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ABSTRACT: 
Reactive power dispatch plays a key role in secure and economic operation of power systems. Optimal reactive power 
dispatch (ORPD) is a non-linear optimization problem which includes both continues and discrete variables. Due to 
complex characteristics, heuristic and evolutionary based optimization approaches have become effective tools to 
solve the ORPD problem. In this paper, a new optimization approach based on improved differential evolution (IDE) 
has been proposed to solve the ORPD problem. IDE is an improved version of differential evolution optimization 
algorithm in which new solutions are produced in respect to global best solution. In the proposed approach, IDE 
determines the optimal combination of control variables including generator voltages, transformer taps and setting of 
VAR compensation devices to obtain minimum real power losses. In order to demonstrate the applicability and 
efficiency of the proposed IDE based approach, it has been tested on the IEEE 14 and 57-bus test systems and 
obtained results are compared with those obtained using other existing methods. Simulation results show that the 
proposed approach is superior to the other existing methods. 

 
KEYWORDS: Improved Differential Evolution, Loss Minimization, Optimal Reactive Power Dispatch, Power 
System Operation.  
 
1. INTRODUCTION 
Optimal reactive power dispatch (ORPD) problem is 
one of the most important issues in power system 
operation which plays a key role in secure and 
economic operation of power systems. This problem 
denotes optimal settings of controllable variables such 
as generator voltage magnitudes, tap ratios of 
transformers and setting of shunt VAR compensation 
devices to minimize the transmission line losses while 
satisfying physical and operating constraints [1].  
ORPD is a non-linear and non-convex optimization 
problem that contains both discrete and continues 
variables. Several conventional and classical solution 
methods have been presented to deal with the ORPD 
problem such as gradient based search, linear 
programming, dynamic programming and etc. [2]-[9]. 
These methods are computationally fast. However, due 
to complex characteristics and discrete nature of the 
problem, they face difficulties in solving the problem. 
In the recent years many meta-heuristic and 
evolutionary methods have been implemented to the 
ORPD problem. The advantages of evolutionary 
algorithms in terms of the modeling and search 
capabilities have encouraged their application to the 

ORPD problem. The genetic algorithm (GA) [10], 
particle swarm optimization (PSO) [11], [12], 
evolutionary programming (EP) [13], differential 
evolution (DE) [14]-[16], harmony search algorithm 
(HSA) [17], general quantum genetic algorithm (GQ-
GA) [18], simulated annealing (SA) [19] and seeker 
optimization algorithm (SOA) [20] are some of the 
meta-heuristic methods that presented to solve the 
ORPD problem. In [21] a method based on hybrid PSO 
algorithm with mutation operator has been presented to 
solve the ORPD problem. In [22] a modified multi 
objective shuffled frog leaping algorithm has been 
proposed to solve the problem. Ref. [23] has proposed 
hybrid fuzzy multi-objective evolutionary algorithm 
(HFMOEA) based approach. Objectives are reactive 
power dispatch and voltage stability index. In 
HFMOEA based optimization approach, the two 
parameters like crossover probability and mutation 
probability are varied dynamically through the output 
of a fuzzy logic controller. In [24] a method has been 
suggested in which voltage stability margin is 
improved by managing the reactive sources. Also, in 
[25] a method based on a modified version of GA been 
presented for ORPD problem. It uses Bender’s cut to 
population selection and reproduction in the 
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decomposed system and successive linear 
programming to solve the operational optimization sub-
problems. 
In this paper, a new approach is proposed to solve the 
ORPD problem using an improved version of DE. The 
original DE is an optimization algorithm that was 
introduced by Price and Storn [26]. Improved DE 
(IDE) is a modified version of the original DE. Original 
DE uses three previous solutions to generate new 
solutions, but in the IDE, two solution and global best 
solution are used to generate new solutions. This 
modification improves the convergence characteristics 
of the search process. In order to show the applicability 
of the proposed IDE based approach, simulations have 
been done on IEEE 14 and 57-bus test systems and the 
obtained results are compared to those given by the 
original DE and the other existing methods. 
The rest of the paper is organized as follows: the ORPD 
problem is formulated in Section 2. Section 3 addresses 
the fundamental concept of the IDE and its 
implementation stages on the ORPD problem are 
presented in Section 4. The numerical results are given 
in Section 5. Final conclusions are outlined in Section 
6. 
 
