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ABSTRACT: 
Since the development of wind power plants installation is growing, problems which are related to network 
connecting, stability and voltage effects become more important. On the other hand, wind farms are often open to 
lightning because of their long height and specific appearance. In this paper, modeling and simulation of 1-phase, 3-
phase and lightning faults in a wind farm consisting of 40 wind turbines and faults impact on wind farm and the 
network is investigated in EMTP-RV environment. In this field, it’s necessary to develop a precise modeling out of 
wind power plant in order to evaluate the effects of these power plants on dynamical behavior of the power system. 
These models can be used in designing new protection systems, new protection algorithms, and new strategies for 
power plants exploitation improvement. Each wind unit in the farm is connected to the whole units that are connected 
to the network using a doubly fed induction generator (DFIG). 
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1. INTRODUCTION 
Wind farms have some advantages compared to other 
types of power plants: Not using water for cooling, not 
emitting carbon, being located near the production and 
local loads, not using transmission lines capacity. Since 
the development of wind power plants is daily 
increasing the problems related to network connecting, 
stability and voltage effects are becoming more 
important [1]. Hence, several transmission system 
operators have defined certain characteristics and 
circumstances in which a wind power plant can be 
connected to the network [2]-[4] Topology of wind 
farm networks has major difference with other 
transmission and distribution systems. In order to 
reduce array losses the turbines are usually separated 
by at least 5 blade diameters which needs expensive 
cable systems and a number of devices like circuit 
breakers and step-up transformers [5]. Combination of 
these devices in large offshore wind farms has been 
identified as a   potential source of transient over 
voltages [6]. In addition, fault existence in any of the 
wind farm transformers cause to high costs of fixing. 
Regarding transient stability, some Eltra constraints are 
needed which occur between wind power plant and 
power network and they are investigated in the network 
by simulation when faults occur [7]. One of the most 
efficient ways to increase the turbine output power is 
increasing the height in order to exploit more wind. 
Nowadays, wind turbines are on average 50 meters, 

height and some turbines with nearly 100 meters 
height. The more the height of a tower, the more the 
chance of being struck by the lighting which can cause 
the following damages:  
 

●Increasing potential of wind farms. 

●Voltage drop along the cable. 

●Heating of blades and ball-bearings which can 
cause them to melt. 

In this field, it seems necessary to develop a precise 
model of wind power plants to evaluate effects of these 
power plants on system dynamical behavior [8]. Such 
models can support designing new protection systems, 
new protection algorithms and new strategies for power 
plant exploitation improvement. Transient states in 
large wind farms are studied in PSCAD/EMTDC 
environment [9], dynamical model of wind farms and 
power system is studied in DigSilent including both 
normal operation and transient state [10]. Also, 
investigating the effects of various aspects of wind 
farms such as generator’s technology, distributed 
generation and so forth are investigated in DigSilent 
environment [11]. In [12] the effects of lightning on 
wind farms were studied using a current source to 
simulate the lightning. 
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In this paper, the 1-phase, 3-phase and lightning fault’s 
impact are investigated on a wind farm consist of 40 
wind turbine using its modeling and simulation in 
EMTP-RV environment. The impacts of faults are 
analyzed on wind farm- faulted bus and the bus of 
network connected to wind farm.  
 
2. BASIC CONCEPTS 
2.1. DFIG concept 
DFIG is an abbreviation for Double Fed Induction 
Generator, a generating principle widely used in wind 
turbines. It is based on an induction generator with a 
multiphase wound rotor and a multiphase slip ring 
assembly with brushes for access to the rotor windings. 
The rotor winding is connected to the main grid by self 
commutated AC/DC converters allowing to controll the 
slip ring voltage of the induction machine in magnitude 
and phase angle. Doubly-fed induction generator system is 
illustrated in Fig. 1. 

 

Fig. 1. Doubly-fed induction generator system 
 

In contrast to a conventional, singly-fed induction 
generator, the electrical power of a doubly-fed 
induction machine is independent from the speed [13]. 
It is possible to understand a variable speed wind 
generator allows toadjust the mechanical speed to the 
wind speed and hence operating the turbine at the 
aerodynamically optimal point for a certain wind speed 
range. 
 
