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ABSTRACT: 
Early detection of heart diseases/abnormalities can prolong life and enhance the quality of living through appropriate 
treatment. Whereas clustering of electrocardiogram (ECG) signals will help to identify the heart diseases as soon as 
possible. In this regard, neural network and fuzzy logic have been used in many application areas while each of them 
has the advantages and disadvantages. Thus, the present paper utilizes the proposed fuzzy neural network (FNN) with 
initial weights generated by genetic algorithm (GFNN) for the sake of improvement testing speed, accuracy and for 
reducing the chance of the FNN getting stuck on a local minimum. 
Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat and atrial 
fibrillation beat) obtained from the Physio Bank databases were clustered by the proposed GFNN model. Model of 
evaluation results indicate that the proposed model can perform more accurately and it has less testing speed than the 
conventional statistical methods, a single ANN and FNN. The total clustering accuracy of the GFNN model is 
98.23%. 
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1.  INTRODUCTION 
The electrocardiogram (ECG) signal is the recording of 
the bioelectrical activities of the cardiac system. It 
provides valuable information about the functional 
aspects of the heart and the cardiovascular system. 
Early detection of heart diseases/abnormalities can 
prolong life and enhance the quality of living through 
appropriate treatment [1]. For effective diagnostics, the 
study of ECG pattern and heart rate’s variability signal 
may have to be carried out over several hours. Thus, 
Conventional methods of monitoring and diagnosing 
electrocardiographic changes rely on detecting the 
presence of particular signal features by a human 
observer. Due to large number of patients in intensive 
care units and the need for continuous observation of 
such conditions, several techniques for detecting 
automated electrocardiographic changes have been 
developed in the past 10 years to attempt to solve this 
problem [2]. 
Fuzzy set theory plays an important role in dealing with 
uncertainty when making decision in medical 
applications. Therefore, fuzzy sets have attracted the 
growing attention and interest in modern information 
technology, production technique, decision making, 
pattern recognition, diagnostics, data analysis, etc [3]. 

Neuro-fuzzy systems are fuzzy systems which use the 
artificial neural networks. (ANNs) theory in order to 
determine their properties (fuzzy sets and fuzzy rules) 
by processing data samples [4]. Neuro-fuzzy systems 
harness the power of the two paradigms: fuzzy logic 
and ANNs, by utilizing the mathematical properties of 
ANNs in tuning rule-based fuzzy systems that 
approximate the way of human process information [5]. 
Gas can be applied for either optimization or clustering. 
The advantages of GAs over conventional parameteric- 
optimal techniques are that they are appropriate for ill-
behaved problems, for global optima in highly 
nonlinear spaces and for adaptive algorithms [6]. 
Nasiri et al (2009) present the Genetic-ESVM, a novel 
clustering system based on a GA, which is designed to 
improve the generalization performance of the so-
called Emphatic Support Vector Machine (ESVM) 
cluster. In this paper, the feature selection found by the 
Genetic-SVM greatly improves the quality of clustering 
with respect to other algorithms [7]. 
Chua and Woei (2011) present a non-singleton fuzzy 
logic classifier (NSFLC) and assess its ability to cope 
with uncertainties in ECG signals clustering. The 
NSFLC has fuzzy clustering boundary and noise 
suppression capability and also achieves good 
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clustering results using features that are easier to 
extract, but contains more uncertainties [8]. 
Doğan and Mehmet (2013) present a paper for 
Clustering of ECG signals based on the kernelized 
fuzzy c-means algorithm. In fact, this paper uses kernel 
methods to improve the clustering performance of the 
well known fuzzy c-means algorithm by mapping a 
given dataset into a higher dimensional space non-
linearly. This method overcomes the drawbacks of the 
traditional algorithms such as, sensitivity to 
initialization and lack of prior knowledge for optimum 
parameters of the kernel functions [9]. 
De Carvalho Junior et al (2013) present a paper for 
clustering of ECG signals based on fuzzy cluster 
algorithm. This article presents the viability analysis 
and the development of heart disease identification 
embedded system. In fact, the goal of the developed 
system is the analysis of heart signals. The ECG signals 
are applied into the system that performs an initial 
filtering, and then uses a Gustafson–Kessel fuzzy 
clustering algorithm for the signal clustering and 
correlation [10]. 
Jewajinda and Prabhas (2013) present a paper for 
clustering of ECG signals based on a parallel genetic 
algorithm. In fact, this paper uses the cellular compact 
genetic algorithm (c-cGA) for adaptive hardware to 
implement it. The c-cGA not only provides a strong 
search capability while maintaining genetic diversity 
using multiple GAs but also has a cellular-like structure 
and is a straight-forward algorithm suitable for 
hardware implementation [11].  
Thus, the present study utilizes a method for clustering 
of ECG signals based on the proposed fuzzy neural 
network with initial weights generated by genetic 
algorithm (GFNN). The proposed method improves 
testing speed, accuracy and also reduces the chance of 
the FNN getting stuck on a local minimum and 
analyzes uncertainties, accurately. 
 
