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ABSTRACT: 
Due to artifacts, brain magnetic resonance image (MRI) segmentation is a complicated concern. This research work 
presents an image segmentation approach for brain magnetic resonance (MR) images. The proposed method is based 
on multi dimensional fuzzy C-mean. In this technique, different features of neighbouring pixels such as mean, 
standard deviation and singular value are extracted and then a multi dimensional feature vector is created in feature 
selection stage in which the best combination of extracted features is used. The created feature vector is used as an 
input to the multi dimensional FCM. The results have been evaluated with manual segmentation on two publicly 
available datasets. 
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1. INTRODUCTION 
Medical images cause profound improvements in 
diagnosing different types of disease. One of their 
advantages is to assist decision making of physicians 
without any additional process. They provide critical 
information about internal organs through non invasive 
procedures which helps the specialists to detect 
abnormal changes in the tissue. Generally, investigation 
methods and disease diagnosis are dependent on 
physician experiences. In recent decades, computer-
based image processing techniques cause a better 
perception of medical images. MRI is one of the most 
important techniques of medical imaging which plays a 
key role in brain tissue visualization. MRI is a non 
invasive technique which generates high resolution 
images of high intensity contrast for different soft 
tissues. Three main tissues in a normal MRI are: Gray 
Matter (GM), White Matter (WM) and cerebrospinal 
fluid (CSF). Any anomaly tissue apart from these three 
mentioned tissues is investigated as a medical disorder 
[1]. Brain MRI segmentation (BMS) is one of the 
important processing operations in which a special 
region of the image is labelled [2]. Whereas brain MRI 
is a set of images with large volume information, 
manual BMS is a time consuming task. Therefore, an 
automatic segmentation system with the acceptable 
speed, high accuracy and generalization capability is 
needed. There are many problems affecting BMS 
results which are noise, partial volume effect (PVE) 

and intensity non-uniformity (INU).The main sources 
of noise are categorized according to biological and 
scanner noises introduced in earlier studies [3-6].  
 

     
a                                                   b 

    
c                                                  d 

Fig. 1. Tissues overlap in Brain MRI. Blue: CSF, Red: 
GM and Green: WM.(a) Artifact free (ideal) brain 

MRI; (b) Intensity distribution of image (a); (c) Brain 
MRI with 9% noise and 40% INU; (d) Intensity 

distribution of image (c) 
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PVE is recognized as mixing of intensities due to more 
than one tissue present at the pixel.  
INU, also called bias, the field is a low frequency 
smoothed artifact which is generated by in-
homogeneity of magnetic field during scanning process 
[7], [8]. MRI problems lead to a pixel uncertainty 
which leads to a considerable overlap between different 
tissues [9]. This is shown in Fig. 1. 
Ideally, in a set of MRI, the pixel intensity of each 
tissue should be constant or has a Gaussian distribution 
with low standard deviation considering PVE. 
Regarding to the mentioned problems, the application 
of classifiers which are only based on the specific pixel 
intensity are subjected to the considerable failure [10]. 
Many methods have been presented for BMS [11]-[18]. 
BMS is classified to three main categories of boundary-
based methods, region-based methods and hybrid 
methods [13], [14], [19], [20]. The gradient features 
near to an object boundary would be employed as a 
guide for segmentation in boundary-based strategies 
[21]. The main categories of this method are Edge 
detection, deformable templates and active contours 
[22-24]. The BMS in region-based methods is normally 
carried out with identification of homogenous region at 
corresponding brain tissues [25]. Hybrid approaches 
attempt to combine the strengths of both boundary-
based and region-based approaches. On the other hand, 
BMS can be categorized as fuzzy and non-fuzzy 
strategies. In non-fuzzy classification-based methods, 
standard classifiers such as Gaussian mixture model, K-
Means, KNN, and etc are used [26]. Basically, Brain 
extraction- operations and intensity non-uniformity 
correction are used to achieve desirable segmentation 
results [27]. Intensity uncertainty of brain MRI pixels 
encourages the researchers to develop fuzzy 
approaches, where different regions of the image are 
considered as fuzzy sets in which a pixel may be 
assigned to the potential multi-class tissues. Fuzzy 
segmentation methods offer more flexibility in 
classification of pixels with the same intensity than the 
other crisp methods [14]. A local fuzzy approach was 
presented at [28] which is needless of bias field 
estimation. A fuzzy rules-based segmentation strategy 
has been proposed in [29] based on anatomy 
knowledge. Fuzzy inference system is used to identify 
white matter tissue for elderly in [30]. Handcraft fuzzy 
rules which are presented for tissue classification at 
[31]. Unsupervised BMS has been presented in [32] 
based on fuzzy frame and tissue analysis. Fuzzy C-
Mean (FCM) is one of the prominent tools among 
different fuzzy approaches in BMS [10], [14], [16], 
[33-35]. Different researches have been performed for 
FCM optimization with promising results. An adaptive 
FCM approach has been suggested in [36] to estimate 
INU with multiplying a distance function and 
clustering centers and this method is generalized for 3-

