obtained from 
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If the reference sample contains no target return; i.e. 

its content is pure clear background return, it has a CF 

of the same form as that of  with the exception that Ω 

must be set to zero. Therefore, eliminating Ω in either 

Eq.(11) or Eq.(17) leads to 
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Since the random variables Yi’s are assumed to be 

statistically independent and identically distributed, the 

vector Y of dimension N-r has a CF given by 
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On the other hand, the random variable representing 

the interfering target return ‘X’ has a CF of the same 

form as that given by Eq.(11), when the extraneous 

targets fluctuate in accordance with 
2
 model with two-

degrees of freedom, and as that given by Eq.(16), in the 

case where the fluctuation of the spurious targets 

follows 
2
 model with four-degrees of freedom. In both 

cases, A (SNR of the primary target) should be replaced 

by I (INR of the secondary target). Thus,  
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In the above expression, λi’s represent the 

nonnegative eigenvalues of the correlation matrix, with 

ρ=ρi in Eq.(18), associated with the spurious target 

returns. Since the elements of the vector X are assumed 

to be statistically independent, its CF takes the form: 
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Since the vectors X and Y of Eq.(31) are jointly 

independent, the CF of the RV ZCA is simply given by 

the product of their CF's. Therefore, the noise level 

estimate of the CA processor, operating in multi target 

environment, has a simple CF of the form: 

      CCC Z CA 
                                     (31) 

On the other hand, the derivative of the CF of the 

test statistic of the CA procedure, when the interfering 

targets fluctuate in accordance with 
2
 model of four 

degrees of freedom, can be easily computed as 
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It is of importance to note that the homogeneous 

evaluation of the processor performance can be treated 

as a special case of its behavior against multi-target 

situation by making the background environment free 

of any spurious targets (r=0). In other words, when the 

CA-CFAR scheme processing data from uniform 

clutter, its estimate of the noise power level has a CF 

given by: 
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Once the CF of the noise power level estimate is 

obtained, the detector performance evaluation is 

completely determined either the primary target 

fluctuates in accordance with 
2
 model with two or its 

fluctuation follows χ
2
 statistics with four degrees of 

freedom as we have previously demonstrated, where 
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The Pochammer symbol (x) is as defined in [12]: 
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The rationale for the CA type of CFAR schemes is 

that by choosing the mean, the optimum CFAR 

processor in a homogeneous background when the 
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reference cells contain IID observations governed by 

exponential distribution is achieved. As the size of the 

reference window increases, the detection probability 

approaches that of the optimum detector which is of the 

fixed threshold architecture [13]. 

We repeat again that once CF of the noise power 

level, ZCA, is obtained, the processor performance 

evaluation is completely determined, in the case where 

the fluctuation of the spurious targets follows the 
2
 

model with either two or four degrees of freedom, as we 

have previously demonstrated. 

 

b. Ordered-Statistics (OS) Detector  

The performance of CA-CFAR detector degrades 

rapidly in non-ideal conditions caused by multi targets 

and non-uniform clutter. The ordered-statistic (OS) 

CFAR is an alternative to the CA processor. The OS 

trades a small loss in the detection performance, 

relative to the CA scheme, in the ideal conditions for 

much less performance degradation in the non-

homogeneous background environments. 

Order statistics characterize amplitude information 

by ranking observations in which differently ranked 

outputs can estimate different statistical properties of 

the distribution from which they stem. The order 

statistic corresponding to a rank K is found by taking 

the set of N observations Q1, Q2, ……., QN and ordering 

them with respect to increasing magnitude in such a 

way that  

)()1()()1()2()1( ....................... NKKK QQQQQQ                      (36) 

Where Q(K) is the Kth order statistic. The central 

idea of the OS-CFAR procedure is to select one certain 

value from the above sequence and to use it as an 

estimate Z for the average clutter power as observed in 

the reference window. Thus, 
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We will denote by OS(K) the OS scheme with 

parameter K. The value of K is generally chosen in 

such a way that the detection of radar target in the 

homogeneous background environment is maximized. 

In order to analyze the processor performance when 

there are interfering target returns amongst the contents 

of the reference window, the assumption of statistical 

independence of the reference cells is retained. 

