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ABSTRACT 
Many real-world applications require minimization of a cost function. This function is the criterion that figures out 
optimally. In the control engineering, this criterion is used in the design of optimal controllers. Cost function 
optimization has difficulties including calculating gradient function and lack of information about the system and the 
control loop. In this article, for the first time, gradient memetic evolutionary programming is proposed for 
minimization of non-convex cost functions that have been defined in control engineering. Moreover, stability and 
convergence of the proposed algorithm are proved. Besides, it is modified to be used in online optimization. To 
achieve this, the sign of the gradient function is utilized. For calculating the sign of the gradient, there is no need to 
know the cost-function’s shape. The gradient functions are estimated by the algorithm. The proposed algorithm is used 
to design a PI controller for nonlinear benchmark system CSTR (Continuous Stirred Tank Reactor) by online and off-
line approaches. 
 
KEYWORD: Nonlinear Optimal Controller, GMEP (Gradient Memetic Evolutionary Programming), Sign of 
Gradient Function, Online Optimization, Nonlinear Benchmark CSTR. 

 
1.  INTRODUCTION 
The performance of the most systems (especially in 
industrial applications) can be upgraded by using the 
methods of optimization and optimal control. One of 
the basic problems in this course is complexity and 
non-linearity of the system, which makes classical 
control methods that are linear in nature but they’re not 
applicable in nonlinear optimization problems, or it 
proves them as inaccurately. Normally, it is assumed 
that the process can be approximated well by a linear 
model at least around the current operating point. This 
is appropriate for regulatory control, but maybe it’s not 
the best option for process outputs that showing large 
amplitude (or frequency) changes. A useful but difficult 
research direction is to develop methods for nonlinear 
systems.  
Designing of optimal nonlinear controllers is 
confronted with two main problems: 1) Nonlinear Cost 
Function Optimization; and 2) Determining the 
structure and parameters of the controller. The optimal 
controller for nonlinear systems has normally a 
nonlinear structure. The optimization of nonlinear-
controller parameters by classical methods is difficult 
and sometimes impossible. Optimality of a controller is 

measured by a cost function. The most common cost 
function in optimal control is defined as follows [1]: 

(1)  ( ) ( ) ( )( ) .
2
1

0

22 τττ duetz
t

t
∫
=

+=  

where e is the output tracking error and u is the control 
signal. 
Assuming that the controller is structured as follows: 

(2)  ( ) ( ) ( ) ( )( )tdtytygtu θ,,, −= …  
where Θ(t) are the controller of unknown parameters, 
time-dependent in the general case need to be 
adaptively optimized.  
The gradient based method is a usual method for 
calculating the optimal parameters: 
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To calculate this, there are two fundamental problems: 
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where calculating ( )
( )tu
te

∂
∂  by considering the system has 

unknown properties (in this study, the system is 
considered to be black box), is not applicable. and 2) 
This function should be adaptively optimized in the 
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general case and in each instance (or in moments of 
need). Optimization of nonlinear and non-convex cost 
functions is very difficult and many classical methods 
cannot be applied, therefore, in most optimal controller 
designs, linear models and methods such as LQG are 
being used. In this case, using intelligence-techniques 
such as Evolutionary Algorithms to solve this problem 
can be useful [2]. Since Evolutionary Algorithms (EAs) 
do not need the gradient function, the problems which 
exist in the classical algorithms are not seen in EAs. 
Using EAs to optimize cost functions defined in control 
engineering is not an easy task. The main 
disadvantages of such algorithms are: 1) There is no 
guarantee in the stability and convergence of EAs; and 
2) These algorithms cannot be used in online 
applications [3]. For engineering applications, 
especially in control engineering, stability and the 
convergence of the algorithm are very important 
aspects, because none of these features can lead to the 
instability of the control system, and hence, they may 
cause physical and financial harms. Nevertheless, the 
key issue is the reliability of the algorithm. Since 
evolutionary algorithms (similar to other intelligent 
algorithms) are faced with the problem of convergence 
and stability, they cannot be used in many applications, 
especially in online applications in which , the 
reliability is an important factor and few controllers can 
be tested and evaluated on the system. As EAs are 
population-based algorithms, the population prevents 
their online applications [4]. Unfortunately, without 
population, these algorithms lose their ability in 
searching global minimum, which is their main 
advantage over classical algorithms.  
If we could somehow fulfill both addressed problems, 
EAs can be the best option for nonlinear and non-
convex optimization problems. This paper deals with 
the implementation of this goal. In section II, the 
convergence of the proposed algorithms is analyzed. 
Then, the online version of the proposed algorithm is 
studied. Moreover, section III presents the results of the 
proposed algorithm to design an online and offline 
optimal controller for a nonlinear CSTR benchmark 
system.  
 
