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ABSTRACT 
In this article we investigate on robust mixed-sensitivity H∞ control for speed and torque control of inductional motor 
(IM). In order to simplify the design procedure the Takagi–Sugeno (T–S) fuzzy approach is introduced to solve the 
nonlinear model Problem. Loop-shaping methodology and Mixed-sensitivity problem are developed to formulate 
frequency-domain specifications. Then  a regional  pole-placement output feedback H∞ controller is employed by 
using linear matrix inequalities(LMIs) teqnique for each linear subsystem of IM T-S fuzzy model. Parallel Distributed 
Compensation (PDC) is used to design the controller for the overall system . Simulation results are presented to 
validate the effectiveness of the proposed controller even in the presence of motor parameter variations and unknown 
load disturbance. 
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1. INTRODUCTION 
Inductional motors are extensively used in industry, 
due to their comparatively low cost and high reliability. 
Over the last decade, there have been numerous 
progresses for the development of miscellaneous 
controllers for induction motors. For example, M. 
Rodic et al. [1] proposed Speed-sensorless sliding-
mode torque control of an induction motor. J. C. 
Basilio et al. [2] presented  H∞ design of rotor flux-
oriented current-controlled induction motor drives: 
speed control, noise attenuation and stability 
robustness. R. Marino et al. [3] Studied a nonlinear 
tracking control for sensorless induction motors. H. A. 
Yousef et al. [4] has proposed an adaptive fuzzy MIMO 
control of induction motors. Recent researches show 
that a T-S fuzzy model can be utilized to approximate 
global behaviours of a highly complex nonlinear 
system .The published papers have used the T-S fuzzy 
model  technique for different drive systems[5-12]. The main contribution of this research is speed and 
torque control of induction motor by using H∞ mixed-
sensitivity problem via T-S fuzzy model. In this paper 
the problem of robust mixed-sensitivity H∞ control for 
an IM system which possesses not only parameter 
uncertainties but also external disturbances is 
considered. In the proposed method nonlinear plant is 

first represented by Takagi–Sugeno (T-S) fuzzy model. 
The fuzzy model is described by fuzzy IF-THEN rules 
which represent local input-output relations of a 
nonlinear system.  So the overall fuzzy model of the 
system is achieved by fuzzy "blending" of the local 
linear subsystem models. Then loop-shaping 
methodology and mixed-sensitivity problems are 
proposed in order to obtain optimal weighting 
functions. Afterward, for each fuzzy linear subsystem a 
robust mixed-sensitivity H∞ output feedback controller 
with regional pole-placement are designed based on 
LMI formulation. PDC technique is utilized to design 
the controller for the overall system. Finally simulation 
results show that the proposed method can effectively 
meet the performance requirements like robustness, 
good load disturbance rejection responses, good 
tracking responses and fast transient responses for the 
IM system. The paper is organized as follows: IM 
model and problem statement have been described in 
Section II. Section III describes the H∞ loop-shaping 
and the mixed-sensitivity problem. The design of 
robust pole-placement controller is presented in section 
IV. Simulation result of the closed-loop system with 
the proposed controller are presented in Section V and 
finally the paper is concluded in Section VI. 
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2. IM MODEL AND PROBLEM STATEMENT 

A. IM Dynamic Model  
The nonlinear electrical and mechanical equations for 
the 3-phase induction motor in the d-q reference frame 
can be written as follows [13] : 
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Where 
 
Ω, , , ,  ,  

 
In equation (1), Ω is the rotor angular speed, the (d, q) 
projections of the stator current and rotor flux are i , 
i , φ , φ  respectively. The control inputs are v , 
v . ,  are the stator resistance and inductance, , 

 are the rotor resistance and inductance, M is the 
mutual inductance between stator and rotor,   is the 
number of pole pairs, K is the damping coefficient, J is 
the moment of inertia. Motor torque of the motor can 
be described as 

 

  (2) 
 