2. PROBLEM FORMULATION 
The objective of the reactive power optimization is 
minimizing the active power loss in the transmission 
network. The ORPD problem is formulated as an 
optimization problem with an objective function, 
expressed as [17]: 

∑
=

=
nl

l
lLossL PP

1
,min  (1) 

Where PL denotes the total network line losses, lLossP ,  
is real power loss of the l-th line and nl is total number 
of lines. The minimization of the mentioned objective 
function is subjected to a number of equality and 
inequality constraints. The equality constraints are the 
power flow equations as follows: 
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where iPG  and iQG are the active and reactive 
generated powers at the i-th bus, iPD  and iQD are the 
active and reactive demands at the i-th bus, 
respectively. iV  is the voltage magnitude at the i-th 
bus. ijθ is the voltage angle difference between buses i 
and j. 1−nb  is the total number of buses, except the 

slack bus. npq  is the total number of PQ buses, ijG  

and ijB
 
are the mutual conductance and susceptance 

between buses i and j, respectively. 
Inequality constraints include control variable 
constraints and dependent variable constraints. 
Controllable variables are generators voltage 
magnitudes, transformer tap ratios and setting of shunt 
VAR compensation devices. Dependent variables are 
the bus voltages. Constraints of these variables are as 
follows: 
- Generator constraints: Generator reactive power 
outputs and voltage magnitudes are restricted by their 
upper and lower bounds as follows: 

maxmin
iii QGQGQG ≤≤  ngi ,...,2,1for  =  (4) 

 
maxmin
iii VGVGVG ≤≤  

ngi ,...,2,1for  =  (5) 

where ng  is the number of generating units, min
iQG

 
and max

iQG  are the minimum and maximum reactive 

power outputs of generator i, respectively. iVG
 
is the 

voltage magnitude of generator i. min
iVG  and 

max
iVG show the minimum and maximum voltage 

limits of generator i , respectively. 
- Transformer- tap constraints: transformer taps are 
bounded by their related minimum and maximum 
limits as follows: 
 

ntiTTT iii ,...,2,1for  maxmin =≤≤  (6) 
Where nt is the number of transformers. iT  is the tap 

ratio of transformer i.  min
iT  and max

iT  are the 
minimum and maximum values of the i-th transformer 
tap ratio, respectively. 
- Shunt VAR compensator constraints: Setting of the 
shunt VAR compensation devices are restricted by their 
limits as follows: 
 

nciQCQCQC iii ,...,2,1for  maxmin =≤≤  (7) 
Where nc  is the number of VAR compensation 
devices. iQC  is the generated reactive power of the i-

th shunt VAR compensation device. min
iQC and 

max
iQC are the minimum and maximum limits of 

reactive power of shunt VAR compensation device i, 
respectively. 
- Operating voltage constraint: Bus voltages are 
restricted by their maximum and minimum limits as 
follows: 
 

nbiVVV iii ,...,2,1for  maxmin =≤≤ (8) 
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Where iV is the voltage of the i-th bus. min
iV  and 

max
iV are the minimum and maximum limits of voltage 

at bus i, respectively. 
 