2.  GENETIC ALGORITHM (GA) 
GAs are for general purposes, in contrast to search 
algorithms, which are for solving complex problems. 
Based on the mechanics of natural selection and natural 
genetics, GAs work by repeatedly modifying a 
population of artificial structures through the 
application of genetic operators. Fitness information, 
instead of gradient information, is the only requirement 
for GAs. Gas can be applied for either optimization or 
clustering. The advantages of GAs over conventional 
parameter optimization techniques are appropriate for 
ill-behaved problems, for global optima in highly 
nonlinear spaces and for adaptive algorithms [12]. 
The required parameters are binary coded, combined 
together as a string, or structure called a chromosome, 
while each bit of the chromosome is treated as a gene. 
The GA starts with a population of n randomly 

generated structures, where each structure encodes a 
solution to the task at hand. Thereafter, the GA further 
processes a fixed number of generations, or continues 
until it satisfies some predetermined criterion, by using 
three operators, selection, crossover, and sequential 
mutation. The structure with optimum, or the highest 
fitness value of the last population is selected. In the 
GA, reproduction is implemented by a selection 
operator, with the selection based on population 
improvement or “survival of the fittest” operator, 
duplicating structures with higher fitness values and 
deleting structures with lower fitness values. The 
probability of being duplicated for each gene is defined 
as: 

                                                      (1) 
 

Where fi denotes the fitness function value of the ith 
chromosome and s is the population number. 
This is only one of the many types of selections 
possible in a GA. If crossovers when combined with 
selection, yields good components of good structures 
and combines to give even better structures. The 
crossover forms n=2 pairs of parents if population 
number is n. Each pair produces two offspring 
structures to the mutation stage. The offspring are the 
outcomes of cutting and splicing of the parent 
structures at various randomly selected crossover 
points. The approach for selecting crossover points is 
one point crossover, two-point crossover and a uniform 
crossover. For instance, the two-point crossover 
randomly selects the switch point for two parents, 
switching the genes from the switch point of the two 
parents to then generate two new offspring. 
In contrast, mutation creates new structures that are 
similar to the current ones, with a small, pre-specified 
probability randomly altering each component of each 
structure. For instance, if the third gene of the parent, 
10111110, is specified as the mutation gene and the 
mutation probability is within the threshold value, e.g. 
0.001, then the new structure should be 10011110. The 
reason for using mutation is to prevent missing some 
significant information during reproduction and 
crossover, thus preventing a local minimum. 

 
3.  MATERIALS AND METHODS 
The above sections have indicated the significance of 
researching subject, as well as providing essential basic 
information. The proposed model consists of (1) data 
collection, (2) special pattern model (GFNN). 
The objectives of using a GA are to reduce the chance 
of the FNN getting stuck on a local minimum and to 
accelerate the testing speed. Thus, the GA is 
implemented first in order to reach near optimum. 
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Thereafter, the FNN is employed to fine-tune the 
results.  
 
