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ABSTRACT: 
In this paper, an auto tuned load frequency controller based on Fuzzy Wavelet Neural Network (FWNN) and Shuffled 
Frog Leaping Algorithm (SFLA) is employed to damp the deviations of frequency and tie line power due to the load 
disturbances in a multi-area power system. Optimal tuning of the FWNN parameters is very important to improve the 
design performance and achieve a satisfactory level of robustness, for a particular operation. In this work, a new 
systematic tuning method is developed for designing the FWNN load frequency controller. For this, the error between 
the desired system output and output of control object is employed to tune the FWNN parameters. Tuning rule is 
accomplished based on SFLA approach by minimizing a combination of control error. To show the effectiveness of 
the proposed method, some numerical results are presented for a two area power system considering governor 
saturation and the results are compared to the obtained results by a classic PI controller and a fuzzy load frequency 
controller. Moreover, the robustness of the proposed method is tested against change of parameters. The simulation 
studies show that the designed controller by proposed method has a very desirable dynamic performance, better 
operation and improved system parameters such as settling time and step response rise time even when the system 
parameters change. 
 
KEYWORDS: Automatic Generation Control, Fuzzy Wavelet Neural Network, SFLA. 
 
1. INTRODUCTION 
With the development of extensive power systems, 
especially with increasing size, changing structure and 
complexity of these interconnected systems, Load 
Frequency Control (LFC) has become one of the 
important criterion in electric power system design and 
operation and has received a great deal of attention [1]. 
 An interconnected modern power system with 
commercial and industrial loads, require operating at 
constant frequency with stable and reliable power. The 
fundamental goals of the LFC in an interconnected 
power system are to hold reasonably uniform frequency 
at each area and maintain the tie-line power 
interchanges in a predefined tolerance in the presence 
of modeling uncertainties, system nonlinearities, area 
load disturbances and sudden changes in load demands.  
In the modern power system, as a power load demand 
changes randomly, tie-line power interchange and area 

frequency change too. Therefore, a load frequency 
controller design is necessary to keep the reliability of 
the electric power system and   provide better 
conditions for electricity trading and power system’s 
safe operation.  
During the past decades, several control approaches 
have been proposed and applied to the LFC design 
problems including: optimal control, adaptive control, 
sliding mode control and robust control which can be 
found in [2-5], respectively. Each of these techniques 
has their own advantages and disadvantages.  
More recently, there has been a growing concern in 
Artificial Intelligence (AI) techniques, such as fuzzy 
logic control (FLC) [6-8], Artificial Neural Network 
(ANN) [9, 10] and Biologically Inspired (BI) 
algorithms [11-13] to design the load frequency 
controller in a power system by the researches all over 
the world. From among these techniques, since the 
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fuzzy logic controllers provide an effective means to 
model and control a complex and ill-defined plant, 
many control strategies based on fuzzy logic control 
approach have been suggested and applied successfully 
regarding the load-frequency control of power systems.  
Recently, based on the combination of feed-forward 
neural networks and wavelet decompositions, wavelet 
neural network (WNN) has received a lot of attention 
and has become a popular tool for function learning 
[14]. The main characteristic of WNN is that some 
kinds of wavelet function are used as the activation 
function in the hidden layer of neural network, so time 
frequency property of wavelet is incorporated into the 
learning ability of neural networks. However, the main 
problem of WNN with fixed wavelet bases is the 
selection of wavelet frames because the dilation and 
translation parameters of wavelet basis are fixed and 
only weights are adjustable.  
Daniel et al. [15] have proposed a FWNN based on the 
wavelet theory, fuzzy concepts and neural network to 
improve function approximation accuracy. The FWNN 
has multi resolution capability, simple structure, high 
approximation accuracy and good generalization 
performance. The complexity and uncertainty of the 
system can be also reduced and handled by the 
concepts of fuzzy logic. Also, the local details of non-
stationary signals can be analyzed in terms of the 
dilation and translation parameters of wavelets. 
Considering these specifications, there are many papers 
that discuss the synthesis of a fuzzy wavelet neural 
inference system for function approximation, 
identification and control of nonlinear systems.   
In this paper, a new Load Frequency Controller based 
on the FWNN called FWNN-LFC, is proposed to 
design load frequency controller of a multi-area power 
system with system parametric uncertainties. The 
FWNN is used to construct load frequency controllers. 
The architecture of the control system is presented and 
the parameter update rules of the system are derived. 
Learning rules are based on the Shuffled Frog Leaping 
Algorithm (SFLA). The Orthogonal Least Square 
(OLS) algorithm is used to purify the wavelets for each 
rule and determine the number of fuzzy rules and 
network dimension. Furthermore, in order to improve 
the function approximation accuracy and general 
capability of the FWNN system, a self-tuning process 
that uses the SFLA is used to adjust the network’s 
nonlinear and linear parameters such as translation 
parameter of wavelets, membership function 
characteristic and weights coefficients of sub-WNN. 
The proposed approach is implemented to a two-area 
interconnected power system regarding governor 
saturation. The obtained results by proposed approach 
are compared to those obtained by classic PI controller 
and a fuzzy controller reported in the literature. 
Simulation studies show that the dynamic performance 

