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ABSTRACT 
A numerical technique based on Legendre Polynomials for finding the optimal control of nonlinear systems with 
quadratic performance index is presented. An operational matrix of integration and product matrix are introduced and 
are used to reduce the nonlinear differential equations for  the solution of nonlinear algebraic equations. The optimal 
solution from two classes of first and second order nonlinear systems is considered. In the case of second-order 
nonlinear systems, a new approach is introduced to find the optimal solution. In both cases, numerical examples are 
given and compared with the Taylor polynomials to confirm the accuracy of the proposed method. 
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1. INTRODUCTION 
Most of the systems have nonlinear dynamics. So, the 
study of these nonlinear systems are very important. 
Hence, many researchers and designers have showed an 
active interest in the development and applications of 
nonlinear systems [1-3]. 
Orthogonal functions and polynomial series have 
received considerable attention in dealing with various 
problems of dynamical systems. Examples are the use 
of the Walsh functions (Chen Shih 1978 )[4], the block-
pulse functions (Maleknejad and Shahrezaee 2005, 
wang and Li 2009) [5,6], the Chebyshev polynomials 
(H. Jaddu and E. Shimemura 1973) [7], the Taylor 
series (Mouroutsos and Sparis 1985, Gulsu and Sezer 
2006, S. Yalcinbas 2002 ) [8-10], the Fourier series 
(M.L. Nagurka, V. Yen 1990 ,Ardekani and Keyhani 
1989, Ardekani , Samavat and Rahmani 1991, Samavat 
and Rashidi 1995, Ebrahimi , Samavat , Vali and 
Gharavisi 2007) [11-15]. The main characteristic of the 
technique is that it reduces these problems to those of  
solving a system of algebraic equations; thus it greatly 
simplifies the problem. 
    In this paper, we use the Legendre Polynomials to 
find the optimal control of nonlinear systems. For the 
first time in this paper, the optimal control of a 
particular class of second-order nonlinear systems 
using a new approach has been proposed. By this 
numerical technique, a difficult problem is reduced to 

the straightforward nonlinear algebraic equations which 
can be solved by using a digital computer. Numerical 
examples are given to show the accuracy of the 
technique. 
 

2. PROPERTIES OF LEGENDER 
POLYNOMIALS 

2.1. Legendre Polynomials 
The shifted Legendre polynomials, , where 
0  are obtained from[16], 

2 1
1 2 1 1    

      1,2,3, …                                                                (1) 

Where 

1   , 2 1                                      (2) 

The orthogonal property is given by 

0,                   
,                              (3) 

 
2.2. Function Approximation 
A function    0,   can be approximated as: 
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 f t ∑ f∞ P t  ,                                                     (4) 

In practice we only consider a finite number of terms, 
that is 

f t ∑ f P t  ,                                                    (5) 

The shifted Legendre polynomial f  can be obtained by 
using  

f f τ P τ d  

Equation (5) can be written in a matrix form as: 

f t FTP t                                                               (6) 

Or 

f t P t TF                                                                (7) 

Where F and P t  are m 1 matrices which are given 
by: 

FT f     f      f         f                                           (8) 

P t P       P    P         P T                                   (9) 

2.3 The Operational Matrix of Integration 
Integration of the vector P t  defined in Eq. (9) can be 
written as: 

P s ds H P t  ,                                     (10) 

By using Eqs.(3) and (7) we have : 

f s ds FTP s ds FT HP t                        (11) 

By using Eqs.(7) and (10)  we have : 

f s ds P s TF ds P t THTF                      (12) 

Where the matrix H is obtained as follows[16]: 

H

t

1/2 1/2 0   … … … … … 0
1/6 0 1/6 … … … … … 0
0 1/10 0 … … … … … 0
0 0 1/14 … … … … …

 … 1/2 2m 3
0 0 0     1/ 2 2m 1 0

       

2.4  The Product Operational Matrix 
The product operational matrix F can be defined as 
follows[17]: 

P t PT t F F P t  ,                                              (13) 

for i = 0,1,2,. . .,m 1. In fact 

PPTF FP  ,                                                               (14) 