3. IMPROVED DIFFERENTIAL EVOLUTION 
3.1. Overview of the Original DE Algorithm 
Original DE algorithm is a simple population based 
evolutionary computational algorithm for global 
optimization .It is one of the accurate and fast meta-
heuristic optimization algorithms that was introduced in 
1995s by Price and Storn [26]. This evolutionary 
algorithm begins the search process by initial random 
population. DE includes three main operators, namely, 
mutation, crossover, and selection. Also, it has three 
control parameters, namely, population size (np), 
scaling coefficient (F), and crossover probability (CR). 
In the subsequent sections, the implementation details 
of the DE are described [15], [27]. 
1) Initialization: The DE algorithm searches in parallel 
using a group of members similar to the other 
evolutionary based heuristic optimization techniques. 
Each member corresponds to a candidate solution to the 
problem. In an n-dimensional search space, the 
structure of member k is represented as vector 

),,,( ,2,1, nkkkk xxxX "=  where the dimension 
represents the number of components. In the first stage 
of the DE optimization process, initial population 
contains np members should be created randomly. 
2) Mutation: After the population is initialized, the 
operators of mutation, crossover and selection create 
the population of the next generation. At the generation 
t, the process for creation of a mutant solution ( kY ) for 
each parent ( kX ) in the population can be expressed as 
follows: 
 

npktXtXFtXtY rrrk ,,2,1,))()(()()( 213 "=−⋅+=  (9) 
Where vector indices r1, r2, and r3 are randomly 
chosen, which r1, r2, and r3 },...,1{ np∈  and 

krrr ≠≠≠ 3 21 . 1rX , 2rX , and 3rX  are selected 
members for each parent vector. F is a user-defined 
constant known as the ‘scaling factor’, which is a 
positive and real number. The usual choice for F is a 
number between 0 and 1. 
3) Crossover: In order to increase the diversity of the 
population, the crossover process is employed. At the 
generation t, the crossover operator creates a new 
solution (child) ( kZ ) using each parent ( kX ) and its 
related mutant vectors ( kY ) as follows: 
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Where CR is ‘crossover probability’ which is a user-
defined value usually selected from within the range [0, 
1]. CR controls the diversity of the population and 
helps the algorithm to escape from local optima. rand is 
a uniformly distributed random number within the 
range (0, 1) generated a new for each component j. 
Here, ]...,,2,1[ njrand ∈  and ensures that the trial 
vector gets at least one parameter from the mutant 
vector. 
4) Selection: To keep the population size constant over 
subsequent generations, the selection operator is 
applied to determine which one of the child and the 
parent will survive in the next generation. This operator 
compares the fitness of the parent and the 
corresponding child and the fitter of the two solutions 
is then allowed to advance into the next generation. The 
selection process can be expressed as, 
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Where (.)FIT  is the fitness function.  
5) Stopping Criteria: The overall optimization process 
is terminated if the iteration approaches to the 
predefined maximum iteration or another 
predetermined convergence criterion is satisfied. 
 
3.2. Improved Differential Evolution Algorithm 
In the original version of DE algorithm, new solutions 
are created by three previous random selected 
solutions. In the improved version of DE algorithm, it 
is tried to reach better solutions by changing the 
crossover mechanism of the original DE algorithm. To 
do this, new solutions are generated in respect to the 
global best solution. Therefore, probability of obtaining 
optimum solutions will increase. Thus, instead of using 
three previous random solutions, two previous 
solutions and the global best solution (Xg) are used. 
This process is expressed by [24]: 
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Where Xg is the best solution so far; rand is a uniformly 
distributed random number within the range (0, 1), and 
μ  is the constant number between 0 and 1.  
Fig. 1 illustrates the vector generation process defined 
by (12). In Fig. 1, it can be seen that this form of 
mutation uses the best found vector (global best 
solution) to push mutant vectors toward it. The 
algorithm eventually converges with less iteration, so it 
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provides the best choice for search spaces, where the 
optimum solution is relatively easy to be found and its 
speed is higher than original DE because less iteration 
is required to converge. Also the figure verifies that the 
new solutions are created purpose fully. In fact, IDE 
uses group experiences to create new solutions.  
  