In this model the parameters Rs, Rr and K are supposed 
to differ from their nominal values. 
B. T-S Fuzzy Model of IM 
In this section, the T–S fuzzy dynamic model is 
described by fuzzy IF–THEN rules, which represent 
local linear input/output -relations of nonlinear systems 
[14].The fuzzy dynamic model is proposed by Takagi 
and Sugeno. The ith rule of T-S fuzzy dynamic model 
with parametric uncertainties can be described as 
follows:  
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Where, M   is the fuzzy set; r is the number of  IF 

THEN Rules and v t  → v t   are the premise 
variables; x(t) Rn is the state vector; u(t)  Rm is the 
control input vector; w(t)  Rq is the disturbance input 
vector; y(t)  Rp is the output vector. The matrices: 
ΔAi, ∆B , ∆B , ∆C , ∆C , ∆D , ∆D  , ∆D  
, ∆D  represent the uncertainties in the system (3). 
The quasi-linear system of the nonlinear state space 
model (1) can be expressed as 
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A, Bw and Bu are known as real matrices with 
appropriate dimensions in nonlinear model (1). 
According to local linearization approach, we can 
obtain the local linear models for the system (4) with 
mentioned uncertainties (Rs, Rr and K). The overall 
fuzzy model is shown as  the following form 
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Where: v t v t … v t  and weighting 
function is  
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4. DESIGN OF ROBUT POLE-PLACEMENT 
CONTROLLER 

In this section we focus on design of a local pole-
placement output feedback controller for each linear 
subsystem(3): 

 
IF   v t    is   M   and…and  v t    is   M    THEN

    , 1,2, … ,   (13) 
 
Where Ki (i 1,2, … , r) are the local controller gains 
to be determined. For the system (3), the concept of 
parallel distributed compensation (PDC) is employed. 
According to PDC approach, the control law of the 
whole system is the weighted sum of the local feedback 
control of each subsystem. That is: 

 

 
                              (14) 

 
Where, the local pole-placement output feedback gains 
Kj are determined by LMI-based design  techniques in 
order to achieve the design requirements[16].The LMI 
formulation is applicable to design local controller that 
are introduced in Theorem1[15]. 

Theorem1. Main objective is to design an output-
feedback controller u = K y as:  

 maintain the H∞ norm of T∞(s) (RMS gain) 
below some prescribed value   > 0  

 maintain the H2 norm of T2(s) (LQG cost) below 
some prescribed value   > 0  

place the closed-loop poles in some prescribed 
LMI region D  

Minimize a trade-off criterion of the form 
 α T β T  .  

T∞(s) and T2(s) are the closed-loop transfer functions 
from w to z∞ and z2, respectively. For the control 
structure shown in Fig. 1, the linear fuzzy sub plant 
P(s) is given in state-space form by 

 
  

  
 

 
  (15)

 
And related controller K(s) is introduced by 

 
  

 (16) 
 
With regard to P(s), K(s) and u = K y the closed-loop 
system is 

 

 
 

(17) 
 
Our three design objectives can be expressed as 
follows[9]: 
•H∞ performance: The closed-loop RMS gain from w 
to z∞ does not exceed γ if and only if there exists a 
symmetric matrix X∞ such that  
 

0, X 0 
(18) 

 
•H2 performance: The H2 norm of the closed-loop 
transfer function from w to z2 does not exceed ν if and 
only if Dcl2 = 0 and there exist two symmetric matrices 
X2 and  Q such that 
 

Q C X
X C T X

0

A X X A T B
B T I

0

Trace Q ν               (19) 
 

•Pole placement: The closed-loop poles lie in the LMI 
region 
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If and only if there exists a symmetric matrix Xpol, it 
will be satisfied as follows: 

 
λ X µ A B K X µ X µ X A
B K T

,
0 , X 0                                    

21
 

For tractability in the LMI framework, we seek a single 
Lyapunov matrix: X:=X∞=X2=Xpol that enforces all 
three sets of constraints. Factorizing  X as follows: 

 
X=  

0  0  
 
And introducing the change of controller variables 
 

  

 (22) 
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it has also desired robustness against load torque 
disturbance and parameter variations. Proposed speed 
and torque control-system have good transient 
responses and load disturbance rejection and tracking 
responses. 
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