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ABSTRACT: 
Face recognition under uneven illumination is still an open problem. One of the main challenges in real-world face 
recognition systems is illumination variation. In this paper, a novel illumination invariant face recognition approach 
base on Self Quotient Image (SQI) and weighted Local Binary Pattern (WLBP) histogram has been proposed. In this 
system, the performance of the system is increased by using different sigma values of SQI for training and testing. 
Furthermore, using two multi-region uniform LBP operators for feature extraction simultaneously, made the system 
more robust to illumination variation. This approach gathers information of the image in different local and global 
levels. The weighted Chi square statistic is used for histogram comparison and NN (1-NN) is used as classifier. The 
weighted approach emphasizes on the more important regions in the faces. The proposed approach is compared with 
some new and traditional methods like QI, SQI, QIR, MQI, DMQI, DSFQI, PCA and LDA on Yale face database B 
and CMU-PIE database. The experimental results show that the proposed method outperforms other tested methods. 
 
KEYWORDS: Face Recognition, Quotient Image, Illumination Normalization, Self-Quotient Image, Local Binary 
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1.  INTRODUCTION 
Face recognition has been studied for more than three 
decades. Many algorithms have been proposed which 
are effective for controlled environment like PCA [1], 
LDA [2] and ICA [3]. But in real-world applications 
with challenging conditions like illumination, pose and 
expression variations their performance degrades. 
Many approaches have been proposed to resolve these 
problems. 
In [4-12] some algorithms are studied for illumination 
invariant face recognition. Such as Quotient Image (QI) 
[9], Self-Quotient Image (SQI) [8] and Morphological 
Quotient Image (MQI)[9]. Many methods are 
developed based on SQI and MQI. For example QIR 
[13], DMQI [14] and DSFQI[4] are among the 
successful ones. 
References [15-17] have proposed some methods for 
face recognition robust to Pose variation. Pose variation 
attracted many attentions lately. Generally, local 
approaches such as EBGM[18] and LBP[19] are more 
robust to pose variations than holistic approaches such 
as PCA and LDA[17]. 
Moreover, variations in expression make recognition 

harder. Some recent studies have been done in this 
area[20-23]. Because of the complexity of this area, 3D 
methods are used commonly and more successfully 
than 2D methods [20], [23].  
Facial occlusions create significant problems in 
automatic face recognition systems. Partial occlusion is 
very common in facial images which caused by objects 
like sunglasses and scarves. The proposed methods for 
solving this problem generally use one of the two 
following approaches[24], [25]. First, using the non-
occluded face regions in recognition[26]. Second 
rebuilding the occluded area. The second approach is 
used in 3D methods more commonly. 
But still face recognition under uneven illumination or 
with variation in pose and expression is an open and 
challenging problem. 
In this paper, we proposed a novel face recognition 
approach which is robust to illumination variation. Our 
method is based on Self Quotient Image (SQI) and 
weighted Local Binary Pattern (WLBP) [27]. The SQI 
is used for eliminating illumination changes and the 
LBP is used for illumination invariant feature 
extraction. We experimentally proved that each part of 
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From (6), we can conclude that the quotient image 
defined as the ratio between a test image yI  and linear 
combinations of three unknown independent 
illumination images jI , which simulates the lighting 

direction of yI . The quotient image depends only on 
the relative surface texture information and is 
illumination free. 

 
3.2.  Self - Quotient Image 
The main drawback of QI is that its performance 
strongly depends on bootstrap database and known 
lighting conditions. Wang et al. [8] proposed Self 
Quotient Image (SQI) to overcome this limitations. The 
SQI is defined by a face image ),( yxI  and its 
smoothed version ),( yxS  as 

)),(),(/(),(
),(/),(),(
yxIyxFyxI

yxSyxIyxQ
∗=

=
 (7) 

Where ∗ is the convolution operation and F is 
thesmoothing kernel which in this case is a weighted 
Gaussian filter. 
SQI is almost illumination invariant and can be 
calculated from one image which is very important for 
real-world applications. Fig. 3 shows SQI's output for a 
sample image. 

 

 
Fig. 3.Output of SQI for a sample image 

 
3.3.  Morphological Quotient Image 
Morphological Quotient Image (MQI) was proposed by 
Zhang et al.[9]. The MQI uses morphological operation 

to smooth the image and estimate its luminance 
version. In[9], Morphological Closing operation is 
employed for the illumination estimation. The size of 
closing operator is a key parameter for the 
performance.The MQI is faster than the SQI but in its 
normal form, doesn’t have a better performance than 
SQI. Fig. 4 shows the MQI's output for a sample image.  
The authors mentioned that the template size has 
important influence on the output image. So selecting 
the optimal template size should be considered in the 
algorithm. As a result, they presented a method named 
the DMQI which chooses suitable closing operator size. 
The DMQI has a better performance in comparison to 
the MQI, but is slower. Fig. 5 shows the effect of 
template size on the output quotient image [9]. 