Minimum

kX

1rX
2rX

gX

)( 21 rr XX −μ

)( kg XXrand −⋅

kY

Solutions

solutionMutated

1x

2x

 
Fig. 1. Two-dimensional example of an objective 

function showing the process of generating a mutant 
vector kY  for each member vector kX by using 

randomly chosen vectors and the global best solution 
 

4. IMPLEMENTATION OF IDE FOR ORPD 
PROBLEM  
Reactive power dispatch problem is a large-scale 
highly constrained non-linear and non-convex 
optimization problem with discrete and continuous 
variables. Because of non-convexity property of the 
problem, it is hard to be solved by classical and 
mathematical methods. Evolutionary meta-heuristic 
methods are very useful to solve this problem because 
they do not require derivation to solve the problem and 
non-convexity does not prevent from obtaining 
optimum or near optimum solutions. In this paper, an 
improved version of differential evolution optimization 
algorithm is utilized to solve the ORPD problem.  
The process of the proposed IDE based approach for 
the ORPD problem is depicted in Fig. 2 and can be 
summarized as follows: 
Step 1) Initialization of a group of solutions at 
random; 
Step 2) Evaluation of the fitness function for each 
solution and determining global best solution; 
Step 3) Creating new solutions; 
Step 4) Constraints handling; 
Step 5) Evaluation of solutions’ fitness function, 
selection and update the global best solution; 
Step 6) Go to Step 3 until satisfying stopping criteria. 
In the subsequent sections, the detailed implementation 
strategies of the IDE based ORPD are described. 

4.1. Initializing Solutions 
In the proposed approach each solution can be 
considered as an n-dimensional vector. In the ORPD 
problem, generator voltage magnitudes, transformer tap 
ratios and setting of shunt VAR compensation devices 
are decision/control variables. Therefore each solution j 
should contain these items as follow: 

],,,,,,,,[ ,1,,1,,1, nckjntkkngkkk QCQCTTVGVGX ………=

 
(13) 

Note that it is very important to create a group of 
members satisfying the inequality constraints (5)-(7). 
That is, the each created component of a member at 
random should be located within its related boundary. 
To do this, we can create each component of the 
member at random satisfying the related inequality 
constraint by mapping [0, 1] into its related lower and 
upper limits, i.e. [lower limit, upper limit]. 
 
4.2. Constraint Handling 
There are two groups of constraints in the ORPD 
problem, namely, equality and inequality constraints. 
The inequality constraints contain controllable variable 
and dependent variables. To satisfy constraints (5)-(7) 
which are related to the controllable variables, if the 
corresponding components exceed from their upper 
bounds, they will be set at the upper bounds and if they 
decreases from their lower bounds they will be set on 
the lower bounds as follows: 

 
Fig. 2. Flowchart of the proposed approach 
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Where jkx ,  is the component i of member j. min
, jkx and 

max
, jkx are the related lower and upper bounds. 

Tap changers and shunt VAR devices often have 
discrete values and different steps, therefore their 
constraints must be satisfied with different methods. 
Assume that there are n steps for tap changers or shunt 
devices. An integer number has been created between 1 
and n. This number shows the device step so that, digit 
1 shows step 1, digit 2 shows step 2 and digit n 
illustrates the step n, respectively. To produce integer 
numbers a random number has been created and then it 
has been rounded. 
After, finding the independent variables, dependent 
variables will be calculated from AC power flow 
solution. Consequently, the power balance constraint 
represents by (2)-(3) is satisfied by using AC power 
flow. The AC power flow has been conducted by 
newton- raphson method which has been done by 
MATPower load flow. Also, constraints (4) which are 
related to reactive power outputs of generating units 
can be satisfied in the power flow calculation. 
The inequality constraints (8) which show the operating 
voltage limits are incorporated in the fitness function as 
explained in the Section 4.3. 

 
4.3. Fitness Assignment 
The performance of members in the current population 
are assessed in the objective space and then assigned a 
scalar value known as fitness. Depending on the fitness 
values, members will be selected to form the new 
population. Members with high fitness value have more 
chance to be selected. 
In this paper, the fitness function of the ORPD problem 
is a combination of the objective function (1) and a 
penalty function related to the inequality constraints (8) 
as follows: 
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The penalty factor )( iVp  enforces the voltage limits 
and is defined by [26]: 
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When the iteration approaches to the predefined 
maximum iteration, the overall optimization process is 
terminated and the global best solution which has the 
highest fitness value is introduced as final solution of 
the ORPD problem. 