Consider the situation where there are r reference 

samples contaminated by extraneous target returns, 

each with power level ψ(1+I), and the remaining N-r 

reference cells contain thermal noise only with power 

level ψ. Under these assumptions, the Kth ordered 

sample, which represents the noise power level estimate 

in the OS detector, has a cumulative distribution 

function (CDF) given by [14]: 
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In the above expression, Fc(z) represents the CDF of 

the cell that contains clutter background whilst Fs(z) 

denotes the same thing for the cell that has spurious 

target return.  

In order to calculate the above formula, first these 

two important characteristics must be computed. For 

clear background, the CDF of its cell has a Laplace 

transformation similar to that given by Eq.(32) after 

dividing it by ω. Thus, this CDF can be obtained by 

taking the Laplace inverse of the resulting version 

which gives: 
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L
-1

 represents the Laplace inverse operator and U(.) 

denotes the nit-step function. 

The CDF of the reference cell that contains a 

spurious target return, when this target fluctuates in 

accordance with 
2
 with two degrees of freedom, can be 

calculated from: 
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On the other hand, if the interfering target’s 

fluctuation follows χ
2
 model with four degrees of 

freedom, Fs(z) takes the form  
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Since F(x)=1-[1-F(x)], Eq.(38) can be written in 

another simpler form as [15]: 
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By substituting Eq.(39) along with Eq.(45), into 

Eq.(49) one obtains, for 
2
 target fluctuation with two 

degrees of freedom, 
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On the other hand, if the extraneous targets fluctuate 

according to χ
2
 model with four degrees of freedom, 

Eq.(45) takes a modified version of the form: 
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To determine the detection performance of the OS-

CFAR processor, it is important to calculate the 

Laplace transform for its test statistic, where the false 

alarm and detection probabilities are completely 

dependent on this transformation along with its 

derivatives with respect to ω. The ω-domain 

representation of Eq.(46) is: 
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Where the definition of the term Ψ(S; i1, i2, …, iM) 

is as follows: 
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On the other hand, the Laplace transformation of 

Eq.(51) is analytically very complicated and therefore 

the numerical techniques is the only way that allows us 

to compute this transformation. 

In order to analyze the processor detection 

performance in uniform clutter background, the CF of 

the random variable ZOS is required. By letting r=0 in 

Eq.(42), this CF can be expressed as [14] 
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Since the CF of the noise power level estimate ZOS 

represents the backbone of its processor detection 

performance, the evaluation of this performance 

becomes an easy task once that function is obtained. 

Finally, the ℓth derivative of this CF is given by: 
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Again, the OS-CFAR processor performance is 

highly dependent upon the value of K. For example, if a 

single extraneous target appears in the reference 

window of thr appreciable magnitude, it occupies the 

highest ranked cell with high probability. If K is chosen 

to be N, the estimate will often set the threshold based 

on the value of the interfering target. This increases the 

overall threshold and may lead to a target miss. If, on 

the other hand, K is chosen to be less than the 

maximum value, the OS-CFAR scheme will be 

influenced only slightly for up to N-K spurious targets. 

A desirable CFAR scheme would of course be one 

that is insensitive to changes in the total noise power 

within the reference window cells so that a constant 

false alarm rate is maintained. This is actually the case 

of the two architectures under consideration. 

 

4. Performance Evaluation Results 

In this section, we present some representative 

numerical results, which will give an indication of the 

tightness of our previous analytical expressions. The 

performance of CFAR processors for partially-

correlated χ
2
 fluctuating targets is numerically 

evaluated for some parameter values and the results of 

these evaluations are presented in several sets of 

figures. The first set includes Figs.(2-3) and concerns 

with the detection performance of CA and OS schemes, 

respectively, for a number of integrated pulses of 2, 3, 

and 4 along with the single-sweep case which is 

included as a reference for comparison, when the radar 

target fluctuates in accordance with partially-correlated 

χ
2
 model with two and four degrees of freedom.  

Since the performance of OS processor is strongly 

dependent on the ranking order parameter K, we choose 

the value that corresponds to the optimum detection 

performance in uniform noise background which is 21 

for N=24 [8]. The displayed results of these figures 

show that for low values of SNR, the fully-correlated 

case ( =1.0) gives higher detection performance than 

the fully de- =0) case. As the target return 

becomes stronger, an alternative version of the above 

behavior is observed, where the non-correlated 

performance surpasses the fully-correlated one. It is 

also noted that for M=2, the processor detection 



Majlesi Journal of Electrical Engineering                              Vol. 7, No. 3, September 2013 

51 

1 =1.0. In addition, 

the non-correlated and fully-correlated detection 

performances embrace all the partially-correlated cases 

in either situation. 

