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ABSTRACT 
Singular systems behave more powerfully in terms of dynamical system modeling than ordinary state space systems. 
Since the algebraic equations in singular models can describe the systems constraints, nonlinear singular systems can 
present a general method for modeling and controlling constrained dynamical systems. This paper discusses an 
adaptive control for nonlinear singular systems which satisfy Lipschitz condition. Adaptive methods for singular 
systems are hardly ever investigated in literatures; however they are very useful methods in practice because the 
adaptive mechanism during the adaptive control can adjust the controller for a system with the unknown structures and 
parameters to improve the system performance. The presented controller is composed of a state feedback approach 
with adaptive gains and a mechanism to adjust the gains based on the Lyapunov stability theorem. First the controller 
is designed to stabilize the system, as a result, it is extended for the tracking problem. A simulation on a mobile robot 
singular model is provided to illustrate the effectiveness of the proposed control approach. 
  
KEYWORD: Nonlinear Singular Systems, Adaptive Sontrol, Constrained Robot, Lipschitz Condition, Singular 
Systems Control. 
 
1. INTRODUCTION 
Singular systems (a.k.a, descriptor systems and 
differential-algebraic systems) which contain both 
differential and algebraic equations that have attracted 
a lot of research interests in recent years. This kind of 
model is a natural and convenient representation of real 
systems and it can deal with complex and constrained 
systems, more easily. Many applications of singular 
systems have been discussed in different systems such 
as circuit systems[1], power systems[2], economic 
systems [3], constrained robots [4, 5], chemical 
process[6], and biological systems [7, 8].  
 Many control methods are therefore rapidly extended 
for singular systems. However, the complex nature of 
this class of systems causes some difficulties in control 
approaches. In addition to being stable, an acceptable 
singular system should be regular and impulse free. 
The singular system index is in charge of the 
complexity. When the system index increases, the 
complexity and difficulties grow up. There are several 
different definitions for singular system index, but the 
more typical one is the differential index, which is 
equal to the number of differentiations of algebraic 
equations needed to change a singular system to an 
ordinary differential equations’ system [9]. Control 

design for higher index singular systems is more 
difficult. 
The Stability of singular systems for the linear and 
nonlinear ones has been discussed in several papers 
[10-12]. Most of the control approaches for singular 
systems that have been studied so far are in the field of 
optimal control and robust control [13-18]. Output and 
state feedback control[18, 19] and intelligent control 
methods [14] are also extended for singular systems. 
But few papers discuss the adaptive and model 
reference control for singular systems [20, 21]. 
However, the adaptive control is one of the most useful 
methods in practice and the adaptive mechanism during 
the adaptive control can adjust the controller for a 
system with unknown structures and parameters to 
improve the system performance. So it is necessary to 
develop the adaptive approaches for singular systems.  
As the complex nature of this type of systems causes 
many difficulties in control strategy, most of the 
control methods which have been designed so far are 
for linear systems, while the real systems have mostly 
nonlinear models. Singular nonlinear control systems 
are still an open research field. 
In this paper, we consider the adaptive control of 
nonlinear singular systems. Nonlinear singular systems 



Majlesi Journal of Electrical Engineering                                                                               Vol. 8, No. 2, June 2014 

2 

have complex natures, and at the same time, the 
unknown parameters in the system model make the 
control design, more complicated. An adjustable state 
feedback approach is presented for the class of 
nonlinear systems, in which the nonlinear part of 
equations satisfies the Lipschitz condition.  The update 
mechanism is directly extracted from the Lyapunov 
function to guarantee the stability and to decrease the 
parametric errors. First a simple basic control is 
designed for stabilizing a single input nonlinear 
singular system and after that the proposed controller is 
generalized for tracking problem of multi- input 
singular systems. For better illustration, the presented 
control approach is then applied to a mobile robot, 
which is modeled by singular system. 
This paper is organized as follows. The problems of 
formulations and the theories and assumptions used for 
control design are presented in section 2. Designing of 
a basic adaptive control for single input nonlinear 
singular systems is investigated in section 3. Tracking 
control design for multi-input singular systems is 
presented in section 4. Section 5 introduces the singular 
model of a mobile robot. Simulation results are 
investigated in section 6 and then section 7 concludes 
the paper. 
 