To illustrate the calculation procedures, we choose 
m=3. Thus, we have: 

F f     f     f T 

P(t) = P    P     P T ,                                                        (15) 

Where    
P t 1   , P t 2t 1    , P t 6t 6t 1 

Using equation (14), we get: 

P P P P P
P P P P P
P P P P P

 f     f     f T F P    P     P T       (16) 

Finally, we have: 

F
f f f

f
0 0 f

                                                      (17)  

 
3. THE OPTIMAL CONTROL PROBLEM 
The aim of this section is to explain how we can use the 
Legendre polynomials to find the optimal solution of 
first and second order nonlinear systems. In both cases 
the results are compared with the results of the Taylor 
polynomials. 
 
3.1. The first-order systems: 
Example 1: 
Consider the optimal control problem of the fist-order 
nonlinear system[12]: 

2 y t ٠ y t u t ,   y 0 0.2,       

 0 t 1                                                                   (18) 

With respect to a quadratic performance index: 

 J y t u t dt                                           (19) 

Integrating Eq. (18) from zero to t and using Eqs. (6), 
(7), (10),  (11), (12) and (14) we have: 

y s ds y t y 0 YTP t Y TP t  ,   

u s ds UTP s ds UT P s ds UTHP t  ,  

y s ds YTP s ds YT P s ds YTH P t  ,        
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y S ٠ ds y t y  0  

YTP t PT t Y  Y TP t  ,            

Finally 

2 YTYP t Y TP t YTP t Y TP t
UTHP t ,                                                                     20  

Eliminating P t  in equation (20) gives: 

2YTY YT UTH 2 Y T YT 0                   (21) 

Where YT and Y T are 1 m matrices which given by: 

YT 0.2 0 0 0 … … … … .  

Y T 0.04 0 0 … … … …  

For the performance index we have: 

J 10 YTP t PT t Y UTP t PT t U dt                   (22) 

J=10 YTLY 10 UTLU                                      (23) 

Where  

L  P t PT t dt                                                      (24) 

We now minimize equation (23) related to the equation 
(21),by using the Lagrange multiplier technique we get: 

J  

J λ 2YTY YT UTH 2 Y T YT              (25) 

Where λ  is a 1 m matrix as follows: 

λ λ  λ  λ  λ … … … … λ  

The necessary conditions for finding  the minimum are: 

J 0  , J 0    i 1,2, … , m 1                        (26) 

 J
λ

0                                                                       (27) 

By using this technique Eq. (25) turns into a set of 
nonlinear algebraic equations which can be solved 
using the Newton’s iterative method to obtain  J. The 
approximated values of J and y 0  in comparison with 
the Taylor polynomials are given in Table 1. 
 
 
 
 

Table 1. Approximated values of   0 , using the 
proposed method in comparison with the Taylor 

polynomials for m= 4, m=5 and m=6 for example 1 
Approxima
ted values 
of J by the 
proposed 
method 

Approxima
ted values 

of 
 J by the 
Taylor 

polynomial
s 

Approxima
ted values 
of  by 

the 
proposed 
method 

Approxima
ted values 
of  by 
the Taylor 
polynomial

s 

 
Exac

t 
valu
es of 

 

 
m 

0.03614  0.03954 0.21146  0.21312 0.2 4 
0.03602  0.03910 0.20657  0.20862 0.2 5 
0.03601  0.03881 0.20089  0.20345 0.2 6 

 
Example 2: 
Consider the optimal control problem of a different fist-
order nonlinear system[18]: 

y t y t u t ,   y 0 10,     

  0 t 1                                                                  (28) 

With respect to a quadratic performance index: 

 J 0.5 y t u t dt                                     (29) 

Integrating Eq. (28) from zero to t and using Eqs. (6), 
(7), (10),  (11), (12) and (14)  and eliminating P t  we 
have: 

YT YT YTYH UTH                                           (30) 

Using the Newton’s iterative method explained in 
example 1, the approximated values of J and y 0  and 
comparison with Taylor polynomials are given in Table 
2. 

