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ABSTRACT 

In this paper, a new approach is investigated for order reduction based on Legendre expansion. Harmony Search is 

used in this approach, to determine the reduced order model parameters. The Routh criterion is applied to specify the 

stability conditions. Then, the stability conditions are constraints in optimization problem. To present the efficiency of 

the proposed method, three test systems are reduced. The obtained results were compared to other existing techniques. 

The comparison showed that the proposed approach performs well.  
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1. INTRODUCTION 

Many of Various methods are reported in the literature 

for order reduction in time domain and frequency 

domain. Model reduction started by Davison in 1966 

[1] and followed by Chidambara by suggesting several 

modifications to Davison’s approach [2-4]. After that 

different approaches were proposed such as: dominant 

pole retention [5], Routh approximation [6] , Hurwitz 

polynomial approximation [7-8], stability equation 

method [9-10], moments matching [11-l4], continued 

fraction method [15-17], Pade approximation [18] and 

etc. 

The issue of optimality in model reduction was 

considered by Wilson [19-20] who suggested an 

optimization approach based on minimization of the 

integral squared impulse response error between the 

full and reduced-order models. This attempt was 

continued by other researches through other approaches 

[21-24].    

In 1981 [25], the controllability and observability of the 

states was considered in model reduction by Moore. 

The suggested approach suffered from steady state 

errors but the stability of the reduced model was 

assured if the original system was also stable [26]. 

Furthermore, the concept of H∞, H2, L2 and L∞ were 

used in model reduction [27-30]. 

In recent decades, the evolutionary techniques such as 

Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) are used for order reduction of systems 

[31-33]. In these approaches, the reduced 

order model's parameters are achieved by minimizing a 

fitness function which is often  

Integral Square Error (ISE), Integral Absolute Error 

(IAE), 2H norm or H  norm [34-36]. 

This paper introduces a new alternative method for 

order reduction using orthogonal polynomials through 

shifted Legendre functions. In this method, the full 

order system is expanded by shifted Legendre functions 

and then the l first coefficients of shifted Legendre 

functions are obtained. A desire fixed structure for 

reduced order model is considered and a set of 

parameters are defined, whose values determine the 

reduced order system. These unknown parameters are 

determined using harmony search (HS) algorithm by 

minimizing the errors between the l first coefficients of 

shifted Legendre functions expansion of full and 

reduced systems. To satisfy the stability, Routh 

criterion is applied as it is used in [37] where, it states 

in optimization problem as constraints and 

subsequently, optimization problem converted to a 

constrained optimization problem. To show the 

accuracy of the proposed method, three systems are 

reduced by the proposed method and were compared to 

those available in the literature.  

To make a proper background, Shifted Legendre 

functions and harmony search algorithm are briefly 

explained in Sections 2 and 3, respectively. The 

proposed method is explained in Section 4. The ability 

of the proposed approach is shown in Section 5. The 

paper is concluded in Section 6.   
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2. THE SHIFTED LEGENDRE FUNCTIONS 

The shifted Legendre polynomials which are 

orthogonal and represented by   ,  0,1,2,iL z i   can 

be defined on interval  1,1z   by recursive formula 

as follows [38]:  

         1 11 2 1 ,  1,2,i i ii L z i zL z iL z i                 (1) 

where  0L z and  1L z  are equal to 0 and z, 

respectively.  

In order to use these polynomials on the interval 0, ft 
 

, shifted Legendre polynomials  iP t is used by 

changing the variables as follows:  

2 1 ,  0 f
f

t
z t t

t

 
    

 
 

                                           (2) 

Based on (1), the shifted Legendre polynomials can be 

defined by using recursive formula as below:  

   

     

1

1

1

2
2 1 1 ,  1, 2,

i

i i
f

i P z

t
i P z iP z i

t





 

 
    

 
 

               (3) 

Where  0P z and  1P z are equal to 0 and 
2

1
f

t

t

 
 

 
 

, 

respectively.  