D images in [37]. A regulative term has been used for 
proposed FCM in which the spatial information are 
interpreted to overcome noise effects [10]. 
In this paper, a fuzzy C-Mean with multi-dimensional 
objective function has been proposed for BMS. Feature 
extraction and selection have been carried out to 
achieve spatial information in order to overcome 
artifacts effect. The outline of the paper is as follows: 
In Section 2, basic concepts of fuzzy C-Means and 
Singular Value Decomposition (SVD) are introduced. 
Data bases and evaluation criteria are in section 3. 
Proposed method is explained in section 4. Simulation 
results are investigated in section 5 and the paper will 
be concluded at section 6. 
 
2. BASIC CONCEPTS 
2.1. Fuzzy c-Mean (FCM) 
In FCM, as a development of hard K-means algorithm, 
every input data will be assigned to all the existing 
clusters [38]. Pattern membership of a class is based on 
the similarity of the pattern to the class with respect to 
all classes. The objective function of the FCM which 
segments an image to C clusters can be defined as 
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In which X =(x1,x2,…,xi,…,xn)  is a p×n data matrix, p 
is the length of the feature vector  xjand n is the number 
of feature vectors. In BMS, p=1 (intensity value), n is 
the number of image pixels, q is the fuzziness index (in 
this study, q is 2). uij is the membership of  jth pattern in 
ith cluster, vi is the center of ith fuzzy cluster. d 
represents the similarity of the feature vector xj with 
cluster center vi in the feature space which can be 
calculated with the Euclidean norm as: 
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To minimize the objective function, higher membership 
values should be assigned to patterns which are close to 
cluster centers, and lower values assigned to patterns 
far from cluster centers. By applying derivation of Jq 
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According to Eq. 3 and 4, the patterns are assigned to 
all existing clusters with the associated Membership 
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Values (MVs), and then, the new cluster centers are 
calculated. The FCM algorithm reaches a solution by 
an iterative process until a termination criterion is met, 
ie. : ( ) ( 1)v t v t ε− − < . Finally, when the pattern to a 
cluster with the highest membership value is assigned, 
a segmentation of the data will be done. 
 
2.2. Singular Value Decomposition (SVD) 
Singular Value Decomposition (SVD) is one of the 
important tools used in digital signal and statistics data 
processing [39], [40]. Applying SVD on a typical Xm×n 
matrix yields: 

TX U V= Σ  (5) 
Where Umൈm and Unൈn are singular vector matrices and 
઱mൈn is a diagonal matrix with rank r. The diagonal 
entries of ઱ (σ11>σ22> …>σrr>0) are equal to the 
singular values of X. In fact, these singular values 
contain some information about the signal energy. In a 
reconstruction process of X, higher singular values are 
more effective. 