3.1.  Data Description 
Physio Bank database [12] is a large and growing 
archive of well-characterized digital recordings of 
physiologic signals and related data for use by the 
biomedical research community. Physio Bank currently 
includes databases of multi-parameter 
cardiopulmonary, neural, and other biomedical signals 
from healthy subjects and patients with a variety of 
conditions with major public health implications, 
including sudden cardiac death, congestive heart 
failure, epilepsy, gait disorders, sleep apnea, and aging. 
The databases of normal beat, congestive heart failure 
beat, ventricular tachyarrhythmia beat, and atrial 
fibrillation beat were studied in this work. The 
waveforms of four different ECG beats (normal beat, 
congestive heart failure beat, ventricular 
tachyarrhythmia beat, and atrial fibrillation beat) 
considered in this study are shown in Fig. 1(a)–(d). 
 

 
Fig. 1. Waveforms of the ECG beats (a) normal beat, 

(b) congestive heart failure beat, (c) ventricular 
tachyarrhythmia beat, and (d) atrial fibrillation beat. 

 
The PhysioBank database contains 50 records. The 
subjects were 25 men aged 32–89 years, and 25 women 
aged 23–89 years. Each of the 50 records is slightly 
over 30 minutes long. In most records, the upper signal 
is a modified limb lead II, obtained by placing the 
electrodes on the chest. The lower signal is usually a 
modified lead V1 (occasionally V2 or V5, and in one 
instance V4); as for the upper signal, the electrodes are 
also placed on the chest. This configuration is routinely 
used for the Physio Bank database. The original analog 
recordings were made by using nine Del Mar Avionics 
model 445 two-channel recorders, designated A–I. The 
analog outputs of the playback unit were filtered to 
limit analog-to-digital converter (ADC) saturation and 
for antialiasing, using a band pass from 0.1 to 100 Hz 

relative to real time, well beyond the lowest and highest 
frequencies recoverable from the recordings. The 
bandpass-filtered signals were digitized at 360 Hz per 
signal relative to real time by using hardware which 
were constructed at the MIT Biomedical Engineering 
Center and at the BIH Biomedical Engineering 
Laboratory. The sampling frequency was chosen to 
facilitate implementations of 60 Hz digital notch filters 
in arrhythmia detectors. The ADCs were unipolars, 
with 11-bit resolution over ±5mV range. Given the 
sampling frequency and the resolution of the ADC, 
shown that the difference encoding implies a maximum 
recordable slew rate of ±225 mV/s. In practice, this 
limit was exceeded by the input signals very 
infrequently, only during severe noise on a small 
number of records [13]. 
The ECG signals were divided into two separate data 
sets- the training data set and the testing data set. In this 
study, the 360 vectors (90 vectors from each class) 
were used for training and the 360 vectors (90 vectors 
from each class) were used for testing. The highest 
accuracy was obtained by dividing the data into two 
equal parts for training and testing. The training data 
set was used to train the GFNN model, whereas the 
testing data set was used to verify the accuracy and the 
effectiveness of the trained GFNN model for clustering 
of the four classes of ECG signals. 
 
3.2.  GFNN Architecture 
In order to evaluate performance of GFNN model, first 
the data are obtained through PhysioBank. After this 
procedure, the collected data can be applied to train the 
proposed GFNN. The GFNN structure is presented in 
this study [6]. The GFNN is able to handle the fuzzy 
inputs, weights and outputs and it basically consists of 
two components: (1) GA and (2) FNN. Each part is 
thoroughly discussed in the following subsections: 
 
3.2.1. Initial Weight’s Generation through GA 
Various attempts have been made to combine GA and 
ANN’s learning for the optimization of the weights 
and/or topologies of neural networks. Some researchers 
[14], [15] achieved good results while others [16], [17] 
found that learning did not help a lot. Sun (2011) used 
GA’s to find possible regions containing the global 
optimum, and then he used learning as a final fine-
tuning operator [18]. The present study applies GA to 
generate the initial weights for the FNN, which are 
close to the global optimum. Not only this decreases 
the testing time, but also it may help to reduce the 
chance of the FNN getting stuck on a local minimum. 
Then the FNN-learning algorithm proposed in the next 
subsection is utilized as a final fine-tuning operator. 
The procedures for GA are as follows: 
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Step 1: Randomly generate n structures of population 
and set up the number of generation and fitness 
function. 
Step 2: Assess the fitness function value of each 
chromosome. 
Step 3: Process the chromosome operation, selection, 
crossover, and mutation. 
Step 4: Evaluate the fitness function of each new 
chromosome. 
Step 5: Eliminate the chromosomes with lower fitness 
function values and add the new chromosomes with 
higher fitness function values.  
Step 6: If the stop criterion is satisfied, stop; otherwise, 
go back to Step 3. 

