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ABSTRACT 

Active Noise Control (ANC) works on the principle of destructive interference between the primary disturbance field 

heard as undesired noise and the secondary field which is generated from control actuators. In the simplest system, the 

disturbance field can be a simple sine wave, and the secondary field is the same sine wave but 180 degrees out of 

phase. This research presents an investigation on the use of different types of neural networks in active noise control. 

Performance of the multilayer perceptron (MLP), Elman and generalized regression neural networks (GRNN) in active 

cancellation of acoustic noise signals is investigated and compared in this paper. Acoustic noise signals are selected 

from a Signal Processing Information Base  (SPIB ) database. In order to compare the networks appropriately, similar 

structures and similar training and test samples are deduced for neural networks. The simulation results show that 

MLP, GRNN, and Elman neural networks present proper performance in active cancellation of acoustic noise. It is 

concluded that Elman and MLP neural networks have better performance than GRNN in noise attenuation. It is 

demonstrated that designed ANC system achieve good noise reduction in low frequencies. 

 

KEYWORDS: Generalized Regression Neural Network (GRNN), Elman Neural Network, MLP Neural Network, 

Active Noise Control (ANC), Feedback Active Noise Control System (FANC), SPIB Database. 

  

1.  INTRODUCTION 

One of the most researched subjects in signal 

processing and acoustics is active noise control. This 

system uses microphones, sensors, and DSP boards to 

produce the anti-noise of an acoustic noise signal. 

Active noise cancellation (ANC) is a method for 

reducing undesired noise. ANC is achieved by 

introducing a canceling “anti-noise” wave through 

secondary sources. These secondary sources are 

interconnected through an electronic system using a 

specific signal processing algorithm for the particular 

cancellation scheme. If the original wave and the 

inverse of the original wave encounter at a junction at 

the same time, total cancellation occur. The challenges 

are to identify the original signal and generate the 

inverse without delay in all directions where noises 

interact and superimpose [1]-[3]. 

The traditional approach to acoustic noise control uses 

passive techniques such as silencers and barriers to 

attenuate the undesired noise. These passive silencers 

are valued for their high attenuation over a broad 

frequency range; however, they are relatively costly, 

large, and ineffective at low frequencies. On the other 

hand, the ANC system efficiently attenuates low-

frequency noise where passive methods are either 

ineffective or tend to be bulky or very expensive. ANC 

is developing rapidly because it permits improvements 

in noise control, often with potential benefits in weight, 

size, size, volume, and cost. Blocking low frequency 

has the priority since most real life noises are below 1 

KHz, for example engine noise or noise from aircrafts 

[1], [4]. 

Active control was first theorized by Paul Lueg in 1936 

in a U.S. Patent. His patent describes measuring the 

sound field with a microphone and then feeding it to an 

electroacoustic secondary source. Seventeen years 

later, Olson and May published another paper which 

describes another system for active noise control. In 

contrast with Lueg’s paper which used prior knowledge 

of the signal from the detecting microphone (feed-

forward control), Olson and May’s strategy needed no 

prior knowledge of the sound field. Instead, it used a 

feedback method to cancel sound by feeding back the 

signal from a much closer microphone to a second 

loudspeaker [2], [3]. 

Due to the lack of capable technology in the 1930’s and 

1950’s, ANC was not possible until modern computers 

became available. The study of active noise control was 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fgraphics.stanford.edu%2F%7Ejwshin%2Fsignal.html&ei=NQ58VP62No3eOIXdgLgF&usg=AFQjCNE8xjEug3q4tA4_w467QvZIYmb_8g&bvm=bv.80642063,d.ZWU
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silent until 1975, when Kido first used digital 

techniques to achieve the precise balance required for 

feed-forward active control. In 1980, the well-known 

filtered-x least mean squares algorithm was developed 

by Morgan and also independently by Widrow in 1981 

[1], [3]. For years, adaptive filters were the best choice 

for ANC systems. For nonlinear cases, neural networks 

show better performance than the adaptive filters [5]. 

There are a number of great applications for active 

noise cancellation devices. New developments in active 

noise control (ANC) have led to commercial products 

such as noise canceling headphones. One obvious 

application is that people working near aircraft or in 

noisy factories can now wear electronic noise 

cancellation headsets to protect their hearing [4], [6]. 

ANC is ideal for industrial use [7], [8]. The application 

of active noise reduction produced by engines has 

various benefits [9]. 

In this paper, two types of neural networks, feed-

forward and recurrent, are designed for canceling 

acoustic noise. MLP neural network and GRNN are 

trained as feed-forward neural networks and Elman 

network is selected as a recurrent neural network. The 

main idea is to compare the performance of these 

networks in noise reduction of undesired noise. 

Acoustic noise signals are selected from SPIB database. 