 

 
Fig. 4.Output of MQI for a sample image 

 

 
Fig. 5. Quotient image using different template size for 
different size of images (from the first row to the last 

row, the distance between eyes are 32, 80, 120 and 180 
respectively) [9] 

 
4.  THE PROPOSED SYSTEM 
Our proposed system has three layers. In the first layer, 
the SQI is used for eliminating illumination variation. 
Two weighted multi-region LBP with different regions 
count applied to face image separately in the second 
layer. At last, the extracted histograms in previous layer 
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are concatenated together into a single feature vector. 
In order to maximize the accuracy of each part of the 
system, some experiments have done and the best setup 
is selected. 
Yale Face Database B [28] is used in the tests. In all of 
the experiments, a single image with frontal 
illumination of each individual is selected for training. 
For the sake of run time, in this section, the methods 
didn't have run on the whole database. We randomly 
selected 60 images with all illumination conditions. 
These 60 selected images are used for this section's 
experiments. 
 
4.1.  Pre-processing 
In [8], the SQI is proposed to be implemented with 
several scales. But the multi-scale version is slow and 
generally its accuracy is not far better than single-scale 
version. So we used single-scale version in our system. 
1.1.1.Illumination variation elimination 
In the experiments of [10], [29], the SQI and MQI have 
shown promising results. And because our system is 
robust to illumination changes, we selected these two 
algorithms for eliminating the illumination changes 
effect. For selecting the better algorithm, these two 
methods with their default settings are tested on the 
selected images and the results is shown in Table 1. 
 

Table 1. Comparison between the SQI and MQI 
Template and filter size: 7, SQI 1=σ  

Method Accuracy 
SQI 70% 
MQI 65% 

 
The authors mentioned that the template size 7 is a 
proper selection for MQI, therefore we used that. And 
for comparing two methods, SQI filter size is also set to 
7. Table 1 shows that SQI has better accuracy in 
comparison with MQI. So we used SQI for this part of 
the system. 
1.2.1.SQI configuration 
Filter size and sigma value have a great influence on 
SQI accuracy. For selecting the efficient filter size, 
different filter sizes with the default sigma value 1 are 
tested on Yale B selected images. Filter sizes are odd. 
Table 2 shows the results. 
 

Table 2. Comparison of different filter sizes of SQI 
Filter size Accuracy 

7 70% 
9 80% 

11 85% 
13 83.33% 
15 88.33% 
17 80% 

According to the results, filter size 15 is selected. In the 

next step, different sigma values are tested with the 
selected filter sizes. Table 3 shows that sigma value 0.7 
is the best. It has been seen in the experiments that 
using different sigma values for training and testing can 
be effective. As can be seen in Fig. 6, smaller sigma, 
gives us a smoother illumination free image. So by 
using larger sigma for train images and smaller sigma 
for test images, we can get a better recognition rate. 
Table 4 proves this idea. In this table, sigma value 0.7 
with filter size 15 is used for training and different 
sigma values are tested on the selected images. 

 
Table 3. Comparison between different sigma values of 

SQI 
σ  Accuracy 
2 75% 

1.5 81.66 
1 88.33% 

0.9 88.33% 
0.7 90% 
0.5 88.33% 
0.3 73.33% 
0.1 40% 

 

 
Fig. 6. Different sigma values of SQI (left to right: 

original image, 1=σ , 3.0=σ )  
 

Table 4. Comparison between different sigma values 
for testing and training 

Filter size: 15, training 7.0=σ  
Testing σ  Accuracy 

1 88.33% 
0.9 88.33% 
0.7 90% 
0.5 90% 
0.3 91.66% 

 
Based on experiments, the final settings of SQI are as 
follows: 

• Filter size: 15 
• Sigma value for training: 0.7 
• Sigma value for testing: 0.3 

 
4.2.  Illumination invariant feature extraction 
After SQI, 2

2,8
uLBP  is used for illumination invariant 

feature extraction. We used weighted multi region 
uniform LBP. Fig. 9 shows the feature extraction 
process of the system. 
Currently, multi-region LBP is used in face recognition 
field. In this method, the image is divided into local 
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regions and feature histograms are extracted from each 
region independently and then concatenated together. 
The regions count depends on the size of images and 
faces. In multi-region LBP, some regions can be 
concentrated more, like eyes, nose, eyebrows and 
mouth. The regions count is very important. So we did 
some tests for selecting the appropriate regions count 
that can be seen in Table 5. 