 

Fig.(2) M-sweeps ideal detection performance of CA scheme for partially-correlated 2 targets 

with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig. 2. M sweeps ideal detection performance of CA 

scheme for partially correlated π
2
 targets with 2&4 

degrees of freedom when N=24 ,and Pfa= 1.0E-6 

 

Fig.(3) M-sweeps ideal detection performance of OS(21) scheme for partially-correlated 2 targets 

with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig. 3. M sw sweeps ideal detection performance of 

Os(21) scheme for partially correlated π
2
 targets with 

2&4 degrees of freedom when N=24, and Pfa= 1.0E-6 

 

This observation is common for any number of 

integrated pulses. Additionally, the partially-correlated 

χ
2
 performance than 

that of he target return becomes stronger 

while the reverse of this behavior occurs when the 

target return is modest. Moreover, as M increases, the 

processor detection performance ameliorates and the 

reversing point is shifted towards lower values of SNR. 

By reversing point, we mean the point at which the 

detection performance changes its superiority from 

fully-correlated to fully-uncorrelated. All the presented 

results are obtained for a constant false alarm rate of 10
-

6
 and a reference window of size 24 cells.  

To make a comparison between the performances of 

the underlined CFAR schemes and that of the optimum 

detector, the second group of illustrations includes 

Figs.(4-7).  This category contains the partially-

correlated χ
2
 target homogeneous detection 

performance of the CA and OS schemes along with the 

optimum processor for M=2 and 4. The curves of this 

set are labeled in the CFAR procedure and the 

correlation coefficient ‘ρ1’, respectively. The indication 

OT, A, or O on a specified curve means that it is drawn 

for optimum, cell-averaging, or order-statistic detector, 

respectively. It is important to note that Figs.(4-5) 

describe the performance of the three processors when 

the primary target fluctuates following partially-

correlated χ
2
 model with two and four degrees of 

freedom, respectively, for M=2, while Figs.(6-7) depict 

the same thing for M=4. In any situation, it is noticed 

that the performance of CA algorithm is the much 

closer one to that of the optimum detector under any 

operating conditions and the OS scheme comes next. 

All the indicated remarks on the results of Figs.(2-3) 

are clearly demonstrated on the results of the present 

figures. For weak SNR, the processor performance 

degrades as ρ1 decreases, while for strong SNR this 

performance improves as ρ1 decreases. This observation 

is noticed for partially-correlated χ
2
 targets fluctuating 

with either two or four degrees of freedom. In addition, 

these plots illustrate the superiority of 
2
 fluctuation 

model with four degrees of freedom over that following 


2
 model with two degrees of freedom, especially for 

large SNR. As the number of non-coherent integrated 

pulses increases, the processor performance improves 

and less SNR value is needed to achieve the same level 

of detection. 

Fig.(4) M-sweeps ideal detction performance of CFAR processors for partially-correlated 2 targets  

 with two degrees of freedom when N=24, M=2, Pfa=1.0E-6.
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Fig. 4. M-sweep ideal detection performance of CFAR 

processor for partially- correlated π
2
 targets with two 

degrees of freedom when N=24, M=2, Pfa=1.0E-6 
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Fig.(5) M-sweeps ideal detction performance of CFAR processors for partially-correlated 2 targets  

 with four degrees of freedom when N=24, M=2, Pfa=1.0E-6.
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Fig. 5. M sweep ideal detection performance of CFAR 

processor for partially- correlated π
2
 targets with two 

degrees of freedom when N=24, M=2, Pfa=1.0E-6 

 

Fig.(6) M-sweeps ideal detction performance of CFAR processors for partially-correlated 2 

targets with two degrees of freedom when N=24, M=4, Pfa=1.0E-6.
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Fig. 6. M-sweep ideal detection performance of CFAR 

processor for partially- correlated π
2
 targets with two 

degrees of freedom when N=24, M=4, Pfa=1.0E-6 

Fig.(7) M-sweeps ideal detction performance of CFAR processors for partially-correlated 2 

targets with four degrees of freedom when N=24, M=4, Pfa=1.0E-6.
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Fig. 7. M-sweep ideal detection performance of CFAR 

processor for partially- correlated π
2
 targets with four 

degrees of freedom when N=24, M=4, Pfa=1.0E-6 

 

In the next group of figures, we are concerned with 

what is known, in the world of the radar target 

detection, as receiver operating characteristics (ROC's). 