The simulation results show that Elman and MLP 

neural networks have better performance in noise 

attenuation than GRNN. 

In Section 2, an introduction to feedback ANC system 

is presented. The neural networks structure that is used 

in ANC is described in Section 3. Section 4 shows 

simulation results and finally, in Section 5 the 

conclusions of the research are discussed. 

 

2.  FEEDBACK ACTIVE NOISE CONTROL 

SYSTEM 

The control system is fed with signals containing 

information about noise. These signals can be either 

advance signals that hold information of incoming 

noise, such as a reference signal, or signals that hold 

information about residual noise, such as an error 

signal. Not all control systems have a reference signal 

input. The control system with the reference input is 

called feed-forward and otherwise feedback controller. 

Depending on the application, both feedback control 

and feed-forward control can be used in active noise 

control [1], [4]. 

Structures for feed-forward ANC systems are classified 

into broadband feed-forward control with a reference 

sensor and narrow-band feed-forward control with a 

reference sensor that is not influenced by the control 

field (e.g. tachometer) [1], [4]. Figs 1, 2 and 3 show the 

broadband feed-forward, narrowband feed-forward and 

feedback ANC systems, respectively. A combination of 

the feed-forward and feedback control structures is 

called hybrid ANC system [1]. 
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Fig. 1. Broadband feed-forward ANC system [1] 
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Fig. 2. Narrowband feed-forward ANC system [1] 
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Fig. 3. Feedback ANC system [1] 

 

A feedback ANC approach is taken in this research. 

The basic idea of an adaptive feedback ANC is to 

estimate the primary noise and use it as a reference 

signal x(n). According to block diagram depicted in 

Fig. 3, the error signal is obtained through the 

subtraction of primary noise, d(n), and generated 

inverse waveform, y(n); therefore assumed no 

information lost during the transition, the estimated 

primary noise d(n) could be regenerated by summation 

of error signal, e(n), and y(n). Since the reference 

signal comes from the estimated primary noise; 

therefore, the accuracy of the estimation determines the 

overall feedback mechanism performance [1], [10]. 

From Fig. 3, we can see that the primary noise can be 

expressed in the z-domain as, 

 

)()()()( zYzSzEzD                                                 (1) 

 

Where E(z) is the residual error signal, Y(z) is the 

output of the adaptive filter and S(z) is the secondary 

path transfer function from y(n) to e(n). S(z) includes 

the digital-to-analog converter, reconstruction filter, 

power amplifier, loudspeaker, acoustic path from 

loudspeaker to error microphone, error microphone, 

pre-amplifier, anti-aliasing filter, and analog-to-digital 

converter [1]. The secondary path transfer function S(z) 
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can be estimated as )(ˆ zS . Thus, we can estimate the 

primary noise d(n) and use this as a synthesized 

reference signal x(n) as, 

 

)()(ˆ)()(ˆ)( zYzSzEzDzX                                     (2) 

  

A complete block diagram of the feedback ANC 

system is shown in Fig. 4 [1]. 
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Fig. 4. Complete block diagram of feedback ANC system [1] 

 

From Fig. 4, we can see that the reference signal x(n) 

and the secondary signal y(n) can be expressed as :,  
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[1,11].Where 
mŝ , m = 0, 1, . . . , M-1 is the M

th
 order 

FIR filter used to approximate the secondary path 

transfer function. wl(n), l = 0, 1, . . . , L-1 are the 

coefficients of the L
th

 order adaptive FIR filter W(z) at 

time n. These coefficients are updated by the FXLMS 

algorithm [11] as, 

 

)()()()1( nelnxnwnw ll                                   (5) 

 

Where µ is the step size and )(nx  is the filtered 

reference signal [11] and is given by, 
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From equation (1) and (2) it is concluded that 

)()( ndnx   if )()(ˆ zSzS  . Assuming that this 

condition is satisfied, then the adaptive feedback ANC 

system can be transformed into the feed-forward ANC 

system. If the LMS algorithm has slow convergence, 

i.e. the step size μ is small then the adaptive filter W(z) 

can be commuted with the secondary path transfer 

function S(z). Further, if we assume that the secondary 

path S(z) can be modeled as a pure delay, i.e. 
 zzS )( , then the feedback ANC system is 

equivalent to the standard adaptive predictor. So, the 

feedback ANC system acts as an adaptive predictor of 

the primary noise to minimize the residual error noise. 

It should be mentioned, when S(z) and )(ˆ zS  are 

approximated by delays, they can be absorbed by W(z) 

[1]. 

In this paper, we use neural networks instead of 

adaptive filters for predicting future samples of noise. 