2. PROBLEM STATEMENT AND 

PRELIMINARIES  
Consider the following nonlinear singular system: 

( ) ( )( ) ( )t t u t= + +Ex Ax f x B                                     (1)  

where nR∈x  is the vector of the system’s states and 
lu R∈ is the control input. We have 

1and ( )n l nR R× ×∈ ∈B f x is nonlinear function vector. 
The parameter l is the number of inputs. The matrix 

n nA R ×∈  is the system matrix of linear coefficients. The 
matrix E can be singular (Rank (E) <n). The parameters 
f and A are unknown and f satisfies the following 
Lipschitz condition.  

1 2 1 2( ) ( ) L− ≤ −f x f x x x                                          (2)  
while L is also unknown;. Without loss of generality, it 
is assumed that f(0)=0,  so the condition (2) can be 
rewritten as  

( ) L≤f x x                                                                
(3)  
Now the objective is to design a control input u to 
stabilize such kind of systems and then to extend the 
controller for tracking the problem. First some 
assumptions should be considered.  
Assumption 1.  
A. There exists a matrix P such that  

≥T TE P = P E 0                                                            (4) 

B. Knowing the matrix P, it is assumed that there exists 
a matrix l nR ×∈*

1θ   which satisfies the following 
equation  

T T* *
1 1P A + LI + Bθ + A + LI + Bθ P = -Q( ) ( )            (5) 

where Q is positive definite and *
1θ  is also unknown.□ 

 For tracking the problem, we need some more 
assumptions. Choosing the reference trajectories vector 

dx  is an important part of control design. It should be 
guaranteed that the proposed dx is a feasible trajectory 
for the system. The following assumption is considered 
in tracking control design. 
Assumption 2. 
A. The elements of the reference trajectories from 
vector dx   are differentiable such that the term dEx   
exists.  
Since E is a singular matrix and rank(E) < n , 
derivative of some elements of  dx may not be needed. 
In other words, as the singular system contains the 
system states and also the algebraic variables, the 
derivative of some elements of the vector dx , which 
are related to the algebraic variables, may not be 
needed in the control design; however, the derivative of 
the elements which are related to the system states are 
necessary to exist.  
B. For a determined reference vector  , there exists a 
matrix l nR ×∈*

2θ  which satisfies the following 
equation 

L*
2 d d dBθ A + I) + Ex = -( x x                                       (6) 

where *
2θ  is also unknown. □ 

First, a stabilizer is designed in the following section as 
a basic controller for one input of nonlinear singular 
systems with unknown parameters A and f. Then the 
basic controller will be extended for the tracking 
problem of multi input nonlinear singular systems. 
 
3. BASIC ADAPTIVE CONTROL DESIGN 
In this section, a control strategy is designed based on 
the Lyapunov stability theorem to stabilize a nonlinear 
singular system with one input (l=1). The objective is 
to find an adaptive state feedback controller like  
u 1=θ x                                                                      (7) 

and a mechanism to update the  row vector 1θ  , such 
that the closed loop system 

1Ex = (A + Bθ )x +f(x)                                               (8) 

is stable. In other words, the goal is that 1θ  tends to *
1θ

All the work is summarized in the following theorem. 
Theorem 1. The nonlinear singular system (1) with 
unknown A and f, will be stable, by using the adaptive 
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state feedback control (7) in which θ  is an adjustable 
vector with an update rule as  

γT T T
1θ =- xx P B                                                           (9)  

where the matrix P satisfies (4) and γ  is the adaption 
rate. 
Proof- Consider the closed loop equation (8). After 
adding and subtracting the term *

1Bθ x , we have:  

 * *
1 1 1Ex = (A + Bθ )x +f(x) + B(θ - θ )x                    (10) 

The following Lyapunov function is the candidate to 
stabilize the system and to reduce the parametric error: 

