[1] P.J. Campo, M. Morari, “Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain,” IEEE Trans.Automat. Control39 (1994)932–943.
[2] J. Lee, W. Cho, T.F. Edgar, “Multi-loop PI controller tuning for interacting multi-variable processes,” Comput. Chem. Eng. 22 (1998) 1711–1723
[3] W.L. Luyben, “Simple method for tuning SISO controllers in multivariable systems,” Ind. Eng. Chem. Process Des. Dev. 25 (1986) 654–660.
[4] J.G. Ziegler, N.B. Nichols, “Optimum settings for automatic controllers,” Trans.ASME 64 (1942) 759–768.
[5] D.Q. Mayne, The design of linear multivariable systems, Automatical (1973)201–207.
[6] M. Hovd, S. Skogestad, “Sequential design of decentralized controllers,” Auto matica 30 (1994) 1601–1607.
[7] K.J. Åström, T. Hägglund, Automatic Tuning of PID Controllers, Instrument Soci-ety of America, Research Triangle Park, NC, 1988.
[8] A.P. Loh, C.C. Hang, C.K. Quek, V.U. Vasnani, “Auto-tuning of multi-loop proportional-integral controllers using relay feedback,” Ind. Eng. Chem. Res. 32(1993) 1102–1107.
[9] S.H. Shen, C.C. Yu, “Use of relay-feedback test for automatic tuning of multivariable systems,” AIChE J. 40 (1994) 627–646.
[10] Y. Halevi, Z.J. Palmor, T. Efrati, “Automatic tuning of decentralized PID controllers for MIMO processes,” J. Process Control 7 (1997) 119–128.
[11] P. Grosdidier, M. Morari, “Interaction measures for systems under decentralized control,” Automatica 22 (1986) 309–320.
[12] S. Skogestad, M. Morari, “Robust performance of decentralized control system by independent design,” Automatica25(1989)119–125
[13] M. Hovd, S. Skogestad, “Improved independent design of robust decentralized controllers,” J. Process Control 3 (1) (1993) 43–51.
[14] J. Jung, J.Y. Choi, J. Lee, “One parameter method for a multi-loop control system design,” Ind. Eng. Chem. Res. 38 (1999) 1580–1588
[15] Z.X. Zhu, “Structural analysis and stability conditions of decentralized control systems,” Ind. Eng. Chem. Res. 35 (1996) 736–745.
[16] M.-J. He, W.J. Cai, B.F. Wu, M. He, “Simple decentralized PID controller design method based on dynamic relative interaction analysis,” Ind. Eng. Chem. Res. 44 (2005) 8334–8344.
[17] H.P. Huang, J.C. Jeng, C.H. Chiang, W. Pan, “A direct method for multi-loop PI/PID controller design,” J. Process Control 13 (2003) 769–786.
[18] Q. Xiong, W.-J. Cai, “Effective transfer function method for decentralized control system design of multi-input multi-output processes”, J. Process Control 16 (2006) 773–784.
[19] H. Cui, E.W. Jacobsen, “Performance limitations in decentralized control,” J. Process Control 12 (2002) 485–494.
[20] E.H. Bristol, “On a new measure of interactions for multivariable process control,” IEEE Trans. Automat. Control 11(1966) 133–134.
[21] M.F. Witcher, T.J. McAvoy, “Interacting control systems: steady-state and dynamic measurement of interaction,” ISA Trans. 16 (1977) 35–41.
[22] E.H. Bristol, “Recent results on interactions in multivariable process control,” in: Proceedings of the 71st Annual AIChE Meeting, Houston, TX, USA, 1979.
[23] L.S. Tung, T.F. Edgar, “Analysis of control-output interaction in dynamic systems,” AIChE J. 27 (1981) 690–693.
[24] S. Skogestad, I. Poslethwaite, Multivariable Feedback Control, John Wiley and Sons, New York, 1996.
[25] Q. Xiong, W.-J. Cai, M.-J. He, A practical loop pairing criterion for multivariable process, J. Process Control 15 (2005) 741–747.
[26] M.-J. He, W.-J. Cai, W. Ni, L.-H. Xie, “RNGA based control system configuration for multivariable processes,” J. Process Control 19 (2009) 1036–1042.
[27] J.M. Maciejowski, Multivariable Feedback Design, Addison- Wesley, 1989 (ISBN 0 201 18243 2).
[28] Khaluzadeh H. and M. Akbari Sani, “Dyzbad nonlinear wind turbine modeling and control it based on stochastic optimal feedback controller,” Presented to Journal of Control 1387
[29] Truong Nguyen Luan Vu, Moonyong Lee, “Independent design of multi-loop PI/PID controllers for interacting multivariable processes,” J. Process Control 20 (2010) 922–933.