These characteristics describe the detection probability 

as a function of the false alarm probability for a fixed 

target signal strength (SNR=const). This set of figures 

incorporates Figs.(8-9) which represent the ROC’s of 

CA and OS(21), respectively. In these figures, the 

processor detection performance is plotted against the 

false alarm rate for a number of integrated pulses of 2 

and 4 when the primary target fluctuates in accordance 

with 
2
 distribution with two and four degrees of 

freedom. Since the fully correlated and fully de-

correlated cases enclose the partially-correlated 

situations, we restrict our evaluations to these two 

1 1=1). The reference window 

size is taken as 24 and the primary target signal strength 

is taken as 5dB. For comparison, the single sweep 

ROC's is also included in these plots.  

 

Fig.(8) M-sweeps receiver operating characteristics (ROC's) of CA processor for partially-correlated  

 2 targets in homogeneous situation when N=24 and =5dB.
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Fig. 8. M-sweeps receiver operation characteristics 

(ROC`s) of CA processor for partially – correlated π
2
 

targets in homogeneous situation when N=24 and 5db 

 

 

Fig.(9) M-sweeps ideal receiver operating characteristics (ROC's) of OS(21) scheme for 

partially-correlated 2 targets when N=24, and =5dB.
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Fig. 9. M-sweeps receiver operation characteristics 

(ROC`s) of Os (21)scheme for partially –correlated π
2
 

targets when N=24 , and Ω=5db 

 

The curves of these figures are labeled in the 

number of the post-detection integrated pulses and the 

correlation coefficient of the primary target returns 

1). The displayed results show that for lower false 

alarm rates, the processor detection probability 

1 increases. As the false alarm rate 

increases, this behavior is rapidly reversed and the fully 

de-correlated detection performance surpasses that 

corresponding to the fully correlated case. Additionally, 

as the number of non-coherent integrated pulses 

increases, the reversing point or the critical rate, moves 

towards the lower false alarm rate and this is common 

either the target fluctuates following 
2
 with two or four 
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degrees of freedom. Moreover, the processor detection 

performance for 
2
 distribution with 

that for χ
2
 

operating false alarm rate is higher than its critical 

value. If the operating false alarm rate is lower than its 

critical rate, the processor detection performance when 

the fluctuation of the primary target follows χ
2
 

this fluctuation obeys χ
2
 

1=0 coincide with 1=1. The 

results of this group confirm the observed remarks on 

the previous groups as well as demonstrate our 

comments on the behavior of their figures. 

Additionally, the homogeneous detection performance 

of CA scheme is always superior to that of OS 

algorithm, under the same operating conditions, as 

predicted.     

To illustrate the influence of the signal correlation 

on the processor detection performance, the next group 

is devoted to the processor detection performance 

against the correlation coefficient between the radar 

target returns given that the number of integrated pulses 

(M) as well as the signal strength (SNR) is held 

constant. Figs (10-11) distinctly show these 

characteristics for the underlined detectors, CA and 

OS(21), respectively, for SNR=-5, 0, and 5dB when 

M=1, 2, and 4, given that the radar target fluctuates in 

accordance with 
2
 distribution with 

chosen signal strength is modest, the scheme detection 

performance improves as the target returns become 

highly correlated. 

  

Fig.(10) M-sweeps variation of ideal detection performance of CA-CFAR processor for partially-

correlated Rayleigh fluctuating targets when N=24, Pfa=1.0E-6, and SNR=-5, 0, & 5dB.
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Fig. 10. M sweeps variation of ideal detection 

performance CA-CFAR processor for partially 

cornelated Rayleigh fluctuating targets when N=24, 

Pfa=1.0E-6 and SNR= -5,0 &5dB 

This result is predicted since the correlation strengthens 

the weak signal returns in contrast to the case in which 

the signal returns are strengthened where the correlation 

weakens the signal returns. For the same reason, the 

rate of improvement decreases as the number of the 

consecutive sweeps increases. Moreover, this rate of 

improvement increases as the target signal returns 

become weaker, given that the number of integrated 

pulses is maintained constant. 