1 1
2 2

V
γ

= +T T * * T
1 1 1 1x E Px (θ -θ ) (θ -θ )

                  
(11)  

where P satisfies (4). Differentiating V respect to t, one 
can reach 

1 1
( )

2
V

γ
= +T T T T * T

1 1x E Px+x P Ex (θ -θ )θ             (12) 

Using the system dynamics (10) instead of Ex  results 
in  

  1

V

γ

=

+

T T * T T
1

T T * * T
1 1 1 1 1

x P (A + Bθ )x + x P f(x) +

x P B(θ - θ )x (θ -θ )θ
              (13) 

Since T Tx P f(x)  is scalar, and according to Lipschitz 
condition (3), one can get 

  

V L

γ

≤

1

T T * T T
1

T T * * T
1 1 1 1 1

x P (A + Bθ )x + x P Ix +

x P B(θ - θ )x + (θ -θ )θ
              (14) 

And it can be said that  

  

1
[

2
V L

L
γ

≤

1

T T *
1

T * T * T T T
1 1 1 1

x P (A+Bθ + I)x+

x (A+Bθ + I) Px]+(θ -θ )[xx P B+ θ ]
 (15) 

It is clear that if the update rule is chosen as (9) then 
the derivative of Lyapunov function using (5) will be  

1
2

V
−

≤ Tx Qx                                                            (16) 

And based on the Lyapunov stability theorem, the 
closed loop system will be stable and 1θ  tends to *

1θ . 
One of the advantages of the proposed controller is that 
the control law and the update rule are very simple and 
easy to apply, so in practical systems, the presented 
controller is more convenient and applicable comparing 
with the ones which have been already proposed in the 
literature.  
From the proof, the following corollary can be 
obtained. 

Corollary 1. For the nonlinear singular systems in 
form of  

( ) ( )t t u tEx = Ax( )+f(x)+g(x)                                (17)  
where the matrix g depends on x and it’s not constant, 
if some constant matrix B with similar dimension  is 
found such that ≤g(x) B   for all values of x, then 
the theorem 1 can be extended for this type of nonlinear 
systems. Similar to the proof of theorem 1, by using 
g(x) instead of B, equation (13) will be  
V

γ

=

1

T T T T T T *
1

T T * * T
1 1 1 1 1

x P A x + x P f(x) + x P g(x)θ x +

x P g(x)(θ - θ )x + (θ -θ )θ
          (18) 

Since the term T T *
1x P g(x)θ x  is the scalar and

≤T T * T T *
1 1x P g(x)θ x x P Bθ x , (18) can be rewritten as  

V L

γ

≤

1

T T * T T
1

T T * * T
1 1 1 1 1

x P (A + Bθ )x + x P Ix +

x P g(x)(θ - θ )x + (θ -θ )θ
             (19) 

which is similar to (14). Therefore, by some changes in 
the adaption rule of theorem 1 as  

γ−T T T
1θ = xx P g(x)                                                    (20)  

it can be seen that the theorem 1 will be held for such 
class of nonlinear singular systems. 
In the following section, the proposed basic controller 
is extended for the tracking problem of multi input 
nonlinear singular systems. 
 
4. TRACKING FOR MULTI-INPUT 

NONLINEAR SINGULAR SYSTEMS 
In this section, the objective is that all the states and 
also the semi- states of nonlinear singular system (1) 
track a desired trajectory dx . The adaptive control input 
is designed as  

1 2 du = θ e + θ x                                                        (21) 
Where, in this investigation, we have l inputs. So,  1θ  
and 2θ   are matrices with the dimension l n×  . The 
parameter e is the tracking error as   

de = x - x                                                                 (22) 
Now the control problem is to find the update rules for 

1θ  and 2θ  such that the tracking error tends to zero. 
All the investigations are summarized in the following 
theorem.  
Theorem 2. For nonlinear singular system (1) using the 
adaptive controller (21) and the adaption rule for  1θ  
and 2θ   as 

1

2( )

( ) ( )