of the proposed controller is considerably desirable. 
The paper is organized as follows:  the basic concepts 
of the FWNN and SFLA are briefly explained in 
Sections2 and 3, respectively. The used study system in 
the simulations is given in section 4. In section 5, the 
proposed FWNN-LFC scheme is described. The 
simulation results of the study system are presented in 
section 6 and some conclusions are drawn in section 7. 
 
2. FUZZY WAVELET NEURAL NETWORK 
OVERVIEW 
The FWNN is a multi-layer network which integrates 
fuzzy model with wavelet neural networks.  For a 
multi-input-single-output (MISO) with ],...,[ 1 qxxx = as 
input and y as output of the system,  a typical fuzzy 
wavelet neural network for approximating arbitrary 
nonlinear function y can be described by a set of fuzzy 
rules as follow [15]: 
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Where iR )1( ci ≤≤ is the i th fuzzy rule and jx is the j 

th input variable of x .  Also iŷ calculates the output of 
local model for rule iR . iM  and iT  determine the 
dilation parameters and total number of wavelets for 
the i th rule, respectively. ],...,,[ 21
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Where i
jp 1  represents the center of membership 

function and i
jp 2 determine the width and the shape of 

membership function, respectively. Moreover, wavelets 
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By applying fuzzy inference mechanism and let iŷ be 
the output of each sub-WNN, the total output of FWNN 
for function )(xy is as follows:  

∑
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iμ . Also, iμ̂  determines the 

contribution of the output degree of the wavelet based 
model with resolution level, iM .  
A good initialization of wavelet neural networks leads 
to fast convergence. Several methods are implemented 
for initializing wavelets such as: Orthogonal Least 
Square (OLS) procedure and clustering method [16]. In 
this paper the OLS algorithm is used to select important 
wavelets and determine the number of fuzzy rules and 
network dimension. More details about the construction 
of FWNN and network parameter initialization can be 
found in [16].  
Furthermore, it is important to adjust the required 
network parameters in the dynamic systems design. In 
order to avoid trial-and-error, a self-tuning process is 
used by employing the SFLA to determine significant 
parameters such as dilation, translation, weights and 
membership functions. On the other word, during the 
learning process, these network parameters are 
optimized using SFLA. To make a proper background, 
the concept of SFLA will be defined in the next 
section.  
 
3. SFL ALGORITHM OVERVIEW 
Shuffled Frog Leaping (SFL) algorithm is one of the 
biologically-based inspirations that its formulation is 
derived from two other search techniques: the local 
search of the “particle swarm optimization” technique 
and the competitive mixing of information of the 
“shuffled complex evolution” technique. That attempts 
to balance between a wide scan and also a deep search 
of promising locations for a global optimum. The 
SFLA is derived from a virtual population of frogs in 
which individual frogs represent a set of possible 
solution. Each frog is distributed to a different subset of 
the whole population referred to as Memeplex. The 
different memeplexes are considered as different 
culture of frogs that are located at different places in 
the solution space (i.e. global search). Each culture of 
frogs performs simultaneously an independent deep 
local search using a particle swarm optimization like 
method. Within each memeplex, the individual frogs 

hold ideas, that can be influenced by the ideas of other 
frogs within their memeplexand evolve through a 
change process of information among frogs from 
different memeplexes [18], [19]. 
To ensure global exploration, after a defined number of 
memeplex evolution steps (i.e. local search iterations), 
information is passed between memeplexes in a 
shuffling process. Shuffling improves frog ideas quality 
after being infected by the frogs from different 
memeplexes; ensure that the cultural evolution towards 
any particular interest is free from bias [20]. In addition 
to the improved information, random virtual frogs are 
generated and substituted in the population if the local 
search cannot find better solutions. After this stage, 
local search and shuffling processes (global relocation) 
will continue until defined convergence criteria are 
satisfied. The flowchart of the SFLA is illustrated in 
Fig. 1. 

 
Fig. 1. General principle of the SFLA [20] 

 
The SFLA begins with an initial population of “N” 
frogs, P={X1,X2, ...,XN} created randomly within the 

Begin 

No

Yes

-Initialize:  
-Population size (N)  
-Number of memeplexes (m) 
-Number of evolution step 
within each memeplex.