 
5. NUMERICAL RESULTS 
To assess the efficiency of the proposed IDE based 
approach for the ORPD problem, it is applied to two 
different power systems. The results obtained from the 
IDE are compared with those of other methods. For 
more comparison, the original DE algorithm has been 
coded and implemented to the case studies by the 
authors same as IDE. 
The proposed approach has been coded in MATLAB 
language and executed on a 2-GHz Pentium IV 
personal computer with 1-GB of RAM. 

 
5.1. 14-Bus Test System   
This system consists of 5 generation units, 9 load 
buses, 20 lines in which three lines of 4-7, 4-9, and 5-6, 
have tap changing transformers. The bus and lines data 
are taken from [29]. Initial line loss is 13.49 MW. 
Limits of control variables are listed in Table 1. 
 
Table 1. Limitation of control variables for 14-bus test 

system 

Variables Minimum (pu) Maximum 
(pu) Step 

VG 0.9 1.1 --- 
V 0.9 1.1 --- 
T 0.9 1.1 0.01 

QC9 0 0.18 0.06 
QC14 0 0.18 0.06 
 

There exists two parameters to be determined for the 
implementation of the proposed IDE based approach, 
namely, μ  and CR. In this paper, these parameters 
have been determined through the sensitivity analysis 
for the 14-bus test system. To tune the parameters of 
μ  and CR, the values of μ  are varied from 0.1 to 0.9 
and the values of CR are also varied from 0.1 to 0.9 
with increments of 0.1. In Table 2, the effects of the 
parameters are illustrated, where 30 random trials are 
performed for each parameter set. Among 17 sets of 
parameters in Table 2, Case 15 shows the best 
performance in terms of the best, average and the worst 
solutions. Therefore, the parameter values for Case 15 
are selected for subsequent studies. Also, the maximum 
iteration number is set as 300. 
Fig. 3 illustrates the convergence characteristics of the 
proposed IDE base approach in five runs with 
population size equal to 50 and different initialized 
randomly created members. It can be seen that all of 
the five runs have been converged to optimum solution. 
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This shows the search capability of the IDE to achieve 
the best solution with different starting points. In order 
to demonstrate the effect of population size on the 
performance of the optimization process, the proposed 
approach has been run with the different population 
sizes. Also the obtained results are given in Table 3. 

 
Fig. 3. Five sequential runs of the proposed 

approach for 14-bus test system with different initial 
populations 

 
 

Table 2. Effects of parameters in IDE performance in 14-bus test system 

Case μ  CR Best solution 
(MW) 

Average solution 
(MW) 

Worst solution 
(MW) 

Standard 
deviation 

1 0.1 0.9 13.29502 13.36937 13.4594 0.048988 
2 0.2 0.8 13.27415 13.35301 13.48561 0.06686 
3 0.3 0.7 13.28146 13.3259 13.4118 0.044938 
4 0.4 0.6 13.27035 13.29209 13.31765 0.016013 
5 0.5 0.5 13.22756 13.22758 13.22775 6.16E-05 
6 0.6 0.4 13.22756 13.22758 13.22775 6.27E-05 
7 0.7 0.3 13.22756 13.22779 13.22951 0.000608 
8 0.8 0.2 13.22756 13.23953 13.28037 0.020043 
9 0.9 0.1 13.22757 13.26098 13.35206 0.045124 

10 0.1 0.1 13.31649 13.34647 13.37706 0.022252 
11 0.2 0.2 13.28832 13.33102 13.4166 0.037159 
12 0.3 0.3 13.28888 13.30393 13.32033 0.011641 
13 0.4 0.4 13.26876 13.29027 13.31402 0.015233 
14 0.6 0.6 13.22756 13.22762 13.22775 9.36E-05 
15 0.7 0.7 13.22756 13.22756 13.22756 4.36E-05 
16 0.8 0.8 13.22756 13.2276 13.22785 8.84E-05 
17 0.9 0.9 13.22759 13.22788 13.22881 0.000395 

 
As the results in Table 3 indicate, the IDE based 
approach can reach to the best solution with all 
population sizes. These provide a robustness of the 
IDE, regarding to the population size. However, the 
probability to obtain the best solutions lowers with the 
small population size.  

