
Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

13

Online Optimal Controller Design using Evolutionary

Algorithm with Convergence Properties

Yousef Alipouri1, Javad Poshtan2
1- Departmen of Electrical Engineering, University of Science and Technology, Tehran, Iran

E-mail: yalipouri@iust.ac.ir
2- Department of Electrical Engineering, University of Science and Technology, Tehran, Iran

E-mail: jposhtan@iust.ac.ir

Received: August 2013 Revised: December 2013 Accepted: February 2014

ABSTRACT
Many real-world applications require minimization of a cost function. This function is the criterion that figures out
optimally. In the control engineering, this criterion is used in the design of optimal controllers. Cost function
optimization has difficulties including calculating gradient function and lack of information about the system and the
control loop. In this article, for the first time, gradient memetic evolutionary programming is proposed for
minimization of non-convex cost functions that have been defined in control engineering. Moreover, stability and
convergence of the proposed algorithm are proved. Besides, it is modified to be used in online optimization. To
achieve this, the sign of the gradient function is utilized. For calculating the sign of the gradient, there is no need to
know the cost-function’s shape. The gradient functions are estimated by the algorithm. The proposed algorithm is used
to design a PI controller for nonlinear benchmark system CSTR (Continuous Stirred Tank Reactor) by online and off-
line approaches.

KEYWORD: Nonlinear Optimal Controller, GMEP (Gradient Memetic Evolutionary Programming), Sign of
Gradient Function, Online Optimization, Nonlinear Benchmark CSTR.

1. INTRODUCTION
The performance of the most systems (especially in
industrial applications) can be upgraded by using the
methods of optimization and optimal control. One of
the basic problems in this course is complexity and
non-linearity of the system, which makes classical
control methods that are linear in nature but they’re not
applicable in nonlinear optimization problems, or it
proves them as inaccurately. Normally, it is assumed
that the process can be approximated well by a linear
model at least around the current operating point. This
is appropriate for regulatory control, but maybe it’s not
the best option for process outputs that showing large
amplitude (or frequency) changes. A useful but difficult
research direction is to develop methods for nonlinear
systems.
Designing of optimal nonlinear controllers is
confronted with two main problems: 1) Nonlinear Cost
Function Optimization; and 2) Determining the
structure and parameters of the controller. The optimal
controller for nonlinear systems has normally a
nonlinear structure. The optimization of nonlinear-
controller parameters by classical methods is difficult
and sometimes impossible. Optimality of a controller is

measured by a cost function. The most common cost
function in optimal control is defined as follows [1]:

(1) () () ()() .
2
1

0

22 τττ duetz
t

t
∫
=

+=

where e is the output tracking error and u is the control
signal.
Assuming that the controller is structured as follows:

(2) () () () ()()tdtytygtu θ,,, −= …
where Θ(t) are the controller of unknown parameters,
time-dependent in the general case need to be
adaptively optimized.
The gradient based method is a usual method for
calculating the optimal parameters:

(3)
()
() .0=

∂
∂

t
tz

θ

To calculate this, there are two fundamental problems:
1) There is a need to calculate ()

()
()
()

()
()t
tu

tu
te

t
te

θθ ∂
∂

∂
∂

=
∂
∂ ,

where calculating ()
()tu
te

∂
∂ by considering the system has

unknown properties (in this study, the system is
considered to be black box), is not applicable. and 2)
This function should be adaptively optimized in the