2. THE PROPOSED ALGORITHM: GRADIENT 

MEMETIC EVOLUTIONARY 
PROGRAMMING  (GMEP) 

For solving the problem of convergence in evolutionary 
algorithms, some features of classical algorithms can be 
utilized. Many classical algorithms use the gradient of 
the cost function. The gradient function acts like a map, 
and shows the direction to the algorithm. The algorithm 
starts at an arbitrary point on the cost surface and  it 
minimizes along the direction of the gradient to reach 
the minimum point, which is usually a local minimum. 
Therefore, if this feature could be utilized, it gives 

advantage to have the convergence condition in EAs. 
However, it must be considered that EAs have a black 
box view to the cost function. Any information about 
the gradient of the cost function will not be accepted. 
Otherwise, the algorithm performance will drop 
dramatically. Then, it will try to approximate the 
gradient of the cost function in order to be able to 
guarantee the convergence. It is useful to firstly 
become familiar with evolutionary programming. 
 
a) Evolutionary Programming (EP) 
An Evolutionary Algorithm is an iterative and 
stochastic process that operates on a set of individuals 
(population). Each individual represents a potential 
solution to the problem that’s being solved. This 
solution is obtained by means of an encoding/decoding 
mechanism. Initially, the population is randomly 
generated (perhaps with the help of a construction 
heuristic). Using a fitness function, every individual in 
the population is assigned a value as a measure of its 
goodness with respect to the problem under 
consideration. This value is the quantitative 
information that the algorithm uses it to guide the 
search [5]. 
Evolutionary algorithm was first proposed between 
years 1940-1950 with the first generation of modern 
evolutionary algorithms by Fogel [6], Rechenberg [7], 
Holand [8] and Koza [9], beginning with evolutionary 
programming, genetic algorithms and Evolutionary 
Strategies (ES). 
Evolutionary programming (EP) was presented for the 
first time by Fogel. But, it was not used for about 30 
years. Then in 1980, he used the algorithm in the 
continuous parameter optimization. EP and ES have 
some similarities. In both algorithms, the key operator 
is mutation, and the operators such as the selection of 
parents and the crossover are not done [10]. Moreover, 
in both EP and ES, the choice of the next generation is 
performed with a competition, which will be explained 
below. The mutation operator is the only operator in EP 
that produces the next generation. Therefore, most 
methods were proposed to improve the algorithm 
changing the mutation operator. 
This algorithm is as follows [11]:  
1) Generate the initial population of µ individuals, 

and set 1. Each individual is taken as a pair of 
real valued vectors, { }μη ,....,1),,( ∈∀ix ii , where 
the ix ’s are the objective variables and the iη ’s 
are the standard deviations for Gaussian mutations 
(also known as strategy parameters in self-adaptive 
evolutionary algorithms). 

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,( ∈∀ix ii  of the population, based on 

the objective function )( ixf . 
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3) Each parent μη ,....,1),,( =ix ii  creates a single 
offspring ),( iix η′′  by the following: for nj ,...,1=  

))1,0()()()( jiii Njjxjx η+=′  (4) 
))1,0()1,0(exp()()( jii NNjj ττηη +′=′  (5) 

where ),( jxi ),( jxi′  )( jiη  and )( jiη ′  denote the j –th 
component of the vectors iii xx η,, ′ and iη′ , respectively. 