) (T

T

vec

vec

γ

γ

=−

= − ⊗

⊗ T T

T T T
1

T
2 dθ x e P B

θ e e P B
,                                   (23)  
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Then,  it can be guaranteed that all the states and also 
the semi states of the nonlinear singular system 
asymptotically track the desired reference dx  and the 
tracking error tends to be zero, if assumptions 1and 2 
are held.   
Note that the symbol ⊗  denotes Kronecker product 
and vec(A) means vectorization of A,  which is 
obtained by stacking the columns of the matrix A on 
top of one another.  It is a linear transform which 
converts the matrix into a column vector.   
Proof- From (22), we have  

dx = e + x                                                               (24) 
Then by substituting (24) in the system dynamics (1), 
one can reach  

d d dEe+Ex = Ae+Ax +f(e+x )+Bu                      (25)  
Let’s define  

d dF(e) = f(e+x ) - f(x )                                               (26)  
while, according to (2), F(e) also satisfies Lipschitz 
condition. By substituting (26) in (25) and by using 
control input u from (21), one can get  

1

d d d 2 d

E e = A e + F (e) + Bθ e +
A x + f(x ) - E x + Bθ x

                           (27)  

It can be rewritten as  

 

*
1

*
1 1 d d

* *
d 2 d 2 2 d

Ee = (A + Bθ )e + F(e) +

B(θ - θ )e + Ax + f(x ) -

Ex + Bθ x + B(θ - θ )x
                       (28)  

The following Lyapunov function is selected 

1

2

1 1
( ) ( )

2 2

1
( ) ( )

2

T

T

V vec

vec

vec

vec

γ

γ

= + +T T * *
1 1 1 1

* *
2 2 2 2

e E Pe θ -θ θ -θ

θ -θ θ -θ   
(29)  

where P satisfies (4) . Using vec(A) and Kronecker 
product makes the matrix computations more simple. 
So, the derivative of V will be  

1

2

1
( ) ( )

1
( ) ( )

T

T

V + + +

- + - +

+ + -

vec vec

vec vec

γ

γ

=

+

+

T T * T T
1

T T * T T *
1 1 2 2 d

T T T T *
d 2 d d d

*
1 1 1

*
2 2 2

e P (A Bθ )e x P F(e)

e P B(θ θ )e e P B(θ θ )x

e P f(x ) e P (Bθ x Ax Ex )

θ θ -θ

θ θ -θ

           

(30) 
Then, using Lipschitz condition results in  

1

2

1
( ) ( )

1
( ) ( )

T

T

V L

vec vec

vec vec

L

γ

γ

≤ + +

+

+ +

T T * T T *
1 1 1

T T * *
2 2 d 1 1 1

*
2 2 2

T T *
2 d d d d

e P (A + Bθ + I)e e P B(θ - θ )e

e P B(θ - θ )x θ θ -θ

θ θ -θ

e P (Bθ x + Ax - Ex + Ix )

   (31) 

where the last parentheses in (31) are equal to zero 
according to (6). Since the terms T T *

1 1e P B(θ - θ )e  and 
T T *

2 2 de P B(θ - θ )x  are scalar, one can write  

( )vec=T T * T T *
1 1 1 1e P B(θ -θ )e e P B(θ -θ )e                  (32) 

( )vec=T T * T T *
2 2 d 2 2 de P B(θ -θ )x e P B(θ -θ )x           (33) 

and due to the Kronecker product rule [22], we have  
( )

( ) ( )

vec

vec

=

⊗

T T *
1 1

T T T *
1 1

e P B(θ - θ )e

e e P B θ - θ
                               (34)

( )

( ) ( )

vec

vec

=

⊗

T T *
2 2 d

T T T *
d 2 2

e P B(θ - θ )x

x e P B θ - θ
                               (35) 

By substituting (34) and (35) in the derivative of 
Lyapunov function (31), we can get  

  
1

2

1
2

[( )
1 ( ) ] ( )

1[( ) ( ) ] ( )