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

14

general case and in each instance (or in moments of
need). Optimization of nonlinear and non-convex cost
functions is very difficult and many classical methods
cannot be applied, therefore, in most optimal controller
designs, linear models and methods such as LQG are
being used. In this case, using intelligence-techniques
such as Evolutionary Algorithms to solve this problem
can be useful [2]. Since Evolutionary Algorithms (EAs)
do not need the gradient function, the problems which
exist in the classical algorithms are not seen in EAs.
Using EAs to optimize cost functions defined in control
engineering is not an easy task. The main
disadvantages of such algorithms are: 1) There is no
guarantee in the stability and convergence of EAs; and
2) These algorithms cannot be used in online
applications [3]. For engineering applications,
especially in control engineering, stability and the
convergence of the algorithm are very important
aspects, because none of these features can lead to the
instability of the control system, and hence, they may
cause physical and financial harms. Nevertheless, the
key issue is the reliability of the algorithm. Since
evolutionary algorithms (similar to other intelligent
algorithms) are faced with the problem of convergence
and stability, they cannot be used in many applications,
especially in online applications in which , the
reliability is an important factor and few controllers can
be tested and evaluated on the system. As EAs are
population-based algorithms, the population prevents
their online applications [4]. Unfortunately, without
population, these algorithms lose their ability in
searching global minimum, which is their main
advantage over classical algorithms.
If we could somehow fulfill both addressed problems,
EAs can be the best option for nonlinear and non-
convex optimization problems. This paper deals with
the implementation of this goal. In section II, the
convergence of the proposed algorithms is analyzed.
Then, the online version of the proposed algorithm is
studied. Moreover, section III presents the results of the
proposed algorithm to design an online and offline
optimal controller for a nonlinear CSTR benchmark
system.

2. THE PROPOSED ALGORITHM: GRADIENT

MEMETIC EVOLUTIONARY
PROGRAMMING (GMEP)

For solving the problem of convergence in evolutionary
algorithms, some features of classical algorithms can be
utilized. Many classical algorithms use the gradient of
the cost function. The gradient function acts like a map,
and shows the direction to the algorithm. The algorithm
starts at an arbitrary point on the cost surface and it
minimizes along the direction of the gradient to reach
the minimum point, which is usually a local minimum.
Therefore, if this feature could be utilized, it gives

advantage to have the convergence condition in EAs.
However, it must be considered that EAs have a black
box view to the cost function. Any information about
the gradient of the cost function will not be accepted.
Otherwise, the algorithm performance will drop
dramatically. Then, it will try to approximate the
gradient of the cost function in order to be able to
guarantee the convergence. It is useful to firstly
become familiar with evolutionary programming.

a) Evolutionary Programming (EP)
An Evolutionary Algorithm is an iterative and
stochastic process that operates on a set of individuals
(population). Each individual represents a potential
solution to the problem that’s being solved. This
solution is obtained by means of an encoding/decoding
mechanism. Initially, the population is randomly
generated (perhaps with the help of a construction
heuristic). Using a fitness function, every individual in
the population is assigned a value as a measure of its
goodness with respect to the problem under
consideration. This value is the quantitative
information that the algorithm uses it to guide the
search [5].
Evolutionary algorithm was first proposed between
years 1940-1950 with the first generation of modern
evolutionary algorithms by Fogel [6], Rechenberg [7],
Holand [8] and Koza [9], beginning with evolutionary
programming, genetic algorithms and Evolutionary
Strategies (ES).
Evolutionary programming (EP) was presented for the
first time by Fogel. But, it was not used for about 30
years. Then in 1980, he used the algorithm in the
continuous parameter optimization. EP and ES have
some similarities. In both algorithms, the key operator
is mutation, and the operators such as the selection of
parents and the crossover are not done [10]. Moreover,
in both EP and ES, the choice of the next generation is
performed with a competition, which will be explained
below. The mutation operator is the only operator in EP
that produces the next generation. Therefore, most
methods were proposed to improve the algorithm
changing the mutation operator.
This algorithm is as follows [11]:
1) Generate the initial population of µ individuals,

and set 1. Each individual is taken as a pair of
real valued vectors, { }μη ,....,1),,(∈∀ix ii , where
the ix ’s are the objective variables and the iη ’s
are the standard deviations for Gaussian mutations
(also known as strategy parameters in self-adaptive
evolutionary algorithms).

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,(∈∀ix ii of the population, based on

the objective function)(ixf .

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

15

3) Each parent μη ,....,1),,(=ix ii creates a single
offspring),(iix η′′ by the following: for nj ,...,1=

))1,0()()()(jiii Njjxjx η+=′ (4)
))1,0()1,0(exp()()(jii NNjj ττηη +′=′ (5)

where),(jxi),(jxi′)(jiη and)(jiη ′ denote the j –th
component of the vectors iii xx η,, ′ and iη′ , respectively.