 

Fig.(11) M-sweeps variation of ideal detection performance of OS(21)-CFAR processor for partially-

correlated Rayleigh fluctuating targets when N=24, Pfa=1.0E-6, and SNR=-5, 0, & 5dB.
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Fig. 11. M sweeps variation of the ideal detection 

performance OS(21)-CFAR processor for partially 

cornelated Rayleigh fluctuating targets when N=24, 

Pfa=1.0E-6 and SNR= -5,0 &5dB 

 

The two processors under consideration give 

approximately the same level of detection for correlated 

signal returns without any superiority between them. 

This concluded remark is also predicted due to the fact 

that the CFAR schemes behave likely for modest target 

signal strength, as the above mentioned results 

demonstrate. Finally, if the primary target fluctuates in 

accordance with 
2
 

underlined processors act the same behavior with minor 

improvement in each case.       

Now, let us turn our attention to the processor 

performance when the operating environment is 

contaminated with several spurious targets along with 

the underlined primary target. In other words, our 

concern here is to show the impact of non-

homogeneous operating environment on the detection 

of partially-correlated targets by adaptive processors. 

To attain this request, we provide a variety of numerical 

results for the performance of CA- and OS-CFAR 

processors in the multiple target situations. Since the 

optimum value of K, for a reference window of size 24, 

is 21, we have assumed that there are three interfering 

target returns amongst the contents of the estimation 

cells. The motivation for this assumption is to calculate 

the highest detection performance of OS scheme in 

multi-target environment. This value of extraneous 

target returns is the maximum allowable value before 

the OS performance degradation occurs. Our numerical 

results are obtained for a possible practical situation 

where the primary and the secondary interfering targets 

fluctuate in accordance with the 
2
 fluctuation model 

with the same correlation coefficient (ρ1=ρ2 ), and of 

the equal target return strength (INR=SNR). 

Additionally, for our new results to be comparable with 

the older ones (in the absence of outlying targets), the 

design rate of false alarm is held unchanged (Pfa=10
-6

). 
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The obtained results are classified to categories. The 

first category, including Figs.(12 & 13), depicts the 

detection performance of the CA and OS(21) schemes, 

respectively, under the same operating conditions as in 

Figs.(2 & 3) with the exception that three spurious 

targets are allowed to be present amongst the 

candidates of the reference set.  

Fig.(12) Multitarget detection performance of CA scheme for partially-correlated 2 targets 

with 2 & 4 degrees of freedom when N=24, r=3, and Pfa=1.0E-6.
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Fig. 12.Multitarget detection performance of CA 

scheme for partially correlated π
2
 targets with 2&4 

degrees of freedom when N=24, r=3, and Pfa= 1.0E-6 

 

Fig.(13) Multitarget detection performance of OS(21) scheme for partially-correlated 2 targets 

with 2 & 4 degrees of freedom when N=24, r=3, and Pfa=1.0E-6.
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Fig. 13.Multitarget detection performance of OS(21) 

scheme for partially correlated π
2
 targets with 2&4 

degrees of freedom when N=24, r=3, and Pfa= 1.0E-6 

 

The curves of these figures are labeled in the 

number of integrated pulses (M), the strength of the 

 and the 

parameter that represents  

For comparison, the single sweep case is included in 

these plots. In addition to the partially-correlated cases, 

the well-known four Swerling’s models are also 

included. It is important to note that the full scale of the 

Pd axis in this case of CA scheme has a maximum value 

of 75%. There is another interesting point about the 

reaction of CFAR schemes against 
2
 fluctuation model 

where the SWII & SWIII performances are coincide for 

M=2. The displayed results show that the behavior of 

the CFAR processors in the presence of extraneous 

targets is similar to that of in their absence. By 

comparing the results of Fig.(12) to the corresponding 

ones of Fig.(13), we observe that intolerable masking of 

the primary target occurs in the case of CA procedure 

and the OS(21) architecture is capable of resolving 

multiple targets in the reference window as long as their 

number is within its allowable values (r  N-K). All the 

concluded remarks about the ideal performance of CA 

and OS(21) schemes are also observed on their multi-

target performance given that the target under test along 

with the interfering ones fluctuate obeying 
2
 model 

with 2 and 4 degrees of freedom.  

As the displayed results of Figs (12 & 13) 

demonstrate, it is obvious that the CA procedure is 

unable to resolve the problem of detecting the partially-

correlated targets in the presence of the outlying targets. 