Fig. 5 shows the final block diagram of the predictor 

that we used in this research. Note that S(z) and )(ˆ zS  

are modeled as a pure delay, so )(ˆ)()( ndndnx  . In 

simulation procedures, the secondary path S(z) is 

assumed as a pure delay 1)(  zzS . 
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Fig. 5. Final block diagram of the predictor used in this 

research 

 

3.  NEURAL NETWORKS DESIGNING 

As it was seen, we use a neural network as a predictor 

of the primary noise. Neural network accepts N 

samples as its input and then using these N samples for 

predicting the (N+1)’th sample. The predicted sample 

is the output of the neural network and is used for 

feeding the canceling loudspeaker. Loudspeaker 

generates a sample with the same amplitude and 180 

degrees difference in phase. In this research, feed-

forward and recurrent neural networks are used as a 

predictor. Multilayer perceptron and generalized 

regression neural networks are used as feed-forward 

networks and Elman network is selected as a recurrent 

neural network. In order to compare the networks 

appropriately, equal number of layers and neurons are 

considered for the networks. 

Function approximation is one of the important 

applications of MLP neural networks [12], [13]. A two 

layer MLP network is designed and trained for ANC. 

The first layer transfer function is sigmoid and the 

second layer is linear. We experience various 

architectures for MLP neural network such as 
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NN(40,40,1), NN(10,10,1), … and deduced 

NN(20,20,1) as the best structure for ANC. Therefore, 

the designed network has 20 inputs, 20 neurons in its 

hidden layer and 1 neuron in its output layer. 

A generalized regression neural network is often used 

for function approximation. It is one of the neural 

networks’ types that can be used for prediction. It has a 

radial basis layer and a special linear layer. The GRNN 

has many advantages, but it suffers from one major 

disadvantage. It is slower to operate because it uses 

more computation than other kinds of networks to do 

its function approximation [13], [14]. The designed 

GRNN network is a two layer network. It has 20 inputs 

and 1 neuron in its output layer. The first layer has as 

many neurons as there are input vectors. 

Recurrent neural networks are useful in temporal 

systems. We use Elman network as a recurrent neural 

network. The Elman network commonly is a two-layer 

back-propagation network with a feedback connection 

from the output of the hidden layer to its input. This 

feedback path allows Elman networks to detect and 

generate time-varying patterns. The delay in the 

feedback connection stores values from the previous 

time step. These values can be used in the current time 

step [15]. The first layer which transfers function of 

designed network is sigmoid and the second layer is 

linear. The designed Elman network has the structure 

of NN(20,20,1). 

MLP, GRNN and Elman neural networks structures are 

shown in Figs. 6, 7 and 8, respectively. The input to the 

networks is a tapped delay line (TDL) and is shown in 

Fig. 9. For training the networks, we use back-

propagation algorithm and deduce Levenberg-

Marquardt algorithm as the most efficient algorithm. 

For training the networks, acoustic noise samples are 

fed to the inputs of networks. The target is the sample 

that comes after the present 20 samples. So, the neural 

network is a predictor of d(n) from d(n-1), d(n-2), . . . , 

d(n-19), d(n-20). 
 

 
Fig. 6. Structure of the MLP neural network 

 

 
Fig. 7. Structure of the GRNN neural network 

 

 
Fig. 8. Structure of the Elman neural network 

 

 

 
Fig. 9. Structure of the neural networks input (TDL) 

 

4.  SIMULATIONS 

In this research, performance of different types of 

neural networks in active cancellation of acoustic noise 

is evaluated and compared. As it was seen, we use 

similar structures, equal number of layers and neurons, 

for designing the neural networks to compare them 

properly. Moreover, training and test samples are 

similar. Noise signals from a SPIB are used for 

simulation procedures. In this section, SPIB database is 

described at first and then simulation results are 

presented. 

 

4.1.  SPIB Database 

SPIB database have been provided by the Rice 

University [16]. SPIB database consists of acoustic 

noise from different environments such as engine room, 

factory environment, aircraft cockpit, car interior noise 

and etc. In [17] and [18], by using SPIB database, 

different types of ANC systems and ANC algorithms 

are investigated. In [19], destroyer operation room 

noise, and also engine room and F16 cockpit noise are 

canceled by using feedback ANC system. For this 

reason, MLP neural network is designed and the noise 

attenuation of 20 dB is achieved. 
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4.2.  Simulation Results 

Various types of acoustic noise are used in this 

research. For this reason, acoustic noise from a factory 

environment, F16 cockpit noise, and M109 tank noise 

are selected from SPIB database. These acoustic noise 

signals were recorded at a sampling rate of 19.98 kHz 

with 16 bit resolution. Noise samples are split into two 

parts, training sets (2000 samples) and testing sets 

(other samples). After training the networks with each 

noise, test procedure is done three times. Test samples 

consist of 5000 samples of noise. In test procedure, 

performance of the trained networks in noise 

attenuation is evaluated and compared. Noise 

attenuation is calculated from, 

 

EnergyNoisemainedRe

EnergyNoiseInput
nAttenuatioNoise 10log10  (7) 

 
Factory noise is used in first simulation. Noise signal 

from a factory was recorded near plate-cutting and 

electrical welding equipment. In table 1, the 

performance of neural networks in noise attenuation is 

shown. As it is seen, Elman neural network has better 

performance than MLP and GRNN networks. 