)1,0(N denotes a normally distributed one-dimensional
random number with a mean of zero and a standard
deviation of one.)1,0(jN indicates that the random

number is generated anew for each value of j . The

factors τ and τ′ are commonly set to 1)2(−n and
1)2(−n .

4) Calculate the fitness of each offspring
{ }μη ,....,1),,(∈∀′′ ix ii .

5) Conduct pairwise comparisons over the union of
parents),(iix η and the offspring

{ }μη ,....,1),,(∈∀′′ ix ii . For each individual, q
opponents are chosen uniformly at random from all
of the parents and offspring. For each comparison,
if the individual’s fitness is no smaller than the
opponent’s, it receives a “win.”

6) Select the μ individuals out of),(iix η and

{ },,....,1),,(μη ∈∀′′ ix ii that have the most wins to
be parents of the next generation.

7) Stop if the halting criterion is satisfied; otherwise,
1+= kk and go to Step 3.

Gaussian mutations N(0,1) are used in this algorithm.
The mutation produces a random vector R = (r1, r2, ...,
rn) by the Gaussian probability distribution function.
According to Equation (4), the next generation is
produced by summing the random vector and the
values of the parent variables (6).

(6) Rxx +=′
Usually, the classic choice for the distribution function
is the Gaussian type; however, other types such as
Cauchy [11], Exponential [12,13], Levy [14] and etc
are proposed. For reviewing new methods proposed to
improve EP, see reference [15].
The algorithm can be interpreted graphically as:

)1,0(NR ×=η

Fig. 1. The region of offspring production

Therefore, multiplying the white noise in the strategy
parameter will determine the radius, where the new
point is generated within this radius. The location is
completely random and it depends on the amounts of
white noise and the strategy parameter. It should be
also noted that the strategy parameters have a random
mode and it depends on the amount of white noise (5).
This process of producing new generations is repeated
for every new point. Therefore, the searching technique
is as follows:

Fig. 2. Each parent produces an offspring in a circular

region with random radius

The radius of the circle is very important in achieving
the global minimum. If the algorithm is stuck in a local
minimum, the value of the radius determines whether
or not the algorithm is able to get out of the local
minimum, and the magnitude of the radius will
determine the speed and stability of the algorithm. The
larger radius makes the algorithm search a larger area.
Consequently, the speed of the algorithm increases. On
the other hand, this reduces the heritage information
transferred from the former generation, and hence the
stability of the algorithm decreases. Hence, finding the
right radius was always one of the challenges of this
algorithm. Many of the techniques presented for
improving the algorithm have noted this issue and
attempted to increase the radius. For more details about
how the radius affects the performance of the
algorithm, see [16]. The parents and produced
offsprings illustrated in Fig. (3) are generated by the
EP.

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

16

Fig. 3. shows the produced offsprings by their parents

[15]

The following solution is proposed to establish the
convergence of the algorithm. The circular area in Fig.
(1) is modified to a semi-circular area in Fig. (4), where
the curve inclines toward the optimal point.

Fig. 4. The circular region is modified to half-circle

region by the proposed algorithm

It can be shown that the points generated by this
method are getting closer to the minimum. To illustrate
this, we prove the convergence of the proposed
algorithm.
For implementing this idea, it is proposed to change the
circular shaped area (Fig. 1) to the half-circle shape
(Fig. 4), the production of new individuals (4) is
modified as follows:

(7) () ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
old

oldoldnew x
xzNxx sgn1,0η

In the above, only the sign of the gradient is added.
This modification is derived from [5]. Now suppose
that the cost function is defined as follows:

(8) ()xexz 2

2
1)(=

The Lyapunov function can be defined as follows:

(9) () () ()2)(
2
1 kxexZxV ==

For the stability of the algorithm, the change of
Lyapunov function must be negative:

(10) () () () ()[]221
2
11 kekekVkV −+=−+

Deviation in the cost function (8) can be written as
follows:

(11) () () () ()
() () () ()

2

2 2

1 1

2

e k e k e k e k

e k e k e k e k

+ = + ∇ ⇒ + =

+ ∇ + ∇

Therefore, we have:

(12) () () ()

() () ()

