[1] C., Hudon, R., Bartnikas, “Surface conductivity and gas phase reactions arising with epoxy exposed to partial discharges”, IEEE CEIDP, pp. 725-34, 1992.
[2] C., Hudon, R., Bartnikas and M.R., Wertheimer, “Spark-to-glow discharge transition due to increased surface conductivity on epoxy resin specimens”, IEEE TDEI, Vol.28, No.1, pp. 1-8, 1993.
[3] C., Hudon, R., Bartnikas and M.R., Wertheimer, “Effect of hysic-chemical degradation of epoxy resin on partial discharge behavior”, IEEE TDEI, Vol.2, No.6, pp. 1083-1094, 1995.
[4] C., Hudon, R., Bartnikas and M.R., Wertheimer, “Surface conductivity of epoxy specimens subjected to partial discharges”, IEEE International Symposium on Electrical Insulation, Toronto, Canada, pp. 3-6, 1990.
[5] C., Hudon, R., Bartnikas and M.R., Wertheimer, “Chemical and physical degradation effects on epoxy surfaces exposed to partial discharges”, 4th International Conference on Properties and Applications of Dielectric Materials, Brisbane Australia, pp. 811-814, 1994.
[6] P.H.F., Morshuis , F.H., Kreuger, “Transition from streamer to Townsend mechanisms in dielectric voids”, J. Phys. D: Appl. Phys., Vol.23, pp. 1562-1568, 1990.
[7] T., Ishida, Y., Mizuno, M., Nagao and M., Kosaki, “Computer aided partial discharge analyzing system for detection of swarming pulsive microdischarges”, IEE Conference Publication, No. 378, pp. 99-100, 1993.
[8] C., Mayoux, G., Garcia and J., Sarlaboux, “Interaction of corona with dielectric material until damage”, IEEE TEI, Vol. EI-17, No.2, pp. 156-162, 1982.
[9] E.J., McMahon, J.R., Perkins, “Surface and volume phenomena in dielectric breakdown of polyethylene”, IEEE TPAS, Vol.82, No.69, pp. 1128-1136, 1963.
[10] D., Briggs, C.R., Kendall, A.R., Blythe and A.B., Wootton, “Electrical discharge treatment of polypropylene film”, Polymer, Vol. 24, pp. 47-52, 1983.
[11] D., Briggs , C.R., Kendall, “Derivation of discharge-treated LDPE: an extension of XPS analysis and a probe of specific interactions in adhesion”, Int. J. Adhesion and Adhesive, pp. 13-17, 1982.
[12] D., Briggs, D.G., Rance, C.R., Kendall and A.R., Blythe, “Surface modification of poly (ethylene terephthalate) by electrical discharge treatment”, Polymer, Vol. 21, pp. 895-900, 1980.
[13] D., Briggs , C.R., Kendall, “Chemical basis of adhesion to electrical discharge treated polyethylene”, Polymer, Vol. 20, pp.1053-1054, 1979.
[14] A.R., Blythe, D., Briggs, C.R., Kendall, D.G., Rance and V.J.I., Ziehy, “Surface modification of polyethylene by electrical discharge treatment and the mechanism of autoadhesion”, Polymer, Vol. 19, pp. 1273-1278, 1978.
[15] M., Gamez-Garcia, R., Bartnikas and M.R., Wertheimer, “Synthesis reactions involving XLPE subjected to partial discharges”, IEEE TEI, Vol.EI-22, No.2, pp. 199-205, 1987.
[16] E.C., Rogers, E.B., Grad, and V.G., Harriss, “A servo-mechanism for the study of self-extinction of gaseous discharges in cavities in dielectrics”, J. Sci. Instrum., Vol.33, pp. 7-10, 1956.
[17] T., Tanaka, Y., Ikeda, “Internal discharges in polyethylene with an artificial cavity”, IEEE TPAS, Vol. PAS-90, No. 6, pp. 2692-2702, 1971.
[18] D.W., Auckland, S.M.F., Kabir and B.R., Varlow, “Charge deposition in gas filled channels with insulating walls”, IEE proceedings-A, Vol.140, No.6, pp. 509-516, 1993.