2.2. Wind model 
The power extraction of wind turbine is being known to 
be a function of three main parameters: the wind power 
available, the power curve of the machine and the 
ability of the machine to respond to wind fluctuations 
[14]. 
The wind turbine aerodynamic is modeled with an 
algebraic equation as given by: 

( )1 2 3,
2

C VR p wP R λ βρπ=                                         (1) 

Where, 

RP : Rotor power 

Vw : Wind speed 

( ),C p λ β : Characteristic power coefficient 

λ : Tip speed ratio 
β : Pitch angle 
ρ : Air density 

R : Blade radius 
 
The tip speed ratio  is defined by (2): 

RR
Vw

ω
λ =

                                                                    

(2) 

Where Rω refers to the angular speed of rotor blades. 
 
2.3.Induction generator 
The induction generator is represented using the wind 
torque model, applied to the shaft of the induction 
machine model as shown in Fig. 2. The model also 
incorporates a pitch control block, which changes the 
angle of the blades of the machine at high wind speeds 
in order to modify the torque characteristic and thus 
limit the output power to the rating of the machine [15].  
 

 
Fig. 2. Direct connected induction generator model in 

EMTP-RV 
 
2.4. EMTP-RV solver 
The transient analysis software program used in this 
paper allows for the representation of very large 
systems and produces very accurate results, enabling 
simulation of numerous cycles to even multiple 
seconds, with relatively short execution times [16].  
The ability of the software to model large systems with 
multiple machines, power electronics, and control 
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makes it ideal for modeling wind energy systems and 
studying the interconnection characteristics. 
 
3. SYSTEM SIMULATION ANDFAULTS STUDY 
3.1. The network under Study 
Fig. 3 shows the studied network which comprises 40 
wind units which each one of them are connected to the 
wind farm system and network by a DFIG. Each 
Turbine is connected to the correspondent bus by a YΔ 
transformer and a capacitor. The units start working in 
each radial row each with 0.2 seconds of delay. 
Therefore, the first turbine is placed in the network 
from the beginning of simulation and the last unit in 
each radial row is placed in the circuit at t=1.4s. 
Capacity of each power plant unit is 10 MVA, series 
capacity is 400 MVA (active power of each unit is

MWS r 66.8102
3

2
3 =×=  and reactive power is

MVARS r 55.0 = . Inertia constant of each generator 
is 0.3s and that of each turbine is considered 3s.  

 

 

Fig. 3. The network under study 
 

Nominal voltage of each generator is 0.69 kV and 
number of poles is 4. Three loads are connected to the 
network. Load 1: ( 77 , 40P MW Q MVAR= = ), Load 2: 
( 120 , 60P MW Q MVAR= = ) and Load 3: (

150 , 100P MW Q MVAR= = ). Each wind units is 
modeled as in Fig.4 which includes equations relating 
to turbine and DFIG. The required parameters for 
simulation are given in Table 1. 

 

Fig. 4. S chematic illustration of a wind power plant 
 

Table 1. Required Parameters for Simulation 
Parameter Value 

Vbase 0.69 kV rms 
H_Gen 0.3 Generator Inertia in s 
H_Tur 3.0 Turbine Inertia in s 
Sbase 45 MVAr 
Droop 5 % 

Fs 60 Hz 
Qrating 0.5*SbaseMVAr 

P 4 poles 
Rs 0.00662 pu 
Lls 0.0850 pu 
Llr 0.101 pu 
Lm 3.1 pu 
Rr 0.01 pu 

 
WIND block consists of data relating to the wind speed 
in 3 time periods namely 0-200, 200-400, 400-600 s. 
internal schema of this block is shown in Fig. 5. 

 

Fig. 5.Internal schema of WIND block 
 

4. 3-PHASE FAULT STUDY 
In this section, we study 3-phase faults stimulation on a 
wind farm with 40 wind turbine. The turbines in 5 rows 
are connected to a bus as radial so that the bus connects 
to a 150 KV low voltage network through a 
transformer. This network is illustrated in Fig. 6. 
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Fig. 6. Fault location in a wind farm simulated in EMTP-RV 
 

A 3-phase fault in t=6s occurs on wind power plant unit 
which is shown in Fig. 5 and itremains in the network 
until t=7s. The curvesare related to thevoltage, amount 
of effective voltage in different buses, speed and 
torques of DFIG generators are shown in Fig. 7-10. 

 
Fig.7. Faulted bus voltage curve and the main bus of 

the wind farm 
 

Fig. 8. Torque, output power and speed of generator 
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Fig. 9. Active power curve and turbine reactive of a 

wind unit 

 
Fig. 10. Effective voltage curve of the faulted bus and a 

bus from the network 
 

According to Fig. 7, Faulted bus voltage and the main 
bus of the wind farm drops to 0.5 pu in spite of danger 
which is very dangerous and can cause voltage and the 
network to collapse. Fig. 8 shows the fluctuation in the 
generator torque, output power and speed due to fault. 

