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ABSTRACT: 
Optimal sliding mode guidance (OSMG) law is proposed for tactical missiles which is pursuing maneuvering targets 
in three-dimensional space. The most important characteristic of sliding mode control (SMC) is high robustness 
against parameter variations or external disturbances. By using a Lyapunov function, it is demonstrated that the 
derived guidance law can stabilize the engagement system. Also, coefficients of controller are chosen using genetic 
algorithm optimally. Compared with traditional augmented proportional navigation guidance (APNG) law, the 
proposed guidance law not only can increase robustness against external disturbance and eliminate the effect of target 
maneuvers but can improve tracking performance and reduce interception time and miss distance. 3-D missile-target 
engagement is simulated for different target maneuvers and for some various scenarios, then results of the OSMG law 
are compared with conventional APNG law. Simulation Results confirmed the above mentioned pretensions. 
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1.  INTRODUCTION 
The kinematic of missile-target is one of the most 
nonlinear kinematics. Since the basic principles of 
missile guidance were extensively covered by Locke 
[1] and Lin [2], many theories have been utilized to 
improve guidance performance and to overcome 
environmental disturbances. Many various guidance 
laws have been exploited with different design 
concepts over the years. Now a days, the most popular 
and widely used terminal guidance laws involve line-
of-sight (LOS) guidance [1], LOS rate guidance and 
other advanced guidance such as proportional 
navigation guidance [1], augmented proportional 
navigation guidance (APNG) [3] and other proportional 
navigation strategies, optimal guidance law based on 
the linear quadratic regulator theory [4] and linear 
exponential Gaussian theory [5].  
In [6] a nonlinear H∞ , robust guidance law for homing 
missile in two-dimensional space is proposed. A robust 
state- dependent Riccati equation based 
guidance/control is investigated in [7]. In this paper, 
guidance law is designed in two-dimensional space, 
too. In [8] a guidance law against unpredictable 
maneuvering targets using tunable H∞  method was 
designed in two-dimensional space. A guidance law 

based on state dependent reccati equation (SDRE) is 
derived in [9]. In this work, SDRE not only is applied 
to 2-Dimensional space of missile-target, but also is not 
robust against maneuvering targets. 
In all of above work, either guidance law design is 
applied to 2D model of missile-target, or guidance law 
is not robust. 
In this paper, a 3D optimal guidance law based on 
sliding mode theory is designed considering nonlinear 
missile-target geometry. The main feature of sliding 
mode control (SMC) theory is robustness against 
target’s maneuvers. A widely used guidance law that’s 
applying to terminal guidance is called augmented 
proportional navigation (APN) [3]. The way that the 
SMC guidance law treats maneuvering targets is 
basically different from that of APN. Target 
acceleration is regarded as unpredictable disturbance 
for the OSMG law. Although, target acceleration is 
neither required, nor estimated in the OSMG law, the 
robustness of OSMG law guarantees acceptable 
interceptive performance for any arbitrary target 
maneuvers, as long as target acceleration is finite. In 
the circumstance where target acceleration is known or 
can be estimated, adaptive guidance law such as APN 
is certainly superior to robust OSMG law; while in the 
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situation where target acceleration is unknown or is 
weakly estimated, robust OSMG law could be better 
than adaptive guidance law. In this research it is 
supposed that target acceleration is unknown. Main 
problem in OSMC design is to find the switching 
surfaces. These switching surfaces are chosen so those 
satisfy all of the problem desired aims.  
This paper is organized as follows. In the next section; 
2, we formulate the 3D missile-target engagement and 
guidance problem. In Section 3, we will design SMG 
law for missile. In Section 4, we will design optimal 
sliding mode guidance law, and we will obtain 
coefficients of the controller by using of genetic 
algorithm. Simulation results are in section 5. In this 
section, robustness and tracking of the 3D OSMG law 
against target maneuvers are illustrated and compared 
with APNG. Finally, the results of the study are briefly 
summarized in section 5. 
 