Generate population (P) 

Local search 
Iterative updating the 

worst frog of each memeplex

Convergence 
criteria satisfied?

End

Evaluate the fitness of (P)

Sort (P) in descending order

Partition (P) into m memeplexes

Shuffle the 

Determine the best solution



Majlesi Journal of Electrical Engineering                                                                      Vol. 7, No. 4, December 2013 
 

58 
 

feasible space Ω. For S-dimensional problems (S 
variables), the position of the “ith” frog is represented 
as Xi= (xi1,xi2,...,xiS). A fitness function is defined to 
evaluate the frog’s position.  
Afterward the performance of each frog is computed 
based on its position. The frogs are sorted in a 
descending order according to their fitness. Then, the 
entire population is divided into m memeplexes, each 
of which consisting of n frogs (i.e. N=m×n). In this 
process, the first frog goes to the first memeplex, the 
second frog goes to the second memeplex, frog m goes 
to the m thmemeplex, and frog m+1 back to the first 
memeplex, and so on. 
Within each memeplex, the position of frog i th (Dj) is 
adjusted according to the difference between the frog 
with the worst fitness (Xw) and the frog with the best 
fitness (Xb) as shown in equation (1), where rand() is a 
random number in the range [0,1]. During memeplex 
evolution, the worst frog Xw leaps toward the best frog 
Xb. According to the original frog leaping rule, the 
position of the worst frog is updated as follows: 

)(())(D changePosition i wb XXrand −×=                (5) 
)(,)( maxDDDXnewX ww <+=                                      (6) 

Where Dmax is the maximum allowed change of frog’s 
position in one jump. If this repositioning process 
produces a frog with better fitness, it replaces the worst 
frog, otherwise, the calculation in equations (5) and (6) 
are repeated with respect to the global best frog (Xg), 
(i.e. Xg replaces Xb.). If no improvement is possible in 
this case, then a new frog is randomly generated to 
replace the worst frog. The evolution process is 
continued for a specific number of iterations [17], [20]. 
 
4. POWER SYSTEM MODEL 
In actual power system operations, the load is varying 
randomly and continuously throughout the day. As a 
result, both frequencies in all areas and tie-line power 
flow between the areas are affected by these load 
changes at operating point. These changes create a 
mismatch between generations and demand that makes 
the exact forecast of real power demand unassured. 
Therefore, for good and stable power system operation, 
both the frequency and tie-line power flow should be 
kept constant against the sudden area load 
perturbations, system parameter uncertainties and 
unknown external disturbances. Therefore, to ensure 
the quality of power supply, a load frequency controller 
is needed to restore the system frequency and the net 
interchanges to their desired values for each control 
area. 
The area frequency deviation )( fΔ  and tie-line power 
deviation )( tiePΔ are two important parameters of 
interest. The linear combinations of them are known as 
area control error (ACE). The measurements of all the 
generation and all load in the system for computation 

of the mismatch between the generation and obligation 
in one area is so hard. The mismatch is measured at the 
area control center by using ACE. The ACE for the i th 
area is defined as: 
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Where act
tiei

P  and s
tiei

P are the actual and scheduled 
(manually set) interchange of i th area with neighboring 
areas, respectively. Also, act

i
f  and s

if  are the area’s 
actual and scheduled frequency, in i th area and B is the 
frequency bias coefficient of i th area that is a negative 
number measured in MW per 0.1Hz. However, the 
ACE signal often is calculated using the area frequency 
response characteristic β instead of B: as follows: 
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In which iD  is the damping ratio or the frequency 
sensitivity of the i tharea’s load and iR  is the 
regulation due to governor action in the i th area, or 
droop characteristic. Also, iβ is the frequency bias 
constant and should be high enough such that each area 
adequately contributes to the frequency control [5]. 
A two-area interconnected power system with 
considering governor limiters is investigated in this 
study. Each area consists of three major components 
including turbine, governor and generator. The detailed 
transfer function block diagram of uncontrolled two-
area system is shown in Fig. 2.  
 

 
Fig. 2. Two-area interconnected power system 

 
Where 1fΔ  and 2fΔ are the frequency deviations in area 
1 and area 2 respectively in Hz. Also 1LPΔ  and 2LPΔ
are the load demand changes in areas 1 and 2 
respectively per unit (p.u). The main objective of 
control system is to damp these variations to zero as 
fast and smooth as possible and following a change in 
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the load demand values.  
Moreover, giT , tiT  and iM are speed governor time 
constant (s), turbine time constant (s) and power system 
time constant (s) of ith area, respectively. The detailed 
transfer function models of the speed governors and 
turbines are discussed in [1]. Typical data of the system 
parameters and governor limiters for the nominal 
operation condition are presented in Table 1.  
 