In the present study, the fitness function is de- 
fined as: 

                                          (2) 
 
Where N denotes the number of population, Ti 
represents the ith desired output, and Yi is the ith actual 
output. The applied coding method is the on the basis 
of 1/2, since it is the most commonly used binary 
coding. The size of population in the present study is 
set to be 50. 
 
3.2.2. Fuzzy Neural Network (FNN) 
Fuzzy number operations: Before describing the FNN 
architecture, the fuzzy numbers and the fuzzy number 
operations are defined by the extension principle. In the 
proposed algorithm, real numbers are denoted by lower 
case letters (e.g. a,b,…) and fuzzy numbers are denoted 
by upper case letters under a bar (e.g.  …), 
respectively. Since input vectors, connection weights 
and output vectors of multi- layer feedforward neural 
networks are fuzzified in the proposed FNN, the 
addition, multiplication and nonlinear mapping of the 
fuzzy numbers are necessary for defining the proposed 
FNN. Thus, they are defined as follows: 
 

 (3) 
 

 (4)                  
    

     (5) 
 

Where  are the fuzzy numbers,  denotes 
the membership function of each fuzzy number;  is 
the minimum operator; and 
f(x)=  is the activation function 

of hidden units and output units of the proposed FNN. 
The α-cut of the fuzzy number  is defined as: 

  (6) 
 
Where  represents = and 

 and are the lower boundary and the 
upper boundary of the α-cut set , respectively. 
FNN-learning algorithm: The proposed FNN learning 
algorithm is similar to an EBP-type learning algorithm. 
However, some assumptions are needed to be clarified, 
as follows: 

• fuzzify a three-layer feed forward neural 
network with nI input units, nH hidden units, 
and nO output units (i.e., input vector, target 
vectors connection weights and thresholds are  
fuzzified by using the presented method by 
Möller et al [19]; 

• the input vectors are non-negative fuzzy 
numbers; 

• These fuzzy numbers are asymmetric 
Gaussian shaped fuzzy numbers. 

The input- output relation of the proposed FNN (Fig. 2) 
is shown by the extension principle [6]. Efendigil et al. 
(2009) note the details of ever layer with execution 
frames [20]. 

 

 
Fig. 2. The FNN architecture 

  
Learning algorithm: 
Step 1: Initialize the fuzzy weights and the fuzzy biases 
through the GA. 
Step 2: Repeat Step 3 for α= {α1,…,αn} where α is the α- 
cut set. 
Step 3: Repeat the following procedures for p=1, 2, …, 
m, where p is the number of training samples. 
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• Forward calculation: Calculate the a-cut set of 
the fuzzy output vector corresponding to 
the fuzzy input vector . 

• Back-propagation: Adjust the fuzzy weights 
and the fuzzy biases using the cost function 

 Cost  function defined as: 

                                        (7) 
 
Where Tp and Op are the target and the actual outputs, 
respectively. 
Step 4: If the stop condition is not satisfied, go to Step 
2. 
 
4.  DISCUSSION AND RESULTS 
Selection of the FNN inputs is the most important 
component of designing the Fuzzy neural network 
based on pattern clustering since even the best cluster 
will perform poorly if the inputs are not selected well. 
Input selection has two meanings: (1) which 
components of a pattern, or (2) which set of inputs 
represent the best given pattern. ECG signals are 
applied as the input of FNN system and four types of 
heart beat as output are got. 
Therefore, this section will apply the GA to set up 
firstly, the initial fuzzy weights for the FNN, and then 
the FNN will fine-tune the weights, clearly accelerating 
the testing speed. 
The setup of the GA for GFNN is as follows: 

• The number of genes: 50. 
• Crossover rate: 0.2 and 0.5. 
• Mutation rate: 0.8 and 0.5. 
• Generation replacement type: whole. 
• Generation number: 1,000. 
• Crossover type: single-point, double-point, 

and uniform are tested. 
• The number of hidden nodes: 3, 4, and 6. 