2 211 1
2

1
2

V k e k e k

e k e k e k

⎡ ⎤∇ + = + − =⎣ ⎦

⎡ ⎤∇ + ∇⎢ ⎥⎣ ⎦

Let’s suppose the deviation in the cost function is
small, as a result, we can write:

(13) () () x
x
keke ∇

∂
∂

=∇

Considering relation (7), we have:

(14) () ()
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=∇
x
xzNx sgn1,0η

By substituting relations (13) and (14) in (12), we have:

(15) () () () ()

() () () ()

1 0,1 sgn

1 0,1 sgn
2

e k z x
V k N

x x

e k z x
e k N

x x

η

η

⎡ ⎤⎛ ⎞∂ ∂
∇ + = −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞⎡ ⎤⎛ ⎞∂ ∂
⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
i

The above equation can be rewritten as follows:

-20 -10 0 10 20
-20

-15

-10

-5

0

5

10

15

20

x

y

parents
offspring
global minimum

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

17

(16) () () () () ()

() () ()
2

1 0,1 sgn

1 0,1 sgn
2

e k z x
V k N e k

x x

e k z x
N

x x

η

η

⎡ ⎤⎛ ⎞∂ ∂
∇ + = − +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

According to the cost function (8), it can be written as:

(17)
() () () ()

() () ()
2

11 0,1 sgn
2

1 0,1 sgn
2

z x z x
V k N

x x

e k z x
N

x x

η

η

⎡ ⎤⎛ ⎞∂ ∂
∇ + = − +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

For stability, the Lyapunov function should be
negative:

(18) () () ()

() () ()
2

0 , 1 s g n

0 , 1 s g n

z x z x
N

x x

e k z x
N

x x

η

η

⎡ ⎤⎛ ⎞∂ ∂
≥⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

We know that the following equation is always true:

(19) () () () 0sgn1,0 ≥⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

x
xzN

x
xz

Thus, to establish (18) we have:

(20) () () ()

()
x
xz

x
xzN

x
ke

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎥⎦
⎤

⎢⎣
⎡
∂
∂

≥
sgn1,0

2

η
η

Simplifying the above equation we have:

(21) () ()
()
x
xz

N
x
ke

∂
∂

⎥⎦
⎤

⎢⎣
⎡
∂
∂

≥
1,0

2

η
η

The above equation can be rewritten as:

(22) 0>η

Therefore, we have:

(23) ()

() ()1,0
0 2

N
x
ke

x
xz

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

≤<η

Therefore, the algorithm is sufficient to ensure that the
strategy parameter has a positive value and it is small
enough. However, an important question arises: How

can ()
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x
xzsign be calculated?

At first, it must be noted that the first order derivative
function can be approximated with the accuracy of
desirable orders, for example O(h3). The following
equations hold for function f(.) by considering the
Taylor series expansion.

(24) () () () ()

() () () ()

2

3 4
4 5

2 2 2
4 2 .

3 3

f t h f t h f t h f t
h hf t f t O h

′ ′′− = − + −

′′′ + +

(25) () () () ()

() () () ()

2

3 4
4 5

2

.
6 2 4

hf t h f t h f t f t

h hf t f t O h

′ ′′− = − + −

′′′ + +

(26) () ().tftf =
(27) () () () ()

() () () ()

2

3 4
4 5

2

.
6 2 4

hf t h f t h f t f t

h hf t f t O h

′ ′′+ = + + +

′′′ + +

The weighted sum of the above equations produces Eq.
(28):

() () () ()
() () ()()

()() ()()

() () () () ()

2 3

4
4 5

2

2

4 8
2 6

16 m ax , , .
24

af t h bf t h cf t df t h

a b c d f t h f t d b a
h hf t d b a f t d b a

h f t d b a a b d O h

− + − + + + =

′+ + + + − − +

′′ ′′′+ + + − − +

+ + +

(28)

Choosing the weighted coefficients in the following
manner results in Eq. (29):

.
3
1,

2
1,1,

6
1

h
dand

h
c

h
b

h
a ==−==

() () () ()

() () () ()
3

4 4

2 6 3 2
6

.
1 2

f t h f t h f t f t h
h

hf t f t O h

− − − + + +
=

′ + +

(29)

