[1] P D. Chazal, R B. Reilly. “Automatic classification of ECG beats usinga waveform shape and hear beat interval features”. In: Proc. Int. acoustics on Speech and Signal Processing Conf; 2003; pp. 269-272.
[2] TH. Yeap, F. Johnson, M. Rachniowski, “ECG beat classification by a neural network”, In:IEEE Engineering Medicine andBiology Society Conference; 1990;pp. 1457–1458.
[3] P D. Chazal, R B. Reilly, “A patient-adapting heartbeat Classifier using morphology and heartbeat” interval features. IEEE Trans Biomed. Eng. 2006; pp.2535-2543.
[4] Y H. Hu, S. Palreddy, W. J. Tompkins, “A patient-adaptable ECG beat classifier using a mixture of experts approach”, IEEE Trans Biomed. Eng. 1997; pp. 891–900.
[5] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sornmo, “Clustering ECG complexes using hermite functions and self-organizingmaps”, IEEE Trans. Biomed. Eng. 2000; pp. 834-848.
[6] H. G. Hosseini, K. Reynolds. J. Powers, “A multi-stage neural Network classifier for ECG events” .In 23rdInt. IEEE EMBSConf, vol. 2 ;2001; pp. 1672–1675.
[7] L. Y. Shyu, W. H. Wu, W. C. Hu, “Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG”, IEEE Trans. Biomed. Eng. 2004; pp. 1269–1273.
[8] T. Omer, Inan and T. Gregory, A. Kovacs, “Robust Neural-Network-Based classification of Premature Ventricular Contractions using wavelet transform and timing interval features”, IEEE Trans Biomed. Eng 2006; pp.2507- 2515.
[9] M. R. Risk, J. F. Sobh, J. P. Saul, “Beat detection and classification of ECG using self organizing maps”, In Proc. 19th Int. IEEE. EMBS Conf 1997; pp. 89–91.
[10] K. Minami, H. Nakajima, T. Toyoshima, “Real-time discrimination of ventricular tachyarrhythmia withFourier-transform neural network”, IEEE Trans. Biomed. Eng., vol. 461999; pp. 179–185.
[11] C. Li, C. X. Zheng, C. F. Tai, “Detection of ECG characteristic points using wavelet transforms”, IEEE Trans. Biomed. Eng. 1995; pp.21–28.
[12] D. Cvetkovic, E. D. Ubeyli, I. Cosic , “Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELFPEMF exposures: A pilot study”, ELSEVIER, Digital Signal Process 2008; pp.861-874.
[13] T. Olmez, Z. Dokur, Application of InP Neural Network to ECG Beat Classification, Neural computing& Applications 2003; pp.144–155.
[14] Digital Signal Processing Toolbox User’s Guide for Use with Matlab 7.The MathworksInc; 2006.
[15] T. JolliffeI, Principal ComponentAnalysis. 2nd edn, Springer-Verlag, New York; 2002.
[16] A. Mertins. Signal Analysis Wavelets, Filter Banks, Time-Frequency Transforms and Applications. Wollongong. Australia1999.
[17] A. karami, B. Zanj, A. K. Sarkaleh, “Persian sign language (PSL) recognition using wavelet transform and neural networks. expert system with application”, Elsevier 2010; 38: pp. 2661-2667.
[18] S. Mallat. “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Pattern Anal. and Machine Intell 1989; pp.674-693.
[19] G. Strang, T. Nguyen. Wavelets and filter banks. Wellesley-Cambridge Press1996.
[20] L. Fausett. Fundamentals of neural networks. Prentice Hall. New Jersy1994.
[21] Wavelet Toolbox User’s Guide for Use with Matlab 7.The MathworksInc, 2006.
[22] S. Heykin. Neural networks: a comprehensive foundation. 2th, Prentice Hall, New Jersy,1999.
[23] O. Lezorary , H. cardot, “A neural network architecture for data classification”, Int. Journal of Neural System 2001.
[24] M. Tsipouras, D. Fotiadis, D. Sideris, “Arrhythmia classification using the RR-Interval duration signal”, IEEE, Computers in Cardiology, 2002; 29: pp.485-488.
[25] Neural Networks Toolbox User’s Guide for Use with Matlab 7.The MathworksInc; 2006.
[26] T. Ince, S. Kiranyaz, M. Gabbuji, “Automatic patient-specific classification of premature contraction”, In Proc. 30thInt. IEEE. EMBS conference 2008; pp.5475–5477.
[27] M. Belkheiri, Z. Douidi, A. Belkheiri, “ECG beats extraction and classification using radial basis function neural networks”, Proceedings of the Fourth Int. Conf. on Signal and Image Processing 2012 (ICSIP 2012); pp. 127-136.
[28] F. Poorahangaryan, A. kiani, A. Karami and B. zanj, “ECG ARRHYTHMIAS DETECTION USING A NEW INTELLIGENT SYSTEM BASED ON NEURAL NETWORKS AND WAVELET TRANSFORM”, Journal of Iranian Association of Electrical and Electronics Engineers, Vol.9, No. 1- spring & summer2012.