As the generator torque drops, the speed of generator 
accelerates since the torque given to the turbine by the 
wind is nearly constant and vice versa. Fig. 9 shows 
active and reactive power of wind turbine unit is 
decreased in fault time. Also in Fig. 10 the effective 
voltage value of faulted bus dropped to 0.5 pu when 
fault occurred but effective voltage of bus from the 
network (high voltage) remained constant. In order to 
compensate speed fluctuations and prevent network 
collapse due to severe voltage drops, using FACTS 
devices such as STATCOM and SVC seems necessary. 
 
5. 1-PHASE FAULT STUDY 
In this section, a 1-phase fault occurs in the same place 
as the previous 3-phase fault from t=6s to t=7s for 1 
second. Curves of voltage, effective voltage in different 
busses, along with speed and torques of DFIG 
generators are next. 

 
Fig. 11. 3-phase faulted bus voltage curve 
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Fig. 12. T torque curve, speed and output power of the 

generator 
 

 
Fig. 13. Active and reactive power curve of a turbine in 

a wind farm 

 
Fig. 14. Effective voltage curve of faulted bus and that 

of a bus from network 
 

Fig. 11 shows the faulted bus voltage declined to 0.5 pu 
in phase a and in other phases itis invariable. Also 
according to Fig. 12, electromagnetic torque and 
generator’s speed and power during faulting cause 
intensive fluctuations. In Fig. 13, active and reactive 
powers of wind turbine unit are decreased in fault time 
as they are shown in the picture. Since not enough 
reactive power is injected (because there are no FACTS 
devices) during the fault, speed shows a slight increase 
after fault elimination. Also faulted bus effective 
voltage value decreases to ( 3/1 )*0.57 pu in the 
moment of fault and the bus voltage from network is 
invariable as it’s shown in Fig. 14. 
 
6. LIGHTENING STRIKES STUDY 
This section is dealt with lightening strikes to a wind 
farm. To simulate lightening, a current source is 
employed which generates a maximum current of 200 
KA and a pre-wave time of 3 ms. Lightening block and 
its internal schema are depicted in Fig. 15. 
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Fig. 15. A) Lightning block   B) internal schema    C) current wave diagram for modeling the lightning( 200maxI KA= ,
3f mst = ) 

 

The curves of current, effective voltage in different 
buses, speed and torques of DFIG generators are shown 
in Fig. 16-19. 
 

 

Fig. 16. 3-phase current curve of faulted bus 
 

 

 

Fig. 17. Torque curve, output power and speed of the 
generator 
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Fig. 18. Active and reactive power curves of a turbine 

in a wind farm. 
 

 
Fig. 19. Effective voltage of faulted bus, and that of the 

main bus of wind farm and a bus from network 
 

Fig. 16 shows curves of 3-phase faulted bus current 
which has a sever peak when lightning strikes and this 
intense currents can damage protection devices and 
transformers. Intensive fluctuations in electromagnetic 
torque and generator output power, along with great 
speed changes can be clearly observed in Fig. 17. Also 
according to Fig. 18, active and reactive power of wind 

turbine unit is decreased in fault time. Fig. 19 shows a 
decrease in effective voltage value of faulted bus and 
the effective voltage of bus from network is invariable. 
 
7. CONCLUSION 
In this paper we investigated 1-phase, 3-phase and 
lightning faults impact on a wind farm consisting of 40 
wind turbines in EMTP-RV environment. Results of 
the experiments were presented and it was observed 
that in each of 3 cases, faulted bus voltage and the main 
bus of the wind farm was declined to 0.5 Pu, which was 
very dangerous and can cause voltage and the network 
to collapse but the bus voltage of network connected to 
wind farm was invariable during faulting. The 
generator torque, speed and output power fluctuation 
due to fault was concluded. Also the active and reactive 
power of faulted bus was decreased. According to 
obtained results, if there was no device to supply 
network with more reactive power during the fault, we 
will inevitably face severe voltage loss in various 
points of the network which can possibly cause it to 
collapse. In the next study, the effect of using FACTS 
devicesuch as SVC and STSTCOM for decreasing 
severe fluctuations of torque, speed and voltage drops 
will be proposed. 
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