 
4.1.  Setup for initial weights 
Based on the above setup, the GA can determine the 
initial fuzzy weights for the second example, with nine 
training pairs. The computation results are presented in 
Tables 1±3. The execution time in the tables is the real 
time spent by implementing GFNN program and using 
an IBM compatible PC-586/133 in the Windows-95 
environment.  
Tables 2 and 3 indicate that the two-point crossover can 
provide the lowest MSE values after training 1,000 
generations. However, the uniform crossover always 
has a higher MSE value compared to one-point and 
two-point crossovers. The results are similar to 
previous research studies. Therefore, this study chooses 
the two-point crossover to formulate the initial fuzzy 

weights for the GFNN. By using the GA computation it 
is possible to generate identical genes after certain 
generations. In order to overcome this problem, the 
present study employs replacement of the whole 
generation. Thus, the genes can also avoid getting old 
quickly. As shown in Table 2, the number of different 
genes decreases from 50 to 30 after 1,000 generations, 
so this implies that there are only 30 solutions. 
However, due to computation time, only three groups 
of weights with the largest fitness functional values are 
used for fine-tuning through error back propagation 
type learning algorithm. Since the main objective of 
using the GA is to determine the “rough” solution for 
the GFNN, no more different combinations of 
crossover rates and mutation rates are verified. 
However, the results shown in Table 1 indicate when 
the crossover rate and the mutation rate are 0.2 and 0.8, 
respectively; the fitness function value is at a maximum 
one.  
Regarding the number of generations to run, the study 
pre-tests different numbers of generations. With 500 
generations, the fitness function value is still very large. 
However, if the training is continues the MSE value of 
5,000 generations, only it declines to 0.002, compared 
with the MSE value of 1,000 generations. However, the 
computational time is increased by 5 times, indicating 
that it is not efficient enough for practical applications. 
Thus, the final conclusion is to choose 1,000 
generations as the stop criteria. 
 
4.2. Fine-Tuning for the GFNN Weights  
This section uses four groups of weights (best, second, 
third, and worst) obtained from the GA as the initial 
weights of the FNN. The results in Table 4 indicate that 
the GA neither improves nor decreases the MSE value 
for the network structure 2±3±1. However, in case of 
the network structure 2±4±1, all the testing cases have 
lower MSE values which are compared to the networks 
without a GA, except in the worst case. The network 
structure 2±6±1 also has similar results, since using the 
best results from GA. We can always provide the best 
results through fine-tuning of FNN, if the network 
topology can be well determined. The determination of 
network topology can be done by trial and error. In 
Table 4, the symbols “*”and “#” imply the best and the 
worst results, respectively, for the corresponding 
network type.  
In addition, Table 4 shows that the percentage decrease 
in the training epochs for FNN is 95 if it is combined 
with GA. Since like network structure 2-4-1, it reduces 
100,000 training epochs. Basically, every 1,000 
training epochs require around 2 minutes. However, the 
time which is spent on 1,000 generations for the GA is 
only 6 minutes. This implies that the GFNN can save 
14 minutes as compared to FNN. Table 5 shows the 
difference between GFNN and GA. 
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In summary, if the network topology can be well-
determined and the GA can also be well setup, then the 
GA can definitely improve the network performance in 

both speed and accuracy. However, the way to 
determine the network structure is trial and error. 