Therefore, we will go to show the effects of choosing 

parameters on the behavior of the OS algorithm against 

the detection of this important class of fluctuating 

targets. It is well-known that the OS technique gives 

good multi-target performance as the number of 

spurious targets doesn’t exceed its upper limit which is 

(r ≤ N-K). To verify this condition, Fig (14) illustrates 

the multi-target detection performance of OS(21) when 

the operating environment contains 3, 5, and 10 

interferers along with the target under investigation. 

 

 
Fig.14. M- sweep multi target detection performance of 

OS(21) processor for partially- correlated π
2
 targets 

with two degrees of freedom when N=24, INR=SNR, 

p=0 and Pfa=1.0E-6 

 The primary and the secondary interfering targets 

are assumed to be fluctuating following χ
2
-distribution 

with two degrees of freedom and with a null correlation 

coefficient (ρ=0). As a reference of comparison, the 

ideal detection performance (r=0) of the underlined 

scheme is also included in this figure. Additionally, the 

displayed results are obtained on the assumption that 

the extraneous target gives a signal of the same strength 

as that given by the primary target (INR=SNR). 

Moreover, the processor is assumed to collect data from 

two or four consecutive sweeps (M=2 or 4) in order to 

take its decision. The mono-pulse detection 

performance is incorporated amongst the contents of 

the underlined figure to show to what extent the post-

detection integration can improve the performance of 

the CFAR technique. Since the detection probability for 

r>N-K is very weak, we draw the obtained results on a 

logarithmic scale in order to be able to illustrate weak 
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as well as the strong values. The family curves of this 

figure shows that the OS (21) presents good 

performance in the absence (r=0) as well as in the 

presence of outlying targets given that their number is 

less than or equal 3. If this condition is failed, a 

noticeable degradation in the processor performance is 

observed. The rate of degradation increases as the 

number of interferers becomes more and more. In this 

situation, it is obvious that there is an improvement in 

the processor performance as M increases for low SNR. 

For strong signal return, on the other hand, the 

processor performance degrades as M increases. This 

behavior of the OS (21) against the presence of the 

spurious targets in the operating environment is 

predicted since the density of these targets exceed their 

allowable range. For example if r=5 and K=21, then 

three of them are eliminated and the rest incorporate in 

constructing the detection threshold. This in turn pushes 

the detection threshold towards its higher values and 

consequently the detection probability goes towards its 

weaker values. As the number of the integrated pulses 

increases, the interfering target return becomes stronger 

and the detection threshold attains higher values and 

this leads to make the detection probability weaker and 

weaker. For this reason the processor performance 

degrades as the number of non-coherent integrated 

pulses increases given that r>N-K. This degradation 

becomes worst as the reference window becomes full of 

extraneous targets as the displayed results demonstrate. 

This behavior of the OS algorithm against the presence 

of partially-correlated χ
2
 target returns amongst the 

candidates of the reference set when these returns are 

de-correlated (ρ=0) which means that these targets 

fluctuate in accordance with SWII model. Fig.(15) 

depicts the same thing as Fig.(14) except that the 

fluctuation of the primary as well as the secondary 

outlying targets follows χ
2
 statistics with two degrees of 

freedom when the target returns are fully-correlated 

(ρ=1.0) which indicates that they obey SWI mode in 

their fluctuation.  

In contrast to the behavior against SWII fluctuating 

targets, the OS performance improves as M increases 

irrespective to the strength of the target return either 

weak or strong. This reaction of the OS scheme against 

SWI fluctuating targets is waited since the correlation 

between the target returns weakens its associated 

power. In addition, the rate of degradation, as r 

increases, is less than in the case of SWII targets. 

Moreover, the rate of improvement, as the number of 

the non-coherent integrated pulses increases, is clearer 

than in the situation where the target fluctuation follows 

SWII model. 

 
Fig. 15. M- sweep multi target detection performance 

of OS(21) processor for partially- correlated π
2
 targets 

with two degrees of freedom when N=24, INR=SNR, 

p=1.0 and Pfa=1.0E-6 

 

In the next category of curves, we turn our attention 

to the impact that the strength of the outlying target 

return may affect the detection of the partially-

correlated χ
2
 targets. This category, including Figs.(16-

17), illustrates the multi-target detection performance of 

OS(21) processor in the case where the principal and 

the spurious targets fluctuate following 
2
 model with 4 

degrees of freedom when ρ equals zero and one, 

respectively. In each one of these situations, we 

evaluate the detection performance for weak, relative to 

the primary target returns, interfering target returns 

(INR=SNR/10) as well as strong level of interference 

(INR=10SNR) when the OS (21) scheme builds its 

decision on single, double, and four consecutive sweeps 

given that the operating environment is contaminated 

with three or five spurious targets. The displayed results 

demonstrate that the presence of the outlying targets has 

little effect on the processor performance when the 

strength of their returns is weak.  