 
3. MRI DATABASE AND EVALUATION 
CRITERIA  
3.1. Brain MR Images 
Simulated and manually segmented MR images play a 
key role for development of segmentation algorithm 
[41]. In this study, two publicly available datasets are 
used in which, the first one provided by Brainweb and 
the second one provided by the Internet Brain 
Segmentation Repository (IBSR). 
 
3.1.1. Brainweb database 
The Brainweb images are obtained from the brain 
database at the McConnell Brain Imaging Centre of the 
Montreal Neurological Institute (MNI), McGill 
University [42]. This database contains several 
acquisition modality (T1, T2, etc) and acquisition 
parameters. In this database, noise level varies between 
0 to 9 percent and also, INU can be selected among one 
of 0, 20 or 40 percent. 
 
3.1.2. IBSR datasets 
IBSR provides real brain MRIs and the corresponding 
manual segmentation that are performed by the trained 
experts. The 20 normal MR brain datasets and their 
manual segmentations were provided by the Center for 
Morphometric Analysis at Massachusetts General 
Hospital [43]. In order to encourage the evaluation and 
development of segmentation algorithm. 
 
3.2. Evaluation Criteria 
Different criteria have been utilized in order to compare 
the proposed method with different strategies. These 
criteria are Accuracy (A), Dice similarity coefficient 

(D), also Known as Kappa statistics, and Tanimoto 
similarity coefficient (T) which are defined as follows: 
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Where TP, TN, FP and FN are the numbers of true 
positive, true negative, false positive and false negative 
ones respectively [41], [44]. The greater the criteria, the 
better the segmentation. 
 
4. PROPOSED METHOD 
Spatial information is not considered in the objective 
function (Jm) of standard FCM. The main drawback of 
such a strategy in BMS has high sensitivity to noise 
pixels which leads to a considerable misclassification 
[14]. A substantial improvement can be achieved by 
using modified objective functions based on spatial 
information which results in a more robust results 
compared with the standard FCM [10], [14], [16], [33]-
[35]. These methods employed modified objective 
functions considering pixel spatial information. In this 
study, a multi-dimensional FCM with a best feature 
combination capability has been utilized in order to 
consider spatial information. Fig. 2 shows a simple 
block diagram of proposed method. 
 

 

Fig.2. Block Diagram of the Proposed Method 
 
This diagram includes: feature extraction, feature 
selection and multi dimensional standard FCM which 
can be described as follows: 
 
4.1. Feature Extraction and Combination 
The features considered in the analysis are: pixel 
intensity, mean, largest singular value and standard 
deviation of neighbourhood pixels. Mean, singular 
values and standard deviation (spatial information) are 
defined for each 3×3 matrix around the prototype pixel 
which is called L that’s based on (9-11). 
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Where ix  is the neighbourhood pixels value, n=8 is 
the number of neighbourhood pixels in each prototype 
pixel and E(x) is mean or expected value. As mentioned 
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in section 2.2, The largest singular value can be 
calculated as: 
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σ11 is the largest singular value of  L which contains 
significant information of the matrix and can be used as 
an important feature in BMS. F4 is calculated as: 
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It is clear that pixel intensity is the most important 
feature in BMS which contains precious information. 
Mean, standard deviation and the largest singular value 
features include information about neighbourhood 
pixels bias, discrepancy of neighbourhood pixels and 
the potency of crucial eigen-vector (see section 2.2) 
respectively. Possible combinations of the features are 
created to achieve the best feature set for BMS, which 
are as follows: 
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(12) 

As pixel intensity (F1) contains more valuable 
information, it has to be available in all feature 
combinations. The best combination of features has to 
be selected from the available combination in feature 
selection stage. The number of features determines the 
FCM dimension (P ൒ 1). 
 