In Eq. (29), the error is of order O (h3).
This approach can be used in any order of derivative
functions to achieve any desired accuracy. It has been
shown theoretically in Einar Hille theorem [17,18 that
the discrete Taylor series expansion can approximate
any function with the desired accuracy. Thus, the
relation (7) can be rewritten as follows:

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

18

(30) ()1

1

1 2

1

1 2

0 ,1

sg n

i m i m i m

i m i m i

m

i m i m i

m

x x N

z z z
x x x

η

α α α
α α α

+ + + +

+ + −

+ + −

= −

⎛ ⎞+ + +
⎜ ⎟+ + +⎝ ⎠

…
…

Based on the degree used to approximate the gradient
function, the parameters αi are specified. zi and xi are
defined in the following algorithm. The proposed
algorithm can be written as follows:

1) Generate the initial population of µ individuals, and

set 1. Each individual is taken as a pair of real
valued vectors, { }μη ,....,1),,(∈∀ix ii , where the ix
’s are the objective variables and the iη ’s are the
standard deviations for Gaussian mutations (also
known as strategy parameters in self-adaptive
evolutionary algorithms).

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,(∈∀ix ii of the population, based on

the objective function)(ixf .
3) Select each parent and m-1 individuals randomly

for estimating the gradient function, and then each
parent μη ,....,1),,(=ix ii creates a single offspring

),(iix η′′ by the following: for nj ,...,1=
(31) ()1

1

1 2

1

1 2

0 ,1

s g n

i m i m i m

j j j

i m i m i

m

i m i m i

m

x x N

z z z
x x x

η

α α α
α α α

+ + + +

+ + −

+ + −

= −

⎛ ⎞+ + +
⎜ ⎟+ + +⎝ ⎠

…
…

(32)))1,0()1,0(exp()()(1
j

mi
j

mi
j NNjj ττηη +′= +++

where mi

jx + and mi
j
+η denote the j –th component of

the vectors mix + and mi+η , respectively. mix + is the

parent and ,1,,0, −=+ mrx ri … are the points

selected for estimating the gradient function, and riz +

are corresponding cost value. 4) Calculate the fitness of each offspring.
5) Conduct pairwise comparisons over the union of

parents),(iix η and the offspring

{ }μη ,....,1),,(∈∀′′ ix ii . For each individual, q
opponents are chosen uniformly at random from all
of the parents and offspring. For each comparison,
if the individual’s fitness is no smaller than the
opponent’s, it receives a “win.”

6) Select the μ individuals out of parents and
offsprings that have the most wins to be the parents
of the next generation.

7) Stop if the halting criterion is satisfied; otherwise,
1+= kk and go to Step 3.

It must be noted that, at each stage, the proposed
algorithm generates new points, and these points
become closer to the original minimum (otherwise it
will be removed from the population) So, the algorithm
has the convergence condition.
Consider the cost function z = x1

2 + x2
2. The proposed

algorithm is used to optimize this cost function. The
convergence of the proposed algorithm can be viewed
by the individuals generated for the cost function with
two variables illustrated in Figs. 5-8.

Fig. 5. Offspring is produced in the first iteration

Fig. 6. Offsprings are produced until iteration 10

-10

-5
0

5

10

-10
-5

0
5

10
0

50

100

150

200

-10

-5
0

5

10

-10
-5

0
5

10
0

50

100

150

200

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

19

Fig. 7. Offsprings are produced until iteration 25

Fig. 8. Offsprings are produced until iteration 50

Fig. 9. Close snapshot of points produced by the

proposed algorithm

It can be seen that the points move toward the center of
the cost function, which is the global minimum. Step
sizes are random values determined by the strategy
parameter values. The curve cost versus iteration is
drawn in Fig. (10).

Fig. 10. The cost value via iteration

-10

-5
0

5

10

-10
-5

0
5

10
0

50

100

150

200

-10

-5
0

5

10

-10
-5

0
5

10
0

50

100

150

200

-10
0

10

-10-50510

0

1

2

3

4

5

X2

x1

z

0 5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100

101

iteration

C
os

t C
ur

ve

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

20

This cost function is a convert cost function which has
a single minimum. This single minimum is also the
global Minimum. In the following, the proposed
algorithm for optimizing non-convex cost function is
used in practical applications.