 

 
Fig. 16. M- sweep multi target detection performance 

of OS(21) scheme for partially- correlated π
2
 targets 

with four degrees of freedom when N=24, p=.0 and 

Pfa=1.0E-6 
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Fig.17. M- sweep multi target detection performance of 

OS (21) scheme for partially- correlated π
2
 targets with 

four degrees of freedom when N=24, p=1.0 and 

Pfa=1.0E-6 

 

When these returns become stronger, they severely 

degrade the reaction of the OS scheme against the 

presence of the secondary target returns amongst the 

reference samples especially if their numbers surpass 

the allowable range. However, if the interfering returns 

are weak, the OS processor maintains its immunity to 

the presence of the outlying targets even though their 

number exceeds the allowable range as Fig.(16) 

demonstrates. This result is predicted since the weak 

returns resemble the background samples and have 

negligible effect on the changing of the detection 

threshold. It is of importance to note that the K
th

 

reference sample is the only one that is responsible for 

building the threshold in OS (K) scheme. This means 

that the presence of the interferers has no effect on the 

detection threshold given that their returns are 

comparable to the content of the reference noise 

samples. Additionally, the displayed results confirm the 

more degraded detection performance as the number of 

the post-detection integrated pulses increases, even 

though their number is within the allowable range, if the 

interferer’s returns are stronger than the primary target 

return. On the other hand, if the interfering target 

returns are strong and their number exceeds the 

allowable range, the OS performance becomes worst. 

Fig.(16) describes the OS behavior against interfering 

targets when the primary as well as the spurious targets 

fluctuate following SWIV model, whilst Fig.(17) 

depicts the OS multi-target performance in the case 

where the tested target along with the secondary 

outlying ones fluctuate in accordance with SWIII 

model. The differences between Figs (16 & 17) are 

approximately similar to those between Figs.(14 & 15). 

Finally, the variations of the false alarm rate with the 

strength of the interfering target returns are plotted, in 

the last category of curves, for the underlined 

architectures when   reacted to 
2 

fluctuating targets 

with 2 and 4 degrees of freedom. This set of figures 

includes Figs (18-19).  

Fig.(18) M-sweeps false alarm rate performance, as a function of the interfering target strength 

(INR), of CFAR schemes for 2 fluctuating targets when N=24, r=3, =2, and design Pfa=1.0E-6.
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Fig. 18. M-sweeps false alarm rate performance as a 

function of the interfering target strength (INR) of the 

CFAR schemes for π
2
 fluctuating targets when N=24 , 

r=3 and design Pfa=1.0E-6 

 

Fig.(19) M-sweeps false alarm rate performance, as a function of the interfering target strength  

(INR), of CFAR schemes for 2 fluctuating targets when N=24, r=3, =4, and design Pfa=1.0E-6.
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Fig. 19. M-sweeps false alarm rate performance as a 

function of the interfering target strength (INR) of the 

CFAR schemes for π
2
 fluctuating targets when N=24 , 

r=3 and design Pfa=1.0E-6 

 

In this case, the primary and the secondary outlying 

targets are assumed to be fluctuating with the same 

degree of freedom and our numerical results are 

constrained to the two limits of the correlation 

coefficient (ρ=0, ρ=1) which are corresponding to the 

well-known Swerling’s models. The curves of these 

figures are labeled in the specified processor (A: for 

cell-Averaging, O: for Order-statistic), the number of 

the integrated pulses M and the Swerling fluctuation 

model.  The numerical results of these figures are given 

for a design rate of false alarm of 10
-6

 and a reference 

window of the size 24 samples. The interfering targets 

are assumed to exhibit 
2
 statistics with full correlation 

(ρi=1), which corresponds to SWI, when the degree of 

freedom is 2, or SWIII, when the degree of freedom is 

4. On the other hand, when the outlying targets exhibit 


2
 statistics with null correlation (ρi=0), the resulting 

fluctuation model is SWII, in the case where the degree 

of freedom is 2, or SWIV, in the case where the degree 

of freedom is 4. The results of these figures show that 

the false alarm rate performance of the CA processor 

degrades as the strength of the interfering target return 

(INR) increases, and the rate of degradation decreases 

as ρ increases or the degree of freedom decreases. This 

statement is common for the CFAR processors 
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considered here. However, the OS(21) scheme has the 