[19] S., Serra, G.C., Montanari, and Mazzanti, “Theory of inception mechanism and growth of defect-induced damage in polyethylene cable insulation”, J. Appl. Phys., Vol.98, pp. 034102-1-15, 2005.
[20] G., Mazzanti, G.C., Montanari and F., Civenni, “Model of inception and growth of damage from microvoids in polyethylene-based materials for HVDC cables part 1: theoretical approach”, IEEE TDEI, Vol.14, No.5, pp. 1242-1254, 2007.
[21] G., Mazzanti, G.C., Montanari and F., Civenni, “Model of inception and growth of damage from microvoids in polyethylene-based materials for HVDC cables part 2: parametric investigation and data fitting”, IEEE TDEI, Vol.14, No.5, pp. 1255-1263, 2007.
[22] L.A., Dissado, G., Mazzanti and G.C., Montanari, “Propagation of electrical tree structures in solid polymeric insulation”, IEEE TDEI, Vol.4, No.5, pp. 496-596, 1997.
[23] J.P., Novak , R., Bartnikas, “Ionization and excitation behavior in a micro-cavity”, TDEI, Vol.2, No.5, pp. 724-728, 1995.
[24] A.A., Ganjovi, N., Gupta and G.R.G., Raju, “A kinetic model of a PD pulse within voids of sub-millimeter dimensions”, IEEE TDEI, Vol.16, No.6, pp. 1743-1754, 2009.
[25] V., Vahedi , G., DiPeso, “Simultaneous Potential and Circuit Solution for Two-Dimensional Bounded Plasma Simulation Codes”, J. Comput. Phys., Vol.131, pp. 149-163, 1997.
[26] V., Vahedi, , C.K., Birdsall, M.A., Lieberman, G., DiPeso, and T.D., Rognlien, “Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations”, Phys. Fluids B, Vol.5, pp. 2719-2729, 1993.
[27] W., S. Lawson, “Particle simulation of bounded 1D plasma systems”, J. Comput. Phys., Vol.80, pp. 253-276, 1989.
[28] G.G., Raju, “Gaseous Electronics: Theory and Practice, Boca Raton”,. FL: Taylor and Francis, 2005.
[29] C.K., Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC–MCC”, IEEE Trans. Plasma Sci., Vol.19, pp. 65–85, 1995.
[30] V., Vahedi, , M., Surendra, “Monte-Carlo collision model for particle-in-cell method: application to argon and oxygen discharges”, Comput. Phys. Commun., Vol.87, pp. 179–98, 1995.
[31] C., K. Birdsall , A.B., Langdon, “Plasma physics via computer simulation”, McGraw-Hill, New York, 1985.
[32] A., Roldan, J., M. Perez, A., Williart, F., Blanco, and G., Garcia, “Energy deposition model for low-energy electrons (10-10 000 eV) in air”, J. Appl. Phys., Vol.95, No.10, pp. 5865-5870, 2004.
[33] W., Zhang, T.S., Fisher, and S.V., Garimella, “Simulation of ion generation and breakdown in atmospheric air”, J. Appl. Phys., Vol.96, pp. 6066-6072, 2004.
[34] P.J., Mardahl, , K.L., Cartwright, “Reducing numerical heating in 1-D PIC simulations”, Annual Progress Report for 1993, Plasma Theory and Simulation Group, University of California Technical Memorandum, Electronics Research Laboratory, Berkeley, 1993.
[35] P.J., Mardahl , J.P., Verboncoeur, “Charge conservation in electromagnetic PIC codes; spectral comparison of Boris/DADI and Langdon-Marder methods”, Comp. Phys. Comm., Vol.106, pp. 219-229, 1997.
[36] J.P., Verboncoeur, “Symmetric spline weighting for charge and current density in particle simulation”, Journal of Comput. Phys., Vol.174, pp. 421-427, 1997.
[37] L.A., Dissado, G., Mazzanti, G.C., Montanari, “The role of trapped space charges in the electrical aging of insulating materials”, IEEE TDEI, Vol.4, No.5, pp. 496-596, 1997.
[38] S., Prasad, T., Grover and S., Basu, “Coarse-Grained molecular dynamics simulation of cross-linking of DGEBA epoxy resin and estimation of the adhesive strength”, unpublished.