2.1. Offline PI Controller Design
In this section, the proposed algorithm is used to design
a PI controller for the CSTR benchmark system by
minimizing the following cost function:

() ()() ()[]∑
=

∇+−=
N

k
kukyrNz

1

22 (33)

The study example is a CSTR with a first-order
exothermic reaction provided in [20]. It is a typical
chemical engineering process which is intensively
studied in the control and system identification areas.
The dynamic behaviour for this CSTR can be described
by using the following nondimensional normalized
equations [19]:

()

() ()c

x
x

a

x
x

a

xxexBDxx

exDxx

−−−+−=

−+−=

+

+

2
1

122

1
111

2

2

2

2

1

1

βλ

λ

 (34)

x1 and x2 are the reactor’s dimensionless concentration
and its temperature, respectively. The case study under
consideration is a regulation of temperature x2. Coolant
temperature xc is the manipulated variable. One set of
parameter values B = 1.0, β = 0.3, λ = 20.0 and Da =
0.072, which yields an open-loop system with a single
stable steady state for all fixed values of the input, is
selected in [0 23] (ref. [20]). The detailed nomenclature
for this exothermic CSTR can be found in [21].
The input real value range is [0 23]. The starting
situation is a stable steady situation with the initial
states x1 = 0.6219 and x2 = 3.7092 and input ut = 14.
The Output of the CSTR system is the reactor
temperature y(t) = x2(t) and the control goal is to
regulate the output in reference value r = 3.
The simulation parameters for GMEP algorithms are
shown in table 1. The parameters of the GMEP are the
same as [15].

Table. 1 . Parameters of GMEP
Population size 20
Tournament size 5
Number of repetitions 20
Number of iterations 1000

Range bound of variables [-100,100]

The proposed algorithm is used to tune two variables of
the PI controller. Fig. 11 shows the cost curve
corresponding to the best function value found in the
last generation. This figure shows that the GMEP could

find the acceptable network weights in a few number of
iterations. It admits the capability of this method in fast
training of the PI controller. Fig. 12 shows the points
generated by the proposed algorithm, and
corresponding cost values in the range [-10, 10].

Fig. 11. The cost curve corresponded to the best

function value found in the last generation

Fig. 12. Points generated by the proposed algorithm

The best found variables of the controller are as
follows:
[Kp KI]= [12.4518 19.9107] (35)
Step response and control signal for the controlled
system with the optimal values (35) can be seen in Fig.
(13).

Fig. 13. Step response of the controlled system

0 200 400 600 800 1000
101

102

103

Samples

C
os

t C
ur

ve

-10

0

10

-10

0

10
0

50

100

150

Z

x1
X2

0 200 400 600 800 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Samples

O
ut

pu
t

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

21

Fig. 14. Control signal of the controlled system

Above the controller was tuned offline within assuming
that the cost function and system model are unknown.
In the remaining sections, the new strategy for
designing an online controller for the nonlinear system
described above will be introduced.

3. ONLINE APPROACH FOR DESIGNIG A

CONTROLLER USING THE PROPOSED
ALGORITHM

The main challenge for the use of intelligent algorithms
in online applications is the definition of population. At
each step of the algorithm, new members should be
produced equal to the number of members in the
generation (Fig. 2), and each new point should be
tested on the system to reveal its cost. In online
optimization, such a procedure may not be available.
To fulfill this problem, the online version of the
proposed algorithm is as follows:

1) Generate the initial population of µ individuals, and
set 1. Each individual is taken as a pair of real
valued vectors, { }μη ,....,1),,(∈∀ix ii , where the ix
’s are the objective variables and the iη ’s are the
standard deviations for Gaussian mutations (also
known as strategy parameters in self-adaptive
evolutionary algorithms).