T

T

V L

L

vec vec

vec vec

γ

γ

≤

+ ⊗ +

+

⊗ +

T T *
1

* T T T T
1

*
1 1 1

T T T *
d 2 2 2

e [P (A+ Bθ + I) +

(A+ Bθ + I) P]e e e P B

θ θ -θ

x e P B θ θ -θ

   (36) 

It is thus clear that by choosing the adaption rules as in 
(23) and using (5), the derivative of V will be negative 
definite as  

1
2

V
−

≤ Tx Qx                                                            (37) 

and based on the Lyapunov stability theorem, the 
closed loop system would be stable: x tends to  dx  and   

1θ  , 2θ    tend to *
1θ  , *

2θ  . □ 
It can be seen that the control law and the adaption 
mechanisms are very simple and easy to apply in 
tracking problem of singular systems. Similar to the 
corollary 1, we can obtain similar results as follows. 
Corollary 2.  Similar to the corollary 1, if there exists a 
constant matrix B where ≤g(x) B  for all values of 
x, by choosing the adaption mechanisms as  
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1

2( )

( ) ( )
) (T

T

vec

vec
γ

γ

=−

= − ⊗

⊗ T T

T T T
1

T
2 dθ x e P g(x)

θ e e P g(x)
                           (38)  

it can be proved that the nonlinear singular system (17) 
is stable: x tends to dx , and   1θ  , 2θ     tend to *

1θ  ,
*

2θ  . The proof is similar to corollary 1, so it is omitted 
here. □ 
An adaptive tracking controller is thus designed for 
multi input nonlinear singular systems in which the 
control law is very simple and practical. The adaption 
mechanisms guarantee that all the states and semi states 
of singular system tend to the desired values. The 
control structure is summarized in Fig1. For better 
illustration, the proposed control law is then applied to 
a nonlinear singular mobile robot system which is 
investigated in the next section.  
 
5. MOBILE ROBOT SINGULAR SYSTEM  
The tracking control of mobile robots could be very 
difficult due to the nonlinear and complex dynamics of 
the system; however, this type of robots has a lot of 
practical applications in industry [23]. Singular model 
of the mobile robots exhibits a better performance 
among other modeling methods and it gives more 
information about the robot movement including the 
physical and non-dynamic constraints [24]. The 
simplified model of a mobile robot is displayed in Fig2, 
where o is the location of the center of mass of robot by 
coordination like (x,y) and v is the velocity vector. 
Consider the system states as  

[ ] , [ ]T Tx y ϕ λ= = T Tq z q q                               (39) 
where λ is the Lagrange multiplier, which is resulted 
from kinematics constraints; the parameter  λ  is 
considered as a semi state or an algebraic variable of 
the singular system which relates the kinematics of the 
robot to the system dynamics. Then, the Robot’s 
singular model including dynamics modeled by 
Lagrange equations and kinematics [19] can be given 
by  

( ) ( ) ( )t t t= + +Ez Az f(z) g(z)u                                  (40) 

where 1 2(t) [ ( ) , ( )]Tu t u t=u  is the control input vector 
in which 1u  is pushing force in ϕ  direction and 2u  is 
steering input command. The matrices E, A, f, g can be 
given by  

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

,cos 0 0 0 0 0 0 0 0
sin 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ϕ
ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

g(z) A     (41) 

0
0
0

,sin
cos
0

sin cos
([1,1,1, , , ,0])o

x y
diag m m I

λ ϕ
λ ϕ

ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

=

f(z)

E

                                 (42) 

where m is the robot's mass, oI  is the robot's rotational 
inertia and ϕ  is the angle between the velocity vector 
and x axis. It can be easily proved that f satisfies 
Lipschitz condition.  Since rank (E) <n, (40) is a 
nonlinear singular system which is resulted from 
considering λ  as a semi state of the state space model 
of the robot. In practical view, λ  is the force that 
opposes against the robot's rotation. By using a singular 
system, we can model how non holonomic kinematics 
constraints affect the system dynamics. The last 
equation in (40) is  

sin cos 0x yϕ ϕ− =                                                (43) 
It directly arises from robot kinematics which limit the 
robot movement. During the robot movement in page 
(x,y), the algebraic equation (43) should be satisfied. 
After that in the following section, the proposed 
controller is used to track the singular model of the 
mobile robot. 
 