lowest rate of degradation and consequently it is the 

only processor that is capable of maintaining the false 

alarm rate at approximately the desired value, given 

that the number of spurious target returns doesn’t 

exceed its allowable values. In addition, when the INR 

becomes very high, the behavior of the OS detector is 

independent on the correlation coefficient ρ and tends 

to be constant. Moreover, the OS false alarm rate 

performance improves as the number of post-detection 

integrated pulses increases, which is not offered by the 

CA technique. This result is expected since the largest 

interfering target returns occupy the top ranked cells 

and therefore they are not incorporated in the 

estimation of the background noise power level. In 

other words, the noise estimate is free of extraneous 

target returns and therefore it represents the 

homogeneous background environment. Consequently, 

the false alarm rate performance of the OS procedure 

improves as the number of non-coherent integrated 

pulses increase. 

 

5. Conclusion 

This paper addresses the detection probability of a 

radar receiver which the post-detection integrates M 

pulses of an exponentially correlated signal from a 

Rayleigh target in thermal noise is calculated. At the 

limiting correlation coefficients, =1 and =0, the 

analysis yields, respectively, the well-known SWI and 

SWII models. In addition, the detection probability of 

the sum of the M square-law detected pulses is 

computed for the case where the signal fluctuation 

obeys 
2
 statistics with four degrees of freedom. SWIII 

and SWIV cases represent the situations where the 

signal is completely correlated and completely de-

correlated, respectively, from pulse to pulse. Moreover, 

we have analyzed the performance of CFAR processors 

for partial signal correlation in these two situations. 

These processors include the well-known candidates in 

the world of CFAR: CA and OS schemes. CA has the 

best homogeneous performance while the OS has its 

immunity to the presence of the outlying targets as long 

as their number lies within the allowable range. We 

have derived the exact false alarm and detection 

probabilities, in the absence as well as in the presence 

of extraneous targets, for the condition of partial signal 

correlation. The primary and the secondary interfering 

targets are assumed to be fluctuating in accordance with 


2
-distribution with two and four degrees of freedom. 

The analytical results have been used to develop a 

complete set of performance curves including ROC’s, 

detection probability in homogeneous and multi-target 

situations, required SNR to achieve a prescribed values 

of Pfa & Pd, and the variation of the false alarm rate 

with the strength of the interfering target returns that 

may exist amongst the contents of the estimation set. As 

expected, the detection performance of the CFAR 

detectors for partially-correlated 
2
 targets with two 

degrees of freedom is between that for SWI and SWII 

models, while it lies between those of SWIII and SWIV 

models in the case where the targets obey, in their 

fluctuation, 
2
 statistics with four degrees of freedom. 

In any one of these fluctuating families, more per pulse 

signal-to-noise ratio is required to achieve a prescribed 

probability of detection as the signal correlation 

increases from zero to unity. In addition, the false alarm 

rate increases with the signal correlation and the OS 

architecture is the only, relative to the CA scheme, 

processor that is capable of maintaining a constant rate 

of false alarm, irrespective to the interference level, in 

the case where the spurious target returns occupy the 

top ranked cells and they are within their allowable 

values. As a final conclusion, the detection performance 

of a CFAR procedure is related to the target model, the 

number of post-detection integrated pulses, and the 

average power of the target.  

The results for partial-correlation fall between those 

for the two extremes of complete de-correlation and 

complete correlation. Thus, to estimate the performance 

for partially-correlated pulses, interpolation between 

the results for completely correlated and completely de-

correlated conditions can be used as an approximation. 

When the target signal fluctuates obeying 
2
 

statistics, the signal components are correlated from 

pulse to pulse and this correlation degrades the 

processor performance. A common and accepted 

practice in radar system design to mitigate the effect of 

the target fluctuation is to provide the frequency 

diversity to de-correlate the signal from pulse to pulse. 

While this technique is effective, it requires additional 

system complexity and cost 
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