2) Evaluate the fitness score for each individual
{ }μη ,....,1),,(∈∀ix ii of the population, based on

the objective function)(ixf .
3) Select the best parent and m-1 individuals

randomly for estimating the gradient function, and
then the best parent creates a single offspring by
the following: for nj ,...,1=

(31) ()1

1

1 2

1

1 2

0 , 1

s g n

i m i m i m

j j j

i m i m i

m

i m i m i

m

x x N

z z z
x x x

η

α α α
α α α

+ + + +

+ + −

+ + −

= −

⎛ ⎞+ + +
⎜ ⎟+ + +⎝ ⎠

…
…

(32)))1,0()1,0(exp()()(1
j

mi
j

mi
j NNjj ττηη +′= +++

where mi
jx + and mi

j
+η denote the j –th component of

the vectors mix + and mi+η , respectively. mix + is the

parent and ,1,,0, −=+ mrx ri … are the points are

selected for estimating the gradient function, riz + are
corresponding cost value. 4) Calculate the fitness of the offspring.
5) Select the worst parent in the population and

compare its cost with the cost of the new offspring.
If the cost of the new offspring is better than the
parent, then substitute it in place of the worst
parent in the population.

6) Stop if the halting criterion is satisfied; otherwise,
1+= kk and go to Step 3.

In the proposed algorithm, just a new point is generated
in each iteration instead of the population. Therefore, it
can be used in online applications. Nevertheless, the
required population for the algorithm is obtained by
collecting optimum points during algorithm runtime.
Therefore, the algorithm is a population-based search
algorithm. For the online applications, the following
flowchart can be followed.

Fig. 15. Flowchart for online application of the

proposed algorithm

3.1. Online PI Controller Design
The PI controller for the nonlinear system that was
presented in the previous section is designed using the
introduced online approach. To do this, the control loop
is considered as follows:

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Samples

C
on

tro
l S

ig
na

l

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

22

Fig. 16. The control loop diagram for online control of

a CSTR system

The controller is updated every 10 seconds (100
samples), and the cost of the new controller is
calculated for the 100 samples. Since the system
response time is less than 10 seconds, this time is an
enough time to calculate the cost. in Fig. 17, the cost
curve corresponds to the best cost value found in each
iteration and it is drawn for 1000 iterations. The control
signal and the output of the system can be seen in Fig.
18.

Fig. 17. Cost curve for 1000 iterations

Fig. 18. Output and control signal for the designed control loop

0 100 200 300 400 500 600 700 800 900 1000
10-8

10-6

10-4

10-2

100

102

iteration

C
os

t C
ur

ve

0 1 2 3 4 5 6 7 8 9 10
x 105

0

1

2

3

4

5

6

7

samples (0.1s)

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
x 105

0

5

10

15

20

25

samples (0.1s)

C
on

tro
l S

ig
na

l

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

23

In Fig. (18), it is seen that over time, the output is
converging to the reference value. However, it is
possible that changes in the parameters of the controller
create jumps. These jumps can be observed in many
online methods. Besides, the transient (initial) response
of the system has some variations. To resolve this
problem, the initial population can be chosen to be
reasonable (instead of being random). Using the system
model (if available) is a good option for modifying the
transient situation. However, when there is no
information about the system, there is no other choice
except to tolerate transient response. It is necessary to
note that online design using the proposed algorithm
with its convergence condition is not comparable with
other intelligent algorithms; besides, there is no
classical method that can design the controller without
requiring any information about the system. The
proposed method does not have any of the above
problems. in addition , the cost value (Fig. 17)
establishes the optimality of designed controllers.

4. CONCLUSION
In this paper, nonlinear optimization and controller
design challenges for nonlinear systems are discussed.
This requires an algorithm having the ability to the
global search, in addition to satisfying the condition of
convergence and stability. Intelligent and classical
methods have only one of the above requirements.
Therefore, in this paper, the gradient of the cost
function is used to obtain the convergence condition.
For this purpose, the sign of the gradient function is
approximated by the algorithm itself, and does not
require any additional information about the cost
function. On the other hand, because evolutionary
algorithms use the population in searching, they cannot
be employed in online applications. In this paper, the
proposed algorithm generates only one point in each
iteration, so this problem is eliminated. During the
design process, the proposed algorithm does not have
any information about the system and the cost function.
The proposed algorithm is used in online and offline PI
controller design for the nonlinear CSTR system.

REFERENCES

[1] B., D. Anderson, J.B., Moore, “Linear Optimal
Control”, Prentice-Hall Inc, New Jersey, 1971.