 
Table 3. Simulation results for 14-bus test system with 

different population sizes 

Population 
size 

Best 
Solution 
 (MW) 

Average 
solution 
(MW) 

Worst 
solution 
(MW) 

Time 
(sec) 

25 13.2276 13.2361 13.2599 6.31 
50 13.2276 13.2276 13.2276 9.4 
75 13.2276 13.2276 13.2276 13.73 

100 13.2276 13.2276 13.2276 17.02 

The convergence curves of the IDE and the original DE 
to obtain the optimal solution in this case study are 
illustrated in Fig. 4.  
From the figure, it can be concluded that the IDE have 
better convergence characteristic. 
In Table 4, values of control variables and the 
corresponding losses obtained by the proposed IDE 
among 30 trials are provided. They’re compared with 
those obtained which are using other existing methods 
that are including: EP, PSO, interior point method 
(IPM) and the original DE. The IDE has shown the 
superiority to the existing methods as one can see in 
Table 4. In order to compare the speed of IDE and DE 
algorithm in converging to optimum solution result of 
100 time runs of them are available in Table 5. 
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Table 4.Comparison results of the proposed approach and the other techniques for 14-bus test system 

Variable Base Case EP [13] PSO 
[12] IPM [15] DE [15] IDE 

VG2  (pu) 1.045 1.029 1.0463 1.0449 1.0449 1.0464 
VG3  (pu) 1.01 1.016 1.0165 1.0149 1.0146 1.0167 
VG6  (pu) 1.07 1.097 1.1 1.0971 1.1 1.1 
VG8  (pu) 1.09 1.053 1.1 1.0999 1.1 1.0995 

T4-7 0.9467 1.04 0.94 1.0238 1.06 0.96 
T4-9 0.9524 0.94 0.93 1.0998 1.04 0.91 
T5-6 0.9091 1.03 0.97 1.055 1.1 0.97 

QC9  (pu) 0.18 0.18 0.18 0.1798 0.18 0.18 
QC14  (pu) 0.18 0.06 0.06 0.0739 0.06 0.06 

Best solution (MW) 13.49 13.346 13.327 13.246 13.239 13.2276 
Average solution (MW) --- 13.371 13.35 --- 13.251 13.2276 
Worst solution (MW) --- 13.399 --- --- 13.275 13.2276 

Standard deviation --- 0.00018 --- --- 0.01616 0 
 

 

 
Fig. 4. Convergence diagram of DE and IDE 

algorithms for 14-bus test system 
 

It shows the required iteration and time to converge of 
DE and IDE algorithm in 14-bus test system over the 
sequential runs. It is visible that IDE needs less 
iteration and time to converge optimum solution. 
 
Table 5. Comparison result of converging speed between DE 

and IDE in 14-bus test system 

 
iteration time (s) 

Best  Worst  Average Best  Worst  Average  

DE 51 97 64.28 23.4 45.20 49.42 

ID
E 20 55 36.21 9.66 25.26 17.02 

 
5.2. 57-BusTest System 
The IDE with the same parameters determined in the 
first case study is applied to an ORPD problem in IEEE 
57-bus test system. This system consists of 7 
generating units, 80 lines in which 15 lines have tap 
changing transformer. Three VAR compensation 
devices have been considered for buses 18, 25 and 53. 
In this system, initial line loss is 28.462 MW. The 
variable limits in this system are listed in Table 6 
[20].Other input data of the system are given in [29]. 

The obtained values of control variables in this test 
system are provided in Table 7. It is visible that all of  
the variables are in their bounds and the discrete 
amounts of tap changer values have been met.  
 