4.2. Feature Selection 
For selecting the best combination of features, three 
slices of T1 weighted brain MRI of Brainweb database 
(z=60, 90, 120) are selected and the proposed algorithm 
have been implemented on the slices. Simulations are 
carried out in two categories in which the effects of 
noise and INU have been considered separately. Also 
Dice similarity and accuracy indexes are chosen for 
evaluation criteria. 
 
 
4.2.1. Noisy Data 
MRI slices with different noise levels have been 
segmented with proposed algorithm. The outputs of 
proposed segmentation algorithm have been compared 
by the ground truth and also the mean of accuracy and 
Dice similarity are shown in table 1 and 2 respectively. 
As highlighted in table 1 and 2, F134 is the best feature 
set that contains pixel intensity, singular value and 
standard deviation. Also, F14 (pixel intensity, standard 

deviation) shows an acceptable response. It is clear that 
standard deviation, itself, cannot be a proper feature 
with the noisy images and the algorithm does not have 
acceptable result. However, the significant point is that 
when this factor is combined with other features in a 
set, it leads to a suitable result. It means that the 
standard deviation contains potential information which 
is informative only in combination with other features. 
 
Table1. Mean of Accuracy in different noise levels 

ALL CSF GM WM 
F1 88.0 96.8 82.0 85.2 
F2 85.5 95.1 78.2 83.1 
F3 86.1 95.7 79.2 83.5 
F4 66.9 83.5 55.4 61.7 
F12 87.4 96.5 81.1 84.6 
F13 87.6 96.7 81.4 84.7 
F14 88.1 95.9 82.2 86.3 
F123 87.1 96.3 80.6 84.3 
F124 88.1 96.3 82.2 85.9 
F134 88.4 96.6 82.5 85.9 
F1234 87.8 96.4 81.7 85.3 

 
Table 2. Mean of Dice Similarity in different noise 

levels 
ALL CSF GM WM 

F1 89.9 90.9 89.0 89.8 
F2 89.6 89.1 89.1 90.8 
F3 90.5 90.1 90.0 91.4 
F4 48.7 43.5 49.8 52.8 
F12 91.9 92.1 91.4 92.2 
F13 91.9 92.1 91.4 92.2 
F14 88.6 89.2 87.6 89.2 
F123 91.7 91.6 91.3 92.2 
F124 92.3 92.0 91.9 93.0 
F134 92.5 92.5 92.1 92.9 
F1234 92.6 92.4 92.3 93.2 

 
4.2.1. Data with INU 
In this section, INU has been considered without noise. 
The outputs of proposed segmentation algorithm have 
been compared with the ground truth and the mean of 
accuracy and Dice similarity are shown in tables 3 and 
4 respectively. 
 

Table 3. Mean accuracy in different INU levels 
ALL CSF GM WM 

F1 95.9 98.2 93.9 95.8 
F2 92.9 96.4 89.3 92.9 
F3 93.4 96.8 90.0 93.3 
F4 69.5 85.1 57.5 65.9 
F12 94.9 97.6 92.3 94.6 
F13 95.0 97.8 92.6 94.8 
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F14 93.7 96.4 90.5 94.1 
F123 94.5 97.4 91.7 94.2 
F124 94.8 97.1 92.2 95.1 
F134 95.0 97.3 92.5 95.2 
F1234 95.0 97.3 92.5 95.1 

 
Table 4. Mean Dice similarity in INU levels without 

noise 
   ALL CSF GM WM 

F1 93.9 94.6 93.5 93.7 
F2 89.2 89.3 88.5 89.8 
F3 90.0 90.3 89.3 90.3 
F4 53.0 48.9 51.6 58.4 
F12 92.3 93.1 91.8 92.1 
F13 92.3 92.4 92.0 92.4 
F14 90.4 90.3 89.9 91.1 
F123 91.7 92.4 91.1 91.6 
F124 92.1 92.0 91.7 92.5 
F134 92.5 92.6 92.1 92.8 
F1234 92.4 92.7 92.0 92.6 

 
According to tables 3 and 4, pixel intensity is the best 
feature. It was expected that the use of neighbouring 
pixel’s information cannot be beneficial due to absence 
of the noise.  