)1,0(N denotes a normally distributed one-dimensional 
random number with a mean of zero and a standard 
deviation of one. )1,0(jN indicates that the random 

number is generated anew for each value of j . The 

factors τ and τ′ are commonly set to 1)2( −n and
1)2( −n . 

4) Calculate the fitness of each offspring
{ }μη ,....,1),,( ∈∀′′ ix ii . 

5) Conduct pairwise comparisons over the union of 
parents ),( iix η  and the offspring

{ }μη ,....,1),,( ∈∀′′ ix ii . For each individual, q  
opponents are chosen uniformly at random from all 
of the parents and offspring. For each comparison, 
if the individual’s fitness is no smaller than the 
opponent’s, it receives a “win.” 

6) Select the μ  individuals out of ),( iix η  and 

{ },,....,1),,( μη ∈∀′′ ix ii  that have the most wins to 
be parents of the next generation. 

7) Stop if the halting criterion is satisfied; otherwise, 
1+= kk and go to Step 3. 

Gaussian mutations N(0,1) are used in this algorithm. 
The mutation produces a random vector R = (r1, r2, ..., 
rn) by the Gaussian probability distribution function. 
According to Equation (4), the next generation is 
produced by summing the random vector and the 
values of the parent variables (6).  

(6)  Rxx +=′  
Usually, the classic choice for the distribution function 
is the Gaussian type; however, other types such as 
Cauchy [11], Exponential [12,13], Levy [14] and etc 
are proposed. For reviewing new methods proposed to 
improve EP, see reference [15]. 
The algorithm can be interpreted graphically as: 
 

)1,0(NR ×=η

 
Fig. 1. The region of offspring production 

Therefore, multiplying the white noise in the strategy 
parameter will determine the radius, where the new 
point is generated within this radius. The location is 
completely random and it depends on the amounts of 
white noise and the strategy parameter. It should be 
also noted that the strategy parameters have a random 
mode and it depends on the amount of white noise (5). 
This process of producing new generations is repeated 
for every new point. Therefore, the searching technique 
is as follows: 
 

 
Fig. 2. Each parent produces an offspring in a circular 

region with random radius 
 

The radius of the circle is very important in achieving 
the global minimum. If the algorithm is stuck in a local 
minimum, the value of the radius determines whether 
or not the algorithm is able to get out of the local 
minimum, and the magnitude of the radius will 
determine the speed and stability of the algorithm. The 
larger radius makes the algorithm search a larger area. 
Consequently, the speed of the algorithm increases. On 
the other hand, this reduces the heritage information 
transferred from the former generation, and hence the 
stability of the algorithm decreases. Hence, finding the 
right radius was always one of the challenges of this 
algorithm. Many of the techniques presented for 
improving the algorithm have noted this issue and 
attempted to increase the radius. For more details about 
how the radius affects the performance of the 
algorithm, see [16]. The parents and produced 
offsprings illustrated in Fig. (3) are generated by the 
EP. 
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Fig. 3. shows the produced offsprings by their parents 

[15] 
 

The following solution is proposed to establish the 
convergence of the algorithm. The circular area in Fig. 
(1) is modified to a semi-circular area in Fig. (4), where 
the curve inclines toward the optimal point.  
 

 
Fig. 4. The circular region is modified to half-circle 

region by the proposed algorithm 
 

It can be shown that the points generated by this 
method are getting closer to the minimum. To illustrate 
this, we prove the convergence of the proposed 
algorithm. 
For implementing this idea, it is proposed to change the 
circular shaped area (Fig. 1) to the half-circle shape 
(Fig. 4), the production of new individuals (4) is 
modified as follows: 
 

(7)  ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
old

oldoldnew x
xzNxx sgn1,0η  

In the above, only the sign of the gradient is added. 
This modification is derived from [5]. Now suppose 
that the cost function is defined as follows: 
 

(8)  ( )xexz 2

2
1)( =  

 
The Lyapunov function can be defined as follows: 
 

(9)  ( ) ( ) ( )2)(
2
1 kxexZxV ==  

 
For the stability of the algorithm, the change of 
Lyapunov function must be negative: 
 