Table 1.Two Area Interconnected Power System 
Parameters 

Area Parameters 

Area#1 

M=10, D1=0.8, Tg=0.2, Tt=0.5, R1=0.05, 

4.0=open
GVX&

, 5.1=close
GVX& , 

2.1=open
GVX 4.0=close

GVX , T12=2 

Area#2 

M=8, D2=0.9, Tg=0.3, Tt=0.6, R2=0.0625, 

4.0=open
GVX& , 5.1=close

GVX& , 2.1=open
GVX , 

4.0=close
GVX , T12=2 

 
5. DESIGN OF FWNN LOAD FREQUENCY 
CONTROLLER USING SFL ALGORITHM  
The detailed block diagram of the proposed FWNN 
load frequency controller is given in Fig.3. This figure, 

the proposed FWNN-LFC implements two input 
signals for each area. The two signals used for area 
number one is the area control error (ACE) for area 
number one and its change rate. The two input signals 
used for the FWNN load frequency controller of area 
number two is the area control error (ACE) for the area 
number two and its change rate. 
The objective of the control problem is to track the 
frequency deviation to zero in the case of a load 
disturbance. To achieve this control means the neural 
control system synthesis is performed in the closed-
loop control system and the linear combinations of 
frequency deviation and tie-line power deviation, i.e. 
area control error (ACE) is taken as tracking error for 
tuning FWNN load frequency controller parameters to 
provide appropriate control input.  
By minimizing a quadratic measure of the tracking 
error, the design problem can be characterized by the 
SFLA formulation. On the other hand, the SFLA is 
used to correct the network parameters for adjusting of 
the FWNN load frequency controller. By using above 
control strategy, the designing FWNN load frequency 
controller is equivalent to determination of the FWNN 
parameters.

  
 

 
 

 
Fig. 3. Fuzzy Wavelet Neural Network load frequency controller scheme 
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Here we used a fitness function that using the ACE of 
each area, as follow: 

( )∑
=

+=
L

l
ACEACEFitness

1

2
2

2
1                                    (10) 

Where L is the number of network training data. 
According to Fig. 3, the ACE of each area is measured 
in eachiterationand will be given to the SFLA 
optimizer. Then the solution vector is obtained by 
SFLA by minimizing the fitness function which gives 
the FWNN-LFC parameters. By using the obtained 
parameters, the network’s outputs are calculated and 
applied to the system followed by calculating the new 
ACEs. The procedure continues until a termination 
criterion is met. The termination criterion could be the 
number of iterations, or when a solution of minimal 
fitness is found. 
Equations (2)-(4) show that the free parameters to be 
trained in FWNN are i

jp 1 , i
jp 2 , kt  and 

iMw  where , 

ci ,...,1= , qj ,...,1= . Our task is to design the FWNN 
basis function expansion such that the objective 
function (10) is minimized. Therefore SFLA is applied 
for tuning parameters of FWNN by optimizing the 
following objective or cost function. 
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Where Fk is the fitness of Kth frog. In the SFLA, each 
population is a solution to the problem which 
determines the parameters of FWNN, i.e. 
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In (12), the superscript T denotes the vector transpose 
operation. Thus, all free design parameters that to be 
updated by SFLA in FWNN load frequency controller 
are as follows: 
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By applying the SFLA, the best frog (solution) 
corresponding to the smallest fitness value can be 
obtained. In SFLA, during each generation, the frogs 
are evaluated with some measure of fitness, which is 
calculated from the objective function defined in (11).  
Then the best solutions are chosen. In the current 
problem, the best solution is the one that has minimum 
fitness.  
 
6. SIMULATION STUDIES 
In this section, a two-control area power system, shown 
in Fig.3 is considered as a test system. The typical data 