6. SIMULATION RESULTS 
To illustrate the effectiveness of the proposed control 
approach, the controller is applied to the mobile robot 
(40). A circular trajectory is defined as reference 
trajectory by the following equations:  

5sin(0.1 )
5cos(0.1 ) 5

d

d

x t
y t
=
= −

                                                (44) 

Therefore, the simulation objective is that the robot 
tracks a circle in page (x,y). The Lagrange multiplier 
λ  should be kept limiting to prevent robot rotation. 
The system parameters are defined as 
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2
01 1m kg and I kgm= = .Robot desired direction         

( dϕ ) during tracking is defined according to the 
reference trajectory as 

1tan ( )d
d

d

y
x

ϕ −=                                                        (45) 

The controller (21) is applied to the mobile robot (40) 
using the adaption mechanisms as in (38). The results 
are displayed in Figures 3-9. Tracking the desired 
reference trajectory is shown in Fig3. It is clear that the 
mobile robot completely tracks the selected trajectory. 
The time response of states x and y tracking the desired 
ones is displayed in Fig4. As illustrated in Fig5, the 
tracking error is lower than 0.2 m, so the error is 
acceptable for a mobile robot tracking a circular 
trajectory with 10 m diameter. Robot direction (ϕ ) is 
shown in Fig6. The angular velocity of the robot 
movement is fixed the same as the desired one. The 
control input u is displayed in Fig7 which is acceptable 
and limited. The frequency of oscillations is less than 
1.5 Hz which is not high for the control input for a 
mobile robot. The convergence coefficient γ  is in 
charge of oscillations. Higher γ  increases the 
oscillations through the responses however it decreases 
the tracking error faster and improves the convergence 
rate. Figures 8 and 9 show the convergence of the 
adjustable parameters 1θ  and 2θ . It is clear that the 
adaptive gains converge to fixed values which can be 
an estimation of *

1θ  and *
2θ . From all result, it can be 

obtained that the performance of the proposed 
controller is acceptable while its structure is very 
simple and easy to apply.  
 
7. CONCLUSION 
An adaptive control for nonlinear singular systems is 
investigated in this paper. An adjustable linear state 
feedback is designed for the class of nonlinear systems 
which satisfy the Lipschitz condition. First a basic 
control is designed to stabilize a one-input nonlinear 
system in which some system parameters and dynamics 
are unknown. After that, the proposed controller is 
generalized for tracking problem of multi-input 
nonlinear singular systems. The proposed controller has 
a very simple structure and it is easy to apply in 
practice.  The controller is then applied to a singular 
model of mobile robot where an acceptable 
performance is achieved. The simulation results for 
tracking of a robot which its movement is limited by its 
kinematics emphasize the effectiveness of the presented 
controller.  
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Fig. 1.Adaptive control structure for nonlinear singular systems 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.Simplified model of a mobile robot  
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Fig. 3.Tracking the desired reference trajectory in the page (xy) 

 

 
Fig. 4.Tracking performance for position states x and y 
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Fig. 5.Tracking error for x and y 

 
 

 
Fig. 6.Tracking of Robot direction (ϕ ) 
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Fig. 7.Control input applied to the robot. It is limited and the frequency of oscillations is acceptable. 1u  is pushing 

force in Newton unit (N) and 2u  is the steering input command in Newton. Meter unit (N.m) 
 
 

 
Fig. 8.Convergence of adaptive gains, Matrix 1θ  

0 10 20 30 40 50 60 70
-6

-4

-2

0

2

4

6

Time(s)

u

Control input

 

 
u

1

u
2

0 10 20 30 40 50 60 70
-3

-2

-1

0

1

2

Time(s)

θ 1

The elements of the Matrix θ1



Majlesi Journal of Electrical Engineering                                                                               Vol. 8, No. 2, June 2014 

11 
 

 
Fig. 9.Convergence of adaptive gains, Matrix  2θ  
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