(10)  ( ) ( ) ( ) ( )[ ]221
2
11 kekekVkV −+=−+  

 
Deviation in the cost function (8) can be written as 
follows: 
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Therefore, we have: 
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Let’s suppose the deviation in the cost function is 
small, as a result,  we can write: 
 

(13)  ( ) ( ) x
x
keke ∇

∂
∂

=∇  

 
Considering relation (7), we have: 
 

(14)  ( ) ( )
⎟
⎠
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⎜
⎝
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∂

−=∇
x
xzNx sgn1,0η  

 
By substituting relations (13) and (14) in (12), we have: 
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The above equation can be rewritten as follows: 
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(16) ( ) ( ) ( ) ( ) ( )
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According to the cost function (8), it can be written as: 
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For stability, the Lyapunov function should be 
negative: 
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We know that the following equation is always true: 
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Thus, to establish (18) we have: 
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Simplifying the above equation we have: 
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The above equation can be rewritten as: 
 

(22)  0>η  
 
Therefore, we have: 
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Therefore, the algorithm is sufficient to ensure that the 
strategy parameter has a positive value and it is small 
enough. However, an important question arises: How 

can ( )
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x
xzsign  be calculated? 

At first, it must be noted that the first order derivative 
function can be approximated with the accuracy of 
desirable orders, for example O(h3). The following 
equations hold for function f(.) by considering the 
Taylor series expansion. 
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The weighted sum of the above equations produces Eq. 
(28): 
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Choosing the weighted coefficients in the following 
manner results in Eq. (29): 
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(29) 

In Eq. (29), the error is of order O (h3).  
This approach can be used in any order of derivative 
functions to achieve any desired accuracy. It has been 
shown theoretically in Einar Hille theorem [17,18 that 
the discrete Taylor series expansion can approximate 
any function with the  desired accuracy. Thus, the 
relation (7) can be rewritten as follows: 
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Based on the degree used to approximate the gradient 
function, the parameters αi are specified. zi and xi are 
defined in the following algorithm. The proposed 
algorithm can be written as follows: 
 
1) Generate the initial population of µ individuals, and 

set 1. Each individual is taken as a pair of real 
valued vectors, { }μη ,....,1),,( ∈∀ix ii , where the ix
’s are the objective variables and the iη ’s are the 
standard deviations for Gaussian mutations (also 
known as strategy parameters in self-adaptive 
evolutionary algorithms). 

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,( ∈∀ix ii  of the population, based on 

the objective function )( ixf . 
3) Select each parent and m-1 individuals randomly 

for estimating the gradient function, and then each 
parent μη ,....,1),,( =ix ii  creates a single offspring 

),( iix η′′  by the following: for nj ,...,1=  
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where mi

jx +  and mi
j
+η  denote the j –th component of 

the vectors mix + and mi+η , respectively. mix +  is the 

parent and ,1,,0, −=+ mrx ri … are the points 

selected for estimating the gradient function, and riz +

are corresponding cost value. 4) Calculate the fitness of each offspring. 
5) Conduct pairwise comparisons over the union of 

parents ),( iix η  and the offspring

{ }μη ,....,1),,( ∈∀′′ ix ii . For each individual, q  
opponents are chosen uniformly at random from all 
of the parents and offspring. For each comparison, 
if the individual’s fitness is no smaller than the 
opponent’s, it receives a “win.” 

6) Select the μ  individuals out of parents and 
offsprings that have the most wins to be the parents 
of the next generation. 

7) Stop if the halting criterion is satisfied; otherwise, 
1+= kk and go to Step 3. 

 

It must be noted that, at each stage, the proposed 
algorithm generates new points, and these points 
become closer to the original minimum (otherwise it 
will be removed from the population) So, the algorithm 
has the convergence condition.  
Consider the cost function z = x1

2 + x2
2. The proposed 

algorithm is used to optimize this cost function. The 
convergence of the proposed algorithm can be viewed 
by the individuals generated for the cost function with 
two variables illustrated in Figs. 5-8. 
 