2.  STATEMENT OF THE PROBLEM  
3D pursuit geometry within the spherical coordinates 
system ( r , θ ,φ ) is shown in Fig. 1, where r  is the 
relative distance between missile and target, and 
anglesθ  and φ  are azimuths of the line of sight (LOS). 
The missile and target are assumed to be point masses 
in order to easily analyze the missile guidance. The 
three dimensional engagement model (Fig. 1) can be 
represented mathematically by the following equations 
[12], 
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Fig. 1. 3-D pursuit-evasion geometry  

rw ,w θ  and w φ  are the target’s acceleration 
components. ru , uθ  and uφ  are the missile’s 

acceleration components, which are to be obtained. The 
kinematics Equation (1) can be rewritten as the 
following nonlinear state space equation [10] 

( ) ( ( )) ( ) ( )x t F x t Bu t Dw t= + +                                    (2) 

Where the state vector ( )x t , the vector field ( ( ))F x t , 
the missile acceleration vector ( )u t  and the target 
acceleration vector ( )w t  are defined, respectively, as 
follows 
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The design problem is to derive a SMG law,u , in 
Equation (2), so that the initial relative distance 0r  is as 
small as possible under a reduced interception time. 

 
3.  DESIGN OF SLIDING MODE GUIDANCE 
LAW 
The main objective here is to derive a guidance law that 
offers robustness against a variety of target maneuvers, 
in the terminal phase of a short-range homing missile.  
In general, SMC design can be broken into two phases. 
The first phase is needed to choose a switching surface 
so that the system restricted to this surface produces the 
desired behavior. The next step is to choose a type of 
control that will force the system trajectories move on 
the switching surface and constrain them to slide along 
this surface for all subsequent times. Since the desired 
surface is chosen such that. It is independent of the 
external disturbances, robustness can be achieved. Like 
the first step, the selection of the switching surface is 
crucial because the structure of the guidance law and its 
robustness properties are a lot dependent on it. 
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Guidance law must satisfy a decreasing relative 
distance r  and keep tangential relative velocities as 
small as possible. It is equivalent to satisfying the 
following conditions: 

1- Radial relative velocity, r
v , converges to 

negative value,  
2- vθ  and vφ , tangential relative velocities, 

converge to zero  
When vθ  and vφ  converge to zero, it means that the 
missile and target are on a convergence course. And 
when the radial relative velocity, 

r
v , has decreased to a 

negative value, the relative distance r between the 
missile and target decrease to zero. According to that, 
switching surface is chosen as  
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With the above switching surface, the guidance law is 
derived such that sliding constraint ( 0)ss < is satisfied 
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To prove the stability and robustness of sliding surface 
analytically, we introduce a Lyapunov function as 
follows 

21
2
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Taking the derivative of Equation (7) with respect to 
time, we have 

V ss=                                                                          (8) 

and 

2 2

1

2

2

3

tan

tan

r r r

r

r

v v
s v u w

r
v v v v

s v u w
r

v v v
s v u w

r

θ φ

θ φ θ
θ θ θ

φ θ
φ φ φ

φ

φ

+
= = − +

− +
= = − +

− +
= = − +

                        (9) 

Substituting (5) into (9) yields, 
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And finally if Equation (10) is substituted into Equation 
(8) we have,  
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So with the above conditions Equation (11) we 
have 0V < . 
 
4.  OPTIMAL SLIDING MODE GUIDANCE LAW  
In equation (11), coefficients of the controllers 

1
b , 

2
b , 

3
b are variable parameters. So, SMG law is not optimal. 
To optimize these parameters, first we define a cost 
function as follows: 
 

( )T TJ x Rx u Qu= +∑  
 
Where R and Q are defined as follows: 
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Now to limit control input, constrains are regarded as 
follows:  
 

( ) (max)

(max) (max)

( ) (max)

(max) (max)

( ) (max)

(max) (max)

r SMC r r
r

r r r

SMC

SMC

u u u
u

u u u

u u u
u u

u u u

u u u
u

u u u

θ θ θ
θ

θ θ θ

φ φ φ
φ

φ φ φ

⎧ <⎧⎪=⎪ ⎨ >⎪⎩⎪
⎪ <⎧⎪ ⎪= =⎨ ⎨ >⎪⎩⎪
⎪ <⎧⎪⎪ = ⎨⎪ >⎪⎩⎩

 



Majlesi Journal of Electrical Engineering                                                                            Vol. 8, No. 1, March 2014 
 

48 
 

Where (max)ru , 
(max)
uθ  and 

(max)
uφ  are definite values that 

for different scenarios which are different. Moreover, 
all states are not important for us. So, cost function is 
improved as follows: 
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Coefficients of controller 

1
b , 

2
b , 

3
b  are obtained by 

using genetic algorithm optimally. 
 