Table 6. Limitation of control variables for 57-bus test 
system 

Variables Minimum 
(pu) 

Maximum 
(pu) Step 

VG 0.94 1.06 --- 
V 0.94 1.06 --- 
T 0.9 1.1 0.01 

QC18 0 0.1 --- 
QC25 0 0.059 --- 
QC53 0 0.063 --- 

 
The best results from the IDE are compared with those 
of DE, canonical genetic algorithm (CGA) [20], 
adaptive genetic algorithm (AGA) [20], local search 
self-adaptive differential evolution (L-SaDE) [20], 
SOA [20], non-linear programming (NLP) method [20] 
and HSA [17] and given in Table 8. The IDE has 
converged to 24.210 MW while the best result obtained 
by the other methods is 24.257 MW. 
The convergence graphs of the control variables in the 
IDE optimization process are showed in  
Figs. 5-7. From these figures, it can be seen that, the 
variables have variation at the initial iterations and all 
of them are converged to their final states in less than 
200 iterations. Also, it is visible that all the variables 
are kept in their limitations. Bus voltages in PU have 
also been showed in Fig. 8, graphically in which all of 
the voltage magnitudes satisfy their related constraints. 
In order to compare the performance of the IDE with 
original DE, their convergence characteristics are 
compared and depicted in Fig. 9. 
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(a) 

 
(b) 

Fig. 5. Convergence diagram of generator voltages for 
57-bus test system 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Convergence diagram of transformer tap ratios 
for 57-bus test system 

 

 
 

Table 7. Simulation results for 57-bus test system 
VG1 VG2 VG3 VG6 VG8 VG9 VG12 T4-18 T4-18 
1.06 1.058062 1.044567 1.034326 1.054805 1.040813 1.03785 0.9 1.05 
T21-20 T24-25 T24-25 T24-26 T7-29 T34-32 T11-41 T15-45 T14-46 

1 0.95 0.95 1 0.97 0.93 0.93 0.97 0.95 
T10-51 T13-49 T11-43 T40-56 T39-57 T9-55 QC18 QC25 QC53 
0.97 0.93 0.96 1 0.96 0.98 0.1 0.059 0.063 
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Table 8. Comparison results of the proposed approach and the other techniques for 57-bus test system 

Method CGA 
[20] 

AGA 
[20] 

L-SaDE 
[20] SOA [20] NLP [20] HSA [17] 

DE IDE 

  

Losses 
(MW) 25.244 24.564 24.267 24.265 25.902 24.560 24.257 24.210 

 
Also the performances of the IDE and the original DE 
are compared in terms of the best, worst, and average 
values of real power losses among 30 trials and listed in 
Table 9. The obtained results show the superiority of 
the IDE over the original DE algorithm. 

 
Table 9. Comparison results of IDE and DE in 57-bus 

test system 

Method 
Best 

Solution 
 (MW) 

Average 
solution 
(MW) 

Worst 
solution 
(MW) 

Standard 
deviation 

DE 24.25735 24.55919 25.88301 0.49 
IDE 24.21020 24.30000 24.62551 0.35 

 

 
Fig. 7. Convergence diagram of VAR compensation 

devices for 57-bus test system 
 

 
Fig. 8. Voltage profile for 57-bus test system 

 
Fig. 9. Convergence diagram of DE and IDE 

algorithms for 57-bus test system 
 

6. CONCLUSION 
This paper presented an improved differential evolution 
algorithm for the complex problem of optimal reactive 
power dispatch in power systems. The evolutionary 
mechanism of the IDE is more effective than the 
original DE and it has the advantage of being easy to 
comprehend, simple to implement so that it can be 
utilized for a wide variety optimization problems. The 
efficiency of the proposed IDE based ORPD method is 
proved by case studies on two test systems with 
different sizes. Results of the proposed IDE algorithm 
have been compared to those reported in the literature. 
The comparisons clearly approved the effectiveness 
and the superiority of the proposed IDE approach over 
the original DE and the other existing techniques in 
terms of solution quality. 
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