 
Fig. 5. Offspring is produced in the first iteration 

 
 

 
Fig. 6. Offsprings are produced until iteration 10 
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Fig. 7. Offsprings are produced until iteration 25 

 

 
Fig. 8. Offsprings are produced until iteration 50 

 
 

 

 
Fig. 9. Close snapshot of points produced by the 

proposed algorithm 
 
It can be seen that the points move toward the center of 
the cost function, which is the global minimum. Step 
sizes are random values determined by the strategy 
parameter values. The curve cost versus iteration is 
drawn in Fig. (10). 

Fig. 10. The cost value via iteration 
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This cost function is a convert cost function which has 
a single minimum. This single minimum is also the 
global Minimum. In the following, the proposed 
algorithm for optimizing non-convex cost function is 
used in practical applications. 
 
2.1. Offline PI Controller Design 
In this section, the proposed algorithm is used to design 
a PI controller for the CSTR benchmark system by 
minimizing the following cost function: 

( ) ( )( ) ( )[ ]∑
=

∇+−=
N

k
kukyrNz

1

22  (33) 

The study example is a CSTR with a first-order 
exothermic reaction provided in [20]. It is a typical 
chemical engineering process which is intensively 
studied in the control and system identification areas. 
The dynamic behaviour for this CSTR can be described 
by using the following nondimensional normalized 
equations [19]: 
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x1 and x2 are the reactor’s dimensionless concentration 
and its temperature, respectively. The case study under 
consideration is a regulation of temperature x2. Coolant 
temperature xc is the manipulated variable. One set of 
parameter values B = 1.0, β = 0.3, λ = 20.0 and Da = 
0.072, which yields an open-loop system with a single 
stable steady state for all fixed values of the input, is 
selected in [0 23] (ref. [20]). The detailed nomenclature 
for this exothermic CSTR can be found in [21]. 
The input real value range is [0 23]. The starting 
situation is a stable steady situation with the initial 
states x1 = 0.6219 and x2 = 3.7092 and input ut = 14. 
The Output of the CSTR system is the reactor 
temperature y(t) = x2(t) and the control goal is to 
regulate the output in  reference value r = 3. 
The simulation parameters for GMEP algorithms are 
shown in table 1. The parameters of the GMEP are the 
same as [15]. 
 

Table. 1 . Parameters of GMEP 
Population size 20 
Tournament size 5 
Number of repetitions 20 
Number of iterations 1000 

Range bound of variables [-100,100] 
 
The proposed algorithm is used to tune two variables of 
the PI controller. Fig. 11 shows the cost curve 
corresponding to the best function value found in the 
last generation. This figure shows that the GMEP could 

find the acceptable network weights in a few number of 
iterations. It admits the capability of this method in fast 
training of the PI controller. Fig. 12 shows the points 
generated by the proposed algorithm, and 
corresponding cost values in the range [-10, 10]. 
 

 
Fig. 11. The cost curve corresponded to the best 

function value found in the last generation 
 

 
Fig. 12. Points generated by the proposed algorithm 

 
The best found variables of the controller are as 
follows: 
[Kp KI]= [12.4518  19.9107]    (35) 
Step response and control signal for the controlled 
system with the optimal values (35) can be seen in Fig. 
(13). 
 

 
Fig. 13. Step response of the controlled system 
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Fig. 14. Control signal of the controlled system 

 
Above the controller was tuned offline within assuming 
that the cost function and system model are unknown. 
In the remaining sections, the new strategy for 
designing an online controller for the nonlinear system 
described above will be introduced. 
 
3. ONLINE APPROACH FOR DESIGNIG A 

CONTROLLER USING THE PROPOSED 
ALGORITHM 

The main challenge for the use of intelligent algorithms 
in online applications is the definition of population. At 
each step of the algorithm, new members should be 
produced equal to the number of members in the 
generation (Fig. 2), and each new point should be 
tested on the system to reveal its cost. In online 
optimization, such a procedure may not be available. 
To fulfill this problem, the online version of the 
proposed algorithm is as follows: 
 

1) Generate the initial population of µ individuals, and 
set 1. Each individual is taken as a pair of real 
valued vectors, { }μη ,....,1),,( ∈∀ix ii , where the ix
’s are the objective variables and the iη ’s are the 
standard deviations for Gaussian mutations (also 
known as strategy parameters in self-adaptive 
evolutionary algorithms). 