 
Table 2. Approximated values of   0 , using the 

proposed method in comparison with the Taylor 
polynomials for m= 4, m=5 and m=6 for example 2 

Approxim
ated 

values of 
J by the 

proposed 
method 

Approxim
ated 

values of 
J by the 
Taylor 

polynomi
als 

Approxim
ated 

values of 
 by 

the 
proposed 
method 

Approxim
ated 

values of 
 by 

the 
Taylor 

polynomi
als 

 
Exac

t 
value
s of 

 

 
m

4.51236 4.93954 10.0245  10.1028 10     4
4.50828 4.64052 10.0126  10.0420 10 5
4.50726 4.60091 10.0098  10.0089 10 6

 
 
3.2. The second order systems: 
Example 3: 

Consider the optimal controlling problem of the 
second-order nonlinear system[12]: 
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y t y t y t y t u t  ,  

y 0 0.3, y 0 0                                               (31) 

Using the same performance index as example 1. Let us 
use the following assumption: 

y t YTP t                                                             (32) 

Integrating Eq. (32) from zero to t: 

y t y 0 YTHP t ,                                            (33) 

Integrating Eq. (33) from zero to t: 

y t y 0 YTH P t                                           (34) 

Expanding y 0  using the Legendre polynomials: 

y 0 f TP t                                                              (35) 

Where f T is a 1 m matrix given by: 

f T 0.3 0 0 … …  

Substituting Eq. (35) into Eq. (34) gives 

y t YTH P t f TP t ,                                       (36) 

Expanding u t  within using the Legendre 
polynomials: 

u t UTP t  ,                                                         (37) 

Substituting Eqs. (32), (36),(37) into Eq. (31) gives: 

YTH P t P t TY f TP t P t TY YTHP t
  YTH P t P t T H TY f TP t P t Tf
YTH P t P t Tf f TP t P t T H TY
UTP t                                                                            (38) 

Let us define: 

YTH ZT                                                                 (39) 

Substituting Eq. (39) and Eq. (14) into Eq. (38) and 
eliminating P t  gives: 

ZTY STY f TY YTH ZTZ f Tf ZTf f TZ
UT                                                                              40  

Therefore Eq. (40) turns into a set of nonlinear 
algebraic equations. By using the Newton’s iterative 
method explained in example 1, we get YT ,  , UT. In 
this case YT is the coefficients of y t . In order to find 
the coefficients of y t , we should solve Eq. (36) then 
we get the following equation: 

Coefficients of y t =YTH f T                               (41) 

Now this gives us the minimum of J. The approximated 
values of  J and y 0  and comparing them with Taylor 
polynomials are given in Table 3. 
 
Table 3. Approximated values of   0 , using the 

proposed method in comparison with the Taylor 
polynomials for m= 2, m=3 and m=4 for example 3 

Approxim
ated 

values of 
J by the 

proposed 
method 

Approxim
ated 

values of 
J by the 
Taylor 

polynomi
als 

Approxim
ated 

values of 
 by 

the 
proposed 
method 

Approxim
ated 

values of 
 by 

the 
Taylor 

polynomi
als 

 
Exa
ct 

valu
es 
of 

 

 
m

0.38982  0.42432 0.32001  0.34721 0.3 2 
0.38745  0.40027 0.31456  0.33121 0.3 3 
0.38599  0.39925 0.30865  0.31011 0.3 4 

 
4. CONCLUSION 
In the proposed method, using the Legendre 
polynomials, the nonlinear differential equations are 
reduced into a set of nonlinear algebraic equations, 
which can be solved using a digital computer. Since the 
operational matrix of integration and the product matrix 
contain many zero entries, it gives computational 
advantages when compared with the other possible 
approximations. Numerical examples are given to show 
the accuracy and applicability of the technique. Results 
show that the Legendre polynomials have accurate 
approximate values than the Taylor polynomials. 
Finally, the method can be extended for the optimal 
control of nonlinear time within varying systems. 
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