 
 
 

Table 1. Four smallest and the worst MSE values after 1,000 generations through one-point crossover 
hidden 

nodes 
Crossover 

rate 
Mutation 

rate 
Best Second Third Fourth Worst The 

number 
of genes 

Execution 
Time (min) 

3 0.2 
0.5 

0.8 
0.5 

0.07345 
0.05765 

0.07345 
0.05747 

0.07366 
0.05769 

0.07367 
0.05770 

0.1754 
0.1731 

29 
25 

4 
5 

4 0.2 
0.5 

0.8 
0.5 

0.03983 
0.06342 

0.03999 
0.06343 

0.04005 
0.06343 

0.04123 
0.06399 

0.4465 
0.2449 

21 
23 

6 
6 

6 0.2 
0.5 

0.8 
0.5 

0.05321 
0.01563 

0.05315 
0.01545 

0.05335 
0.01572 

0.05312 
0.01589 

0.1108 
0.1912 

27 
27 

7 
8 

 
 

Table 2. Four smallest and the worst MSE values through two-point crossover when crossover rate is 0.2 and mutation 
rate is 0.8 

Hidden 
nodes 

Best Second Third Fourth Worst The number 
of genes 

Execution 
Time (min) 

3 0.065452 0.069123 0.076239 0.078987 0.337814 34 5 
4 0.021259 0.021834 0.021843 0.021945 0.101256 30 5 
6 0.034765 0.034865 0.034901 0.035308 0.067943 30 6 

 
 
Table 3. Four smallest and the worst MSE values through uniform crossover when crossover rate is 0.2 and mutation 

rate is 0.8 
Hidden 
nodes 

Best Second Third Fourth Worst The number 
of genes 

Execution 
Time (min) 

3 0.882029 0.885010 0.886968 0.886977 0.886995 19 6 
4 0.886933 0.886935 0.886996 0.886997 0.886999 9 6 
6 0.882548 0.886998 0.886998 0.887018 0.891414 11 9 

 
 

Table 4. The computational results of GFNN 
Network type Source of initial 

weights 
Training MSE Training epochs Testing MSE 

2-3-1 Best *0.021347 150 *0.027439 
2-3-1 Second 0.022744 100 0.029998 
2-3-1 Third #0.025437 120 #0.030007 
2-3-1 Worst 0.023895 150 0.029511 
2-3-1 Without GA 0.017431 30,000 0.022451 
2-4-1 Best 0.006144 4,200 *0.017654 
2-4-1 Second *0.006140 4,500 0.017662 
2-4-1 Third 0.006172 5,000 0.017665 
2-4-1 Worst #0.027919 6,000 #0.002786 
2-4-1 Without GA 0.012876 106,000 0.018359 
2-6-1 Best #0.012812 1,500 0.018656 
2-6-1 Second 0.012654 1,300 #0.018805 
2-6-1 Third *0.012456 1,200 *0.018543 
2-6-1 Worst 0.0012499 1,200 0.018756 
2-6-1 Without GA 0.018599 70,000 0.020743 

Table 5. The differences between GA and GFNN results 
Network type Source of initial 

weights 
Initial weights MSE 

from GA 
 

MSE after training 
using FNN 

Percentage decrease 

2-3-1 Best 0.068400 0.021998 70.3 



Majlesi Journal of Electrical Engineering                                                      Vol. 8, No. 1, March 2014 
 

7 
 

2-3-1 Second 0.069700 0.022742 69.8 
2-3-1 Third 0.070259 0.025471 64.3 
2-3-1 Worst 0.025659 0.023108 91.5 
2-4-1 Best 0.027200 0.007412 72.4 
2-4-1 Second 0.027867 0.007416 78.8 
2-4-1 Third 0.027876 0.07435 78.8 
2-4-1 Worst 0.010028 0.027919 72.8 
2-6-1 Best 0.038097 0.010639 74.9 
2-6-1 Second 0.038215 0.010550 75.0 
2-6-1 Third 0.038319 0.010470 77.8 
2-6-1 Worst 0.063744 0.010499 82.5 

Average    75.7 
 
The confusion matrix showing the clustering results of 
the GFNN used for clustering of the ECG signals is 
given in Table 6. 
 