for the system parameters and governor limiters for 
nominal operation condition are presented in Table 1.  
To indicate the effectiveness of the proposed FWNN 
load frequency controller for the studied two area 
power system that is subjected to two different load 
disturbances, the studied power system frequency 
deviations and tie line power are obtained. 
Comparisons between the power system response using 
the proposed wavelet neural network controller, and 
those using the conventional proportional integral (PI) 
[1] and fuzzy controller [7] are performed, and the 
results are discussed. 
At first, the network was initialized and each FWNN-
LFC was trained using a set of 500 input-output. By 
applying OLS algorithm, three fuzzy rules with four 
selected wavelets are represented for constructing the 
FWNN based controller. Three fuzzy rules are used in 
FWNN structure and consequently 36 parameters have 
to be updated. The initial values of the parameters of 
FWNNs are generated randomly in the interval [–5, 5] 
and a SFLA based approach is used to reach the 
optimal values. The training of FWNN system is 
performed for 500 data points. The fitness value is 
calculated as (11).To impediment the SFL algorithm, 
the number of frogs in the population is set to be 400. 
Also, the number of memeplex is considered to be 10 
and the number of evaluation for local search is set to 
10. Also, maxD ischosen as in f and the number of 
iterations is considered to be 200. 
In order to show the ability and efficiency of the 
proposed method, a conventional PI controller by using 
adopted approach from [1] is applied for comparison, 
too. It was found that KI1=KI2=0.3 were the best 
selections for having the best performance. Moreover a 
fuzzy load frequency controller is designed based on 
the proposed approach in [7] and applied for 
comparison. 
The designed FWNN load frequency controller and 
those obtained by PI controller and fuzzy controller are 
placed in the case study (Fig. 3). To show the 
effeciency of the designed controllers, a time domain 
analysis is performed for the case study. To test the 
proposed method, a sudden small load perturbation 
which continuously disturbs the normal operation of 
the power system is applied to the system. Here we use 
a step load change of 0.01 per unit (i.e. 1LPΔ = 2LPΔ
=0.01). The frequency deviation of both areas and tie-
line power variation in nominal condition of the closed 
loop system are obtained and shown in Figs. 4, 5 and 6 
respectively. 
 The comparison between curves indicates that by using 
the proposed method, the frequency deviation and tie-
line power variation of the two areas follow the load 
changes and are quickly driven back to zero. It should 
be mentioned that although the overshoot of frequency 
response of fuzzy controller shown in Fig. 5 is better 
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than the proposed approach, but the time settling of the 
latter is better than the former. Generally, by looking at 
Figs. 4-6 it can be concluded that the proposed method 
gives a better performance than the classic LFC. 
To show the robustness of the proposed approach and 
to investigate the effect of the changing parameters on 
the system performance, two system parameters are 
considered as 20% increase for all system parameters 
(upper bound) and 20% decrease for all system 
parameters (lower bound). The dynamic behavior of the 
system was evaluated for 20 s. Figs 7-12 show response 
system for upper and lower bound of parameters 
condition including frequency deviation of areas 1 and 
2, and also, tie-line power deviation. 
 

 
Fig. 4. Frequency deviation of area 1 

 

 
Fig. 5. Frequency deviation of area 2 

 
Fig. 6. Tie-line power deviation 

 
Fig. 7. Frequency deviation of area 1 for upper bound 

of parameters 

 
Fig. 8. Frequency deviation of area 2 for upper bound 

of parameters 
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Fig. 9. Tie-line power deviation for upper bound of 

parameters 

 
Fig. 10. Frequency deviation of area 1 for lower bound 

of parameters 

 
Fig. 11. Frequency deviation of area 2 for lower bound 

of parameters 

 
Fig. 12. Tie-line power deviation for lower bound of 

parameters 
 

Figs 8-13 show the dynamic performance of the studied 
two area power system with the conventional PI 
controller and with the proposed fuzzy wavelet neural 
network controller. The superiority of the proposed 
FWNN controller over the conventional PI controller is 
obvious in damping the system frequency oscillations 
very fast. Also, there is less undershoot for area number 
one and area number two, and the damping of the tie 
line power oscillations is very fast with the proposed 
FWNN controller. 
 
7. CONCLUSION 
In this paper a new load frequency controller based on 
fuzzy wavelet neural network and shuffled frog leaping 
algorithm (FWNN-LFC) is developed to quench the 
deviations in frequency and tie line power due to load 
disturbances in an interconnected power system. The 
FWNN is trained to tune the parameters of FWNN-
LFC based on real-time measurements of area control 
error in each area. Also, an efficient SFL algorithm is 
proposed to learn the FWNN and find optimal values of 
the parameters of FWNN-LFC. The performance of 
designed FWNN-LFC is examined on a two area 
interconnected power system with considering 
governor limiters and the results obtained are compared 
with a classic PI controller and a fuzzy controller.  The 
robustness and effectiveness of the proposed FWNN-
LFC is verified under different disturbances. 
Simulation results show that the superiority of the 
proposed FWNN controller over the PI and fuzzy 
controllers is obvious in damping the system frequency 
oscillations very fast. Also, there is less undershoot for 
area number one and area number two, and the 
damping  the tie line power oscillations is very fast 
with the proposed FWNN load frequency controller. 
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