5.  SIMULATION RESULTS 
In this Section, a numerical simulation is presented to 
justify the use of our proposed method. 
Engagement performance and robustness of the SMG 
law and the APNG [4] against different types of targets 
and different scenarios are compared. Three 
maneuvering strategies of the target in 3-Dimensional 
space  [2] are employed to investigate the robustness 
and tracking performance of the guidance laws, 
i.e., rw , w θ and w φ are generated by the following 
maneuvering targets, 

1- Step target 
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2- Ramp target 
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3- Sinusoidal target 
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Where Tλ is the target’s navigation gain with random 
value within 0 4 g−  and 20Ω = rad/s.  
Two scenarios are proposed to illustrate the 
performance, robustness and tracking of the SMG law. 
Case 1. Target escapes from missile ( 0rw >  ) 
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Case 2. Target is toward the missile ( 0rw < ) 
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Parameters b , ε  and N are regarded as follows,  

[30, 45,70]
[5,2,1]
3.8

T

T

b

N
ε

⎧ =
⎪

=⎨
⎪ =⎩

 

Where N is the navigation gain in APNG law. 
Chattering phenomena is one of the undesirable effects 
of sliding mode control. The main reason of chattering 
phenomena is the existence of sign function in control 
inputs ,ru uθ anduφ . In order to overcome this 
problem, tanh( / )s ε function is used instead of 

( )sign s function.  
Fig. 2 illustrates convergence of the relative distance 
for the initial conditions of cases 1 and 2. Results show 
that the interception time in SMG law is less than 
APNG law. Our designing objective is to develop an 
effective guidance law to keep the pitch LOS angular 
rate, yaw LOS angular rate, and relative distance as 
small as possible under uncertain target accelerations. 
From Fig. 3(a) and (b), it is obvious that tangential 
relative velocities of the proposed guidance law 
converge to zero, quickly, more than those of the 
APNG law. This finding reveals that the SMG law has 
admirable target tracking ability, and it is possible to 
get smaller miss distances than that of the conventional 
one. Control commands for both guidance laws are 
shown in Fig. 4(a) and (b). 
Robustness of the guidance design is investigated by 
three types of target acceleration command. According 
to the definition of performance robustness index, a 
robust guidance law should keep the engagement 
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performance with less sensitivity to the external 
disturbances, i.e., the target acceleration commands.  
In APNG the successful engagement is based on the 
assumption that information about the target 
acceleration profiles is precisely measured but in the 
SMG law we only need the maximum target 
acceleration. 
Simulation results in Fig. 5(a) and (b) have indicated it 
is hard for the APNG to track the step and ramp targets 
with initial conditions of case 1, but the proposed SMG 
laws still can accomplish the missions. Hence, the 
optimal robust proposed guidance law is more robust to 
uncertain target accelerations than the conventional one 
in different initial conditions.  
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Fig. 2. Trajectories of relative distances between 
missile and target for OSMG and APNG versus 
sinusoidal target with different initial conditions.  

(a): Case 1. (b): Case 2 
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Fig. 3. Tangential relative velocities of OSMG and 
APNG versus sinusoidal target with different initial 

conditions. (a): Case 1, (b): Case 2 
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Fig. 4. Control commands for OSMG and APNG 
versus sinusoidal target. (a): Case 1, (b): Case 2 
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Fig. 5. Trajectories of relative distances between 
missile and target for OSMG and APNG versus step (a) 

and ramp target (b) with initial condition of case1  
 

6.  CONCLUSION 
In this paper, an optimal sliding mode guidance law 
within using genetic algorithm was proposed for 
tactical missiles pursuing maneuvering targets in 3-
Dimensional space that achieved the designing goal 
with less interception time. The proposed guidance law 
has higher maneuverability and results in miniature 
LOS angular rates than the traditional APNG. It also 
offers better performance against uncertain target 
accelerations. Simulation results show that SMG law is 
better than APNG in following cases: interruption time, 
robustness, tracking performance. 
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