Table 6. Confusion matrix 
Desired 
result 

 Output result   

 Atrial 
fibrillati

on 
beat 

Ventricular 
tachyarrhyth

mia beat 

Congesti
ve heart 
failure 
beat 

Norm
al 

beat 

Normal beat 88 1 0 0 
Congestive 
heart failure 
beat 

2 1 2 87 

Ventricular 
tachyarrhyth
mia beat 

0 1 86 3 

Atrial 
fibrillation 
beat 

0 87 2 0 

 
The test performance of the clusters can be determined 
by the computation of specificity, sensitivity and total 
clustering accuracy. The specificity, sensitivity and 
total clustering accuracy are defined as: 
Specificity: number of true negative decisions/ number 
of actually negative cases. 
Sensitivity: number of true positive decisions/ number 
of actually positive cases. 
Total clustering accuracy: number of correct 
decisions/total number of cases. 

A true negative decision occurs when both the cluster 
and the physician suggest the absence of a positive 
detection. A true positive decision occurs when the 
positive detection of the cluster coincided with a 
positive detection of the physician. The values of the 
statistical parameters (sensitivity, specificity and total 
clustering accuracy) were given in Table 7. The total 
clustering accuracy of the GFNN model was 98.23%. 

 
Table 7. The Values of statistical parameters 

 Statistical 
parameters 

(%) 

 ECG beats 

Total 
clustering 
accuracy 

Specificity Sensitivity  

98.23 99.86 96.57 Normal beat 
 

98.28 94.00 
Congestive 
heart failure 
beat 

 
98.12 95.43 

Ventricular 
tachyarrhythmia 
beat 

 99.34 97.67 Atrial 
fibrillation beat 

 
The values of the statistical parameters (sensitivity and 
total clustering accuracy) in different methods and the 
proposed method are shown in Table 8.  
 

Table 8. Comparison between different methods 
Clusters Statistical parameters (%) 

 sensitivity accuracy 
Block-Based neural networks 
[21] 

74.9 94.5 

Non-singleton fuzzy logic 
(NSFLC) [7] 

89.1 97.55 

KFCM-ACOR [9] 85 92.768 
KFCM [9] 73.67 87.196 
FCM [9] 78.45 86.74 
k-NN (k = 5) [9] 88.15 94.39 
k-NN (k = 3) [9] 88.76 94.98 
Fuzzy cluster algorithm [10] 75 92 
Cellular compact genetic 
algorithm (c-cGA) [11] 

73.6 96.0 

Proposed method (GFNN) 91.36 98.23 
 
By comparing of different methods with the proposed 
method, we find out that the proposed cluster in this 
paper acts better than other clusters. There are also 
many advantages in this method. So, it utilizes the 
proposed fuzzy neural network with initial weights 
generated by genetic algorithm (GFNN) to improve 
testing speed, accuracy and to reduce the chance of the 
FNN getting stuck on a local minimum and to analyze 
uncertainties, accurately. 
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 Using GFNN for clustering of ECG signals is 
very useful because Neuro-fuzzy system includes of 
fuzzy logic and ANNs, by utilizing the mathematical 
properties of ANNs in tuning rule-based fuzzy systems 
that approximate the way human process information 
(artificial neural networks (ANNs) theory determines 
properties (fuzzy sets and fuzzy rules) and also Fuzzy 
set theory plays an important role in dealing with 
uncertainty when making decision in medical 
applications) and also we use GA to reach near 
optimum. As a result, the accuracy in this method. 
Also, it is 98.23% that is higher and better than the 
accuracy of other methods. 
 
5.  CONCLUSION 
This paper presented a new application of GFNN 
model employing GA for clustering of the ECG 
signals. The presented GFNN model combined the 
fuzzy neural network capabilities and the genetic 
algorithm approach. The ECG signals that are obtained 
from different patients signals have been used as 
GFNN inputs while GFNN has clustered ECG signals 
to identify of the heart diseases as soon as possible. 
Model evaluation results indicate that proposed GFNN 
model can perform more accurately, less testing speed 
than the conventional statistical methods, a single ANN 
and FNN. Also, It has a lower chance of the FNN 
getting stuck on a local minimum.  
The clustering results and statistical measures were 
used for evaluating the GFNN. The total clustering 
accuracy of the GFNN model was 98.23%. The 
obtained results demonstrated that the proposed GFNN 
model can be used in clustering the ECG signals by 
taking into consideration for the misclustering rates. 
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