 
Table 5. Comparison of different LBP regions count 

Filter size: 15, training 7.0=σ , testing 3.0=σ  
Regions count Accuracy 

11×  35% 

44×  46.66% 

66×  46.66% 

77 ×  90% 

88×  91.66% 

99×  71.66% 

1111×  90% 

1313×  91.66% 

1515×  96.66 

1717 ×  93.33 

1919×  90% 

 
1515× multi-region LBP has the best result in table 5. 

In our system, we want to have a description of face in 
different levels of locality: 1.pixel level 2.regional level 
3.global level. By using 1515×  regions, the regional 
level features will be very close to pixel level, because 
the regions are small. So we used both 1515×  and 

88×  regions which can be seen in Fig. 7. The feature 
histogram of 1515×  regions and 88×  regions are 
calculated separately and concatenated together. 
Because 15 and 8 are odd and even and also, they are 
not dividable to each other, we can have different 
features from different area. 

 

 

Fig. 7 Examples of multi-region LBP (left to right: 
original image, LBP 88× , LBP 1515× ) 

 
4.3.  Weighted Comparison 
The classifier used in the experiments is the nearest 
neighbor with Chi square statistic[30] for histogram 
comparison as in (8). For a more efficient histogram 
comparison, we used weighted Chi square as in (9). 

∑ −

=
+−=

1

0
22 )21/()21()2,1( n

i iiii HHHHHHχ  (8) 

∑ +−=
ji

jijijijijw HHHHwHH
,

,,
2

,,
2 ))21/()21(()2,1(χ (9) 

Where 1H  and 2H  are input histogram and registered 
histogram. Indices i  and j  refers to i th bin in feature 

histogram corresponding to the j th channel and jw  is 

the weight of channel j . 
The final feature histogram is built on all regions of the 
face image. But every region of the face does not have 
the same effect on face recognition process. Some parts 
like eyes, nose, mouth and eyebrows play a key role. 
Therefore we used weighted approach in measuring 
similarity of the face images. This weighted 
comparison is feasible by weighted Chi square. The 
weightsseen in Fig. 8 are selected through some 
experiments, so they can probably be not optimal, but 
definitely effective. 

 

 
Fig. 8.The weighted approach used in comparison 
The darker a region is, the higher its weight is. 
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hardest image set in Yale B database because its faces 
are mostly shadowed and higher recognition rate of our 
method on Yale B is mainly because of its better 
performance on this image set. The results also show 
that quotient image based methods like SQI, MQI, 
DMQI and DSFQI outperforms traditional methods like 
PCA and LDA. The performance of our method is 
superior to its non-weighted (NW) version and this 
proves effectiveness of the proposed weighted 
approach. Of course, speed is an important factor which 
should be considered. For example some methods like 
DMQI and DSFQI are slower than the others. 

 
6.  CONCLUSION 
In this paper, we proposed a novel face recognition 
approach which is robust for illumination variation. 
Our method is based on the SQI and LBP methods. At 
pre-processing stage, the SQI algorithm is applied to 

the input image and made it almost illumination free. 
By using different sigma values for training and testing, 
the performance of the system is increased. Then multi-
region uniform LBP operator is used to extract the 
features of the image. The feature extraction process 
did on two version of the input image simultaneously. 
The first is divided to 88×  equal regions and the other 
is divided to 1515×  regions. The final feature vector is 
made of concatenation of two extracted histograms. 
This approach gathers information of the image in 
different local and global levels. Because of the 
importance of some regions in the face, we used 
weighted comparison which was very effective. 
The results of experiments on Yale face database B and 
CMU-PIE showed that our proposed method is robust 
for illumination variation and outperforms other 
compared methods. 

 
Table 6. The comparison results of different methods on Yale B and CMU-PIE 

Method Recognition Rate % 
CMU Yale B 

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Overall 
PCA 54 - - - - - 50 
QI 84 100 98.3 62.5 34.2 23.6 63.72 
HE - 100 95 88.3 50.7 46.8 76.16 

LDA - - - - - - 79 
QIR - 100 100 100 90 82.1 94.42 
SQI 98.38 100 97.5 100 96.4 97.8 98.34 
MQI 98.75 100 98.3 98.3 98.5 97.3 98.48 

Proposed 
Method (NW) 

98.60 100 98.3 97.5 99.2 98.4 98.68 

DMQI - 100 100 98.3 98.5 97.8 98.92 
DSFQI - 100 99.1 99.1 98.5 98.4 99.02 

Proposed 
Method 

99.11 100 100 97.5 100 98.9 99.28 
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