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,( ∈∀ix ii  of the population, based on 

the objective function )( ixf . 
3) Select the best parent and m-1 individuals 

randomly for estimating the gradient function, and 
then the best parent creates a single offspring by 
the following: for nj ,...,1=  
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where mi
jx +  and mi

j
+η  denote the j –th component of 

the vectors mix + and mi+η , respectively. mix +  is the 

parent and ,1,,0, −=+ mrx ri … are the points are 

selected for estimating the gradient function, riz + are 
corresponding cost value. 4) Calculate the fitness of the offspring. 
5) Select the worst parent in the population and 

compare its cost with the cost of the new offspring. 
If the cost of the new offspring is better than the 
parent, then substitute it in place of the worst 
parent in the population. 

6) Stop if the halting criterion is satisfied; otherwise, 
1+= kk and go to Step 3. 

In the proposed algorithm, just a new point is generated 
in each iteration instead of the population. Therefore, it 
can be used in online applications. Nevertheless, the 
required population for the algorithm is obtained by 
collecting optimum points during algorithm runtime. 
Therefore, the algorithm is a population-based search 
algorithm. For the online applications, the following 
flowchart can be followed. 
 

 
Fig. 15. Flowchart for online application of the 

proposed algorithm 
 

3.1. Online PI Controller Design 
The PI controller for the nonlinear system that was 
presented in the previous section is designed using the 
introduced online approach. To do this, the control loop 
is considered as follows: 
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Fig. 16. The control loop diagram for online control of 

a CSTR system 
 

The controller is updated every 10 seconds (100 
samples), and the cost of the new controller is 
calculated for the 100 samples. Since the system 
response time is less than 10 seconds, this time is an 
enough time to calculate the cost. in Fig. 17, the cost 
curve corresponds to the best cost value found in each 
iteration and it is drawn for 1000 iterations. The control 
signal and the output of the system can be seen in Fig. 
18.

 

 
Fig. 17. Cost curve for 1000 iterations 

   

 
Fig. 18. Output and control signal for the designed control loop  
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In Fig. (18), it is seen that over time, the output is 
converging to the reference value. However, it is 
possible that changes in the parameters of the controller 
create jumps. These jumps can be observed in many 
online methods. Besides, the transient (initial) response 
of the system has some variations. To resolve this 
problem, the initial population can be chosen to be 
reasonable (instead of being random). Using the system 
model (if available) is a good option for modifying the 
transient situation. However, when there is no 
information about the system, there is no other choice 
except to tolerate transient response. It is necessary to 
note that online design using the proposed algorithm 
with its convergence condition is not comparable with 
other intelligent algorithms; besides, there is no 
classical method that can design the controller without 
requiring any information about the system. The 
proposed method does not have any of the above 
problems. in addition , the cost value (Fig. 17) 
establishes the optimality of  designed controllers. 
 
4. CONCLUSION 
In this paper, nonlinear optimization and controller 
design challenges for nonlinear systems are discussed. 
This requires an algorithm having the ability to the 
global search, in addition to satisfying the condition of 
convergence and stability. Intelligent and classical 
methods have only one of the above requirements. 
Therefore, in this paper, the gradient of the cost 
function is used to obtain the convergence condition. 
For this purpose, the sign of the gradient function is 
approximated by the algorithm itself, and does not 
require any additional information about the cost 
function. On the other hand, because evolutionary 
algorithms use the population in searching, they cannot 
be employed in online applications. In this paper, the 
proposed algorithm generates only one point in each 
iteration, so this problem is eliminated. During the 
design process, the proposed algorithm does not have 
any information about the system and the cost function. 
The proposed algorithm is used in online and offline PI 
controller design for the nonlinear CSTR system.  
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