 
Fig. 3. 3D Tissues Overlapping of Fig. 1.(c) 

 
Also, among the mentioned features combinations, F134 
leads to better results. Based on the proposed results 
and also because of the fact that MRIs are subjected to 
noise and INU artifacts, a three dimensional FCM (3D 
FCM) with F134 feature set have been used as a 
classifier in the proposed method.3D selected features 
of Fig. 1 (c) are illustrated in Fig. 4. 
 
5. RESULTS 
The proposed algorithm is applied on two mentioned 
available databases. For such databases, extra non-brain 
tissues are removed before segmentation. Then, the 
proposed method will be compared with two different 

methods such as BCFCM [10] and LNLFCM [14] in 
2D by Brainweb database and also it is compared with 
two state of the art methods in 3D. The first one of the 
state of the art method is NL-R-FCM [44] that is 
implemented on Brainweb database and the second one 
is CSWTSOM [41] which is implemented on IBSR 
database. In the BCFCM, all parameters are selected as 
reported in [10]. The parameters of LNLFCM are 
selected as: the standard deviation of the Gaussian 
Kernel is 30, the degree of filtering is 1000, window 
size of the neighborhood is 3 and the weights of all 
pixels in the window of searching are 7. 
 
5.1. Simulated MR images 
In this section, T1 weighted brain MRI from Brainweb 
database with slicethickness of 1 mm, volume size of 
217×181×181 are employed to investigate the 
performance of the proposed method.  
 

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig. 4. Comparison of the segmentation results on a 
simulated brain MRI: (a) Original image with 9% 
noise and 40% INU (Slice = 94); (b) Ground truth; 

(c)FCM; (d)BCFCM; (e) LNLFCM and (f)Proposed 
method segmentation results 

 
Fig. 4 (a) shows a slice of the simulated 3D volume of 
brain MRI with 9% Rician noiseand 40% INU 
(slice=96). The ground truth of this image is shown in 
the Fig. 4 (b). Segmentation results of BCFCM and 
LNLFCM are shown at Fig. 4 (c), (d) and (e), 
respectively. The result of the proposed method is 
shown in the Fig. 4 (f). 
As shown in the Fig. 4 (c) we can visually see that the 
BCFCM are influenced by the artifact, intensively. It is 
worth mentioning that BCFCM is very sensitive to the 
selection of optimum parameters [10]. On the other 
hand, by comparison of the results shown in the Fig. 4 
(d) and (b), it can be verified that the LNLFCM 
eliminate small piece of tissue with artifact effect 
elimination, so this problem decreases the performance 
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of such a technique. Dice similarity and Accuracy 
indexes of the Fig. 4 are shown in tables 5-6. 
 
Table 5. Dice index for different methods in Fig. 4 
   CSF GM WM 
BCFCM 77.7  72.4  91.8
LNLFCM 89.0  88.2  93.2
Proposed 93.7  87.0  93.0

 
Table 6. Accuracy index for different methods in Fig. 4 

   CSF GM WM 
BCFCM 91.8  83.3  91.5
LNLFCM 96.8  91.0  93.3
Proposed 98.0  90.7  92.9

 
For more investigation of the performance of the 
proposed method, we implemented the proposed 
algorithmon 3D simulated brain MRI with 20% INU 
and various noise levels. The results of our method and 
NL-R-FCM are in table 7.  
 