 
Table 1. Performance of the trained networks in noise 

attenuation of factory 
 

 

The Noise Attenuation (dB) 

Feed-Forward 

Networks 

Recurrent 

Network 

MLP GRNN Elman 

1
st
 test 20.656 19.826 21.386 

2
nd

 test 18.98 18.263 19.96 

3
rd

 test 21.754 19.345 22.413 

 

Suppose that 2000 samples of factory noise are fed to 

the trained MLP network. Power spectrum of the 

factory noise and residual noise are shown in Fig. 10. 

The dashed line represents the factory noise spectrum 

and the solid line denotes the residual noise spectrum. 

From these two spectra, it is concluded that the ANC 

system achieved good noise reduction from 0-1.5 kHz. 

Table 2 shows the performance of trained networks in 

noise attenuation of F16 cockpit. F16 cockpit noise was 

recorded at the co-pilot's seat in a two-seat F16, 

traveling at a speed of 500 knots, and an altitude of 

300-600 feet. The proper performance of Elman and 

MLP networks in comparison with GRNN is derived 

again. 
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Fig. 10. Factory noise spectrum (dashed line) and residual 

noise spectrum (solid line) 

 
Table 2. Performance of the trained networks in noise 

attenuation of F16 cockpit 
 

 

The Noise Attenuation (dB) 

Feed-Forward 

Networks 

Recurrent 

Network 

MLP GRNN Elman 

1
st
 test 23.915 19.664 25.242 

2
nd

 test 23.615 19.138 24.782 

3
rd

 test 23.981 19.652 25.076 

 

Fig. 11 shows 500 samples of F16 cockpit noise (Upper 

Fig).  Anti-noise signal generated with GRNN is shown 

in the bottom of Fig. 11 (Bottom Fig). It is seen that 

noise and anti-noise signals are vise versa. The addition 

of noise and anti-noise signals is called residual noise 

and is shown in the middle of Fig. 11 (Middle Fig). 

 

 
Fig. 11. Upper Fig.: F16 Noise signal, Bottom Fig.: Anti-

Noise signal, Middle Fig.: Residual Noise   
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Third simulation is done with M109 tank noise. The 

M109 tank was moving at a speed of 30 km/h. The 

performance of the networks in noise attenuation is 

shown in table 3. 

 
Table 3. Performance of the trained networks in noise 

attenuation of M109 tank 
 

 

The Noise Attenuation (dB) 

Feed-Forward 

Networks 

Recurrent 

Network 

MLP GRNN Elman 

1
st
 test 27.752 23.824 28.249 

2
nd

 test 25.572 22.271 26.161 

3
rd

 test 26.561 22.731 27.106 

 

Fig. 12 shows power spectrum of M109 tank noise 

(2000 samples) and residual noise spectrum obtained 

by Elman neural network. From these spectra, it is seen 

that the designed ANC system achieved good noise 

reduction from 0-2 kHz. 
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Fig. 12. M109 tank noise spectrum (dashed line) and residual 

noise spectrum (solid line) 

 

From tables 1-3, it is concluded that Elman and MLP 

neural networks can cancel the noise more efficient 

than GRNN. From Figs. 10 and 12, it is demonstrated 

that designed ANC system achieved good noise 

reduction in low frequencies. 

By comparing the required time for training and testing 

the networks, it was seen that GRNN needs more time 

for producing anti-noise signal than MLP and Elman 

networks but it requires less training time. MLP and 

Elman networks require similar time in network testing 

but Elman network needs more time for training. 

Moreover, appropriate processor should be selected for 

implementing ANC system because of the complex 

structure of Elman network. 

5.  CONCLUSIONS 

In this paper, comparison of different types of neural 

networks in active cancellation of acoustic noise was 

performed. MLP, Elman and GRNN neural networks 

with similar architectures were investigated and 

compared in simulation procedures. Acoustic noise 

signals from SPIB database were used for training and 

testing the networks. The results of simulations 

demonstrated that MLP, Elman and GRNN neural 

networks have appropriate performance in noise 

attenuation. Power spectrum of the main noise and 

residual noise showed that neural networks achieved 

good noise reduction in low frequencies. 

It was concluded that Elman and MLP networks can 

cancel the noise more efficiently than GRNN. 

Comparing the required time for training and testing 

the networks demonstrated that GRNN needs less time 

for training than MLP and Elman networks but it 

requires more time in testing process. Moreover, MLP 

requires less time than Elman neural network in 

training process.  
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