[39] N., Shimizu, C., Laurent, “Electrical tree initiation”, IEEE TDEI, Vol. 5, No. 5, pp. 651-659, 1998.
[40] K.D., Wolter, J., Tanaka, and J.F., Johnson, “A study of the gaseous degradation products of corona-exposed polyethylene”, IEEE TET, Vol. E1-17, No.3, pp. 248-252, 1982.
[41] P.H.F., Morshuis , F.H., Kreuger, “The spatial distribution and electrical parameters of partial discharges in polyethylene insulation during aging”, Proc. 4th Int. Conf. Cond. Breakd. Solid Diel., Sestri Levante/Italy, pp. 209-214, 1992.
[42] R., Bartnikas, “Some observations on the character of corona discharges in short gap spaces”, IEEE TEI, Vol.6, No. 2, pp. 63-75, 1971.
[43] R., Bartnikas, “Engineering Dielectrics”, Vol. I, Corona Measurement and Interpretation, SlT669, ASTM, Philadelphia, 1979.
[44] R. Bartnikas, “Discharge rate and energy loss in helium at low frequencies”, Electrical Engineering, Vol. 52, pp. 348-359, 1969.
[45] R. Bartnikas, “Note on ac discharges between metallic-dielectric electrodes in helium”, J. Appl. Phys., Vol. 40, pp. 1974-1976, 1969.
[46] J.P., Novak, R., Bartnikas, “Quantitative model of a short-gap breakdown in air”, XVIIth International symposium on discharge and electrical insulation in vacuum, Berkeley, pp. 60-64, U.S., 1996.
[47] K., Kaminaga, T., Suzuki, T., Uozumi, T., Haga, N., Yasuda and T., Fukui, “The mechanism of degradation of polyethylene in a high electrical field”, Conference on Electrical Insulation and Dielectric Phenomena, pp. 666-71, 1993.
[48] D.W., Auckland, A.B., Borishade, and R., Cooper, “The breakdown characteristics of air-filled tubules in solid insulation”. IEEE Conference Publication No. 129, Dielectric Materials, Measurements and Applications, Cambridge pp. 15-18, July 1975.
[49] D.W., Auckland, A.B., Borishade, and R., Cooper, “Photographic investigation of breakdown of composite insulation”. Proc. IEE, Vol.124, No.12, pp. 1263-1266, 1977.
[50] K., Wu, Y., Suzuoki, T., Mizutani and H., Xie, “Model for partial discharges associated with treeing breakdown: I. PDs in tree channels”, J. Phys. D: Appl. Phys., Vol. 33, pp.1197–1201, 2000.
[51] W.Y., Gu, C., Laurent, and C., Mayoux, “Characteristics of discharges inside simulated tree micro-cavities under impulse voltage”, J. Phys. D: Appl. Phys., Vol.19, pp. 2197-2207, 1986.
[52] P.H.F., Morshuis and F.H., Kreuger, “Transition from streamer to Townsend mechanisms in dielectric voids”, J. Phys. D: Appl. Phys., Vol. 23, pp. 1562-1568, 1990.
[53] P., Morshuis, “Assessment of dielectric degradation by ultrawide-band PD detection”, IEEE TDEI, Vol.2, No. 5, pp. 744-760, 1995.
[54] C., Mayoux , C., Laurent, “Contribution of partial discharges to electrical breakdown of solid insulating materials”, IEEE TDEI, Vol.2, No.4, pp. 641-652, 1995.
[55] R.J., Densley, “An investigation into the growth of electrical trees in XLPE cable insulation”, IEEE TEI, Vol. EI-14, No.3, 1979.
[56] K., Wu, Y., Suzuoki, T., Mizutani and H., Xie, “Model for partial discharges associated with treeing breakdown: II. Tree growth affected by PDs”, J. Phys. D: Appl. Phys., Vol.33, pp.1202–1208, 2000.
[57] R.J., Densley, R., Bartnikas and B., Bernstien, “Multiple stress aging of solid-dielectric extruded dry-cured insulation systems for power transmission cables”, IEEE TPD, Vol.9, No.1, pp. 559-571, 1994.
[58] H.J., Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence”, IEEE TEI, Vol. 12, No. 6, pp. 424-428, 1977.