Table 7. Comparison of Dice similarity of the proposed 
method and NL-R-FCM applied on 3D simulated brain 

MRI with 20% INU and various noise levels 
 WM GM CSF 

Method 
 
Noise 

NL-
R-

FCM 

Propo
sed 

NL-
R-

FCM 

Prop
osed 

NL-
R-

FCM 

Prop
osed 

1%  94.7 94.8 94.1 92.7 --- 92.7 
3% 93.7 94.0 92.6 92.1 --- 92.6 
5% 92.0 92.9 89.6 91.1 --- 92.5 
7% 85.9 91.8 86.9 90.0 --- 92.2 
9% 83.4 88.7  83.5  87.0 87.3 90.9 

Ave. 90.0 92.5 89.3 90.6 --- 92.2 

 
According to this table, by comparison of the proposed 
method with NL-R-FCM, it is emerges that our method 
leads to a satisfactory performance. Also this 
preference appears at 7% noise and above. 
 
5.2. Real Brain MRI 
In this section the proposed algorithm is evaluated for 
real brain MRI segmentation by IBSR database. Fig. 5 
(a) and (b) show a slice of real T1-weighted normal 
MR image (IBSR 13_3, size of 256×256×56) and its 
manually segmented image as provided by the web 
respectively. Fig. 5 (c) shows the output of our 
proposed algorithm. 
 

(a) (b) (c) 
Fig. 5. T1-weighted real brain MRI (IBSR13-3, z=30): 

(a) original image; (b) manual segmentation; (c) our 
proposed algorithm segmentation result 

 
Comparison of the Fig. 5 (c) with (b) shows the 
proposed frame that has good acceptable result. For 
quantitative evaluation purpose, the proposed 
methodimplemented on ten of twenty real normal 
MRIavailable data sets and the Dice and Tanimoto 
similarity coefficients are given in table 8. In this table, 
the results of CSWTSOM are given for comparison. 
 

 
Table 8. Comparison of Dice and Tanimoto similarity coefficients of the proposed method and CSWTSOM applied on 

3D real brain MRI 
 Dice similarity  Tanimotosimilarity 
 WM  GM  WM  GM 

Datase
t 

CSWTSO
M 

Propose
d 

 CSWTSO
M 

Proposed  CSWTSO
M 

Proposed  CSWTSO
M 

Proposed 

2_4 46.0 51.2  62.4 65.8  29.9 37.8  45.3 50.1 
5_8 72.1 66.7  81.7 76.7  56.4 49.9  69.1 62.8 
7_8 52.3 61.3  69.8 83.1  35.4 48.2  53.6 65.3 
11_3 77.3 80.9  82.2 83.2  62.3 62.6  69.8 70.2 
13_3  75.3 75.6  83.2 86.3  60.4 59.5  71.2 73.6 
16_3 71.3 73.5  81.7 76.2  55.4 60.6  69.1 65.6 

100_23 73.9 77.8  83.8 84.9  58.7 61.1  72.1 74.4 
111_2 79.1 80.2  80.1 84.1  65.4 66.1  67.8 70.8 
191_3 75.2 77.2  79.8 78.7  60.3 62.1  66.3 65.2 
205_3 77.6 77.1  82.7 82.3  63.3 63.3  70.5 70.1 
Avera

ge 
70.0 72.2  78.8 80.1  54.8 57.1  65.5 66.8 
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According to table 8, the 3DFCM shows acceptable 
results on 3D volume. Also it is obviously the average 
Dice and Tanimotosimilarity coefficients are better 
than CSWTSOM. 
 
6. CONCLUSION 
Spatial information is not considered in the objective 
function of standard FCM which leads to high 
sensitivity regarding to noise pixels and considerable 
misclassification. In this article, we proposed a multi 
dimensional FCM-based method for unsupervised brain 
MRI segmentation, by spatial information capturing in 
the features set. We show that the intensity, standard 
deviation and largest singular value are the best 
combination of extracted features. So, a 3DFCM is 
selected as proposed method. To verify the practical 
applicability of such a technique, simulations have been 
carried out on simulated and real datasets. The 
proposed method has been compared with BCFCM and 
LNLFCM in 2D comparison and also compared with 
NL-R-FCM and CSWTSOMalgorithms in 3D 
evaluation which shows a considerable improvement in 
brain MRI segmentation. 
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