[2] M.S., Arumugam, M.V., Rao and R., Palaniappan,
“New Hybrid genetic operators for real coded
genetic algorithm to compute optimal control of
a class of hybrid systems”, Applied Soft
Computing 6, pp.38-52, 2005.

[3] K., Nikolos, “EVolutionary algorithm based
offline/online path planner for UAV navigation”,
IEEE Transactions on systems, man, and
Cybernetics, Vol. 33, No. 6, pp.898-912, 2003.

[4] P.J., Fleming, R.C., Purshouse, “Evolutionary
algorithm in control systems engineering: a

survey”, Control Engineering Practice 10,
pp.1223-1241, 2002.

[5] R.L., Haupt, S.E., Haupt, “Practical Genetic
Algorithms”, A John Wiley & Sons Inc., second
edition, 2004.

[6] L.J., Fogel,“ Artificial intelligence through
simulated evolution”, Wiley, New York, 1966.

[7] I., Rechenberg, “Evolutionsstrategie:
optimierung technischer systeme nach
PrinzISien der biologischen evolution”,
Frommann- Holzboog, Stuttgar, 1973.

[8] J. H., Holland, “Adaptation in natural and
artificial systems”, University of Michigan Press,
Ann Harbor, 1975.

[9] J., Koza, “Genetic programming: on the
programming of computers by means of natural
selection”, MIT Press, Cambridge, 1992.

[10] H., Narihisa, K., Kohmoto, T., Taniguchi, M., Ohta
and K., Katayama, "Evolutionary Programming
With Only Using Exponential Mutation", IEEE
Congress on Evolutionary Computations, Sheraton
Vancouver Wall Centre Hotel, Vancouver, BC,
Canada July 16-21, 2006.

[11] X., Yao, Y., Liu and G., Lin, “Evolutionary
Programming Made Faster”, IEEE Trans. on
Evolutionary Computation, Vol. 3,No. 2, 1999.

[12] H., Narihisa, K., Kohmoto and K,. Katayama,
“Evolutionary Programming with Double
Exponential Probability Distribution”, Proc. of
The Second International Association of Science
and Technology for Development (IASTED)
International Conference on Artificial Intelligence
and Applications (AIA2002), pp.358-363, 2002.

[13] K., Kohmoto, H., Narihisa and K., Katayama,
“Evolutionary Programming Using Exponential
Mutation”, Proc. of the 6th World Multi
conference on Systematics, Cybernetics and
Informatics, vol.11, Computer Science 2, July 14-
18, USA, pp.405-410, 2002.

[14] C.Y., Lee, Y., Song, “Evolutionary Programming
using the Levy probability Distribution”, Proc.
of Genetic and Evolutionary Computation
Conference (GECCO’99), Morgan Kaufman,
pp.886-893, 1999.

[15] Yo., Alipouri, J., Poshtan, Ya., Alipouri and M.R.,
Alipour, “Momentum coefficient for promoting
accuracy and convergence speed of evolutionary
programming”. Applied Soft Computing 12,
pp.1765–1786, 2012.

[16] Y., Alipouri, J., Poshtan and Y., Alipouri, “A
modification to classical evolutionary
programming by shifting strategy parameters”,
applied Intelligence, DOI 10.1007/s10489-012-
0364-x, 2012.

[17] H., Einar, R.S., Phillips,“ Functional analysis and
semi-groups” AMS Colloquium Publications, 31,
American Mathematical Society, p.300–327, 1957.

[18] W., Feller,“An introduction to probability
theory and its applications”, wiley (3rd ed.),
Vol.2, pp. 230–232, 1971.

[19] F.J., Doyle, A., Packard and M., Morari, “Robust
controller design for a nonlinear CSTR”,

Majlesi Journal of Electrical Engineering Vol. 8, No. 2, June 2014

24

Chemical Engineering Science 44, pp.1929-1947,
1989.

[20] T.D., Knapp, H.M., Budman, “Robust control
design of non-linear processes using empirical
state affine models”, Int. J. Control 73 (17), pp.
1525-1535, 2000.

[21] W., Yu, “Variance Analysis for Nonlinear
Systems”, PHD thesis, Queen's University
Kingston, Ontario, Canada October, 2007.