The orthogonal property is given by  

   
1

0

2
  

2 1

0         

f

i j

t
i j

P t P t dt i

i j




 
 

                                   (4) 

A function  f t  which is absolutely integrable on 

interval 0, ft 
   

may be expressed in terms of a shifted 

Legendre series as  

   
0

i i
i

f t P t




                                                                (5) 

Where 

   
1

0

2 1
i i

f

i
f t P t dt

t



                                             (6) 

The above equation indicates that the expansion 

coefficients, i , can be achieved by integrating of 

   if t P t .                                                                         

3. HARMONY SEARCH ALGORITHM  

The HS is based on natural musical performance of a 

process that searches for a perfect state of harmony. In 

general, the HS algorithm works as follows [39]-[40]: 

Step1. Initialization: Define the objective function and 

decision variables. Input the system parameters and the 

boundaries of the decision variables. The optimization 

problem can be defined as:  

Minimize  f x  subject to 

   1,2, ,iL i iUx x x i N    where iLx  and iUx  are 

the lower and upper bounds for decision variables.  

The HS algorithm parameters are also specified in this 

step. They are the harmony memory size (HMS) or the 

number of solution vectors in harmony memory, 

harmony memory considering rate (HMCR), distance 

bandwidth  bw , pitch adjusting rate (PAR), and the 

number of improvisations (K), or stopping criterion. K 

is the same as the total number of function evaluations.  

   Step2.  Initialize the harmony memory (HM). The 

harmony memory is a memory location where all the 

solution vectors (sets of decision variables) are stored. 

The initial harmony memory is randomly generated in 

the region    ,  1,2, ,iL iUx x i N . This is done based 

on the following equation:  

 

      1,2, ,j

i iL iU iLx x rand x x j HMS             (7) 

 

Where  rand  is a random from a uniform 

distribution on [0,1] .  

 Step3. Improvise a new harmony from the harmony 

memory. Generating a new harmony, xi
new

, is called 

improvisation where it is based on 3 rules: memory 

consideration, pitch adjustment and random selection.  

First of all, a uniform random number r is generated in 

the range [0,1] . If r is less than HMCR, the decision 

variable 
new
ix  is generated by the memory 

consideration; otherwise, 
new
ix  is obtained by a random 

selection. Then, each decision variable 
new
ix  will 

undergo a pitch adjustment with a probability of PAR if 

it is produced by the memory consideration. The pitch 

adjustment rule is given as follows: 

  

 
new new
i ix x r bw                                                  (8) 
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Step4. Update harmony memory. After generating a 

new harmony vector, newx , the harmony memory will 

be updated. If the fitness of the improvised harmony 

vector  1 2, , ,new new new new
Nx x x x  is better than that of 

the worst harmony, the worst harmony in the HM will 

be replaced with newx  and become a new member of 

the HM. 

Step5. Repeat steps 3-4 until the stopping criterion 

(maximum number of improvisations K) is met. 

 

 

Fig. 1. Basic flowchart diagram for HS 

algorithm 

 

4. THE PROPOSED MODEL REDUCTION 

METHOD  

Consider a stable single-input single-output (SISO) 

system described by the transfer function of order n as 

follows:  

 
1 2

1 2

1 2
1 2

n n
n

n n n
n

a s a s a
G s

s b s b s b

 

 

  


   
                         (9) 

Where ia  and ib  are constants.  

The objective is to obtain a reduced model of order r so 

that r is smaller than n such that the principal and 

important specification of the full order system are 

retained in the reduced order model. This reduced order 

system is presented by  
 

 
1 2

1 2

1 2
1 2

r r
r

r r r
r

c s c s c
G s rs d s d s d

 

 

  


   
                     

(10) 
 

Where ic  and id  are unknown constants.  

To obtain the reduced model by the proposed method, 

firstly, the full order system is expanded. Then the l 

first coefficients of Legendre expansion of original 

system are obtained by equation (6). By considering the 

fixed structure for reduced order model, the harmony 

search algorithm is applied for determining the 

unknown coefficients of reduced order model. If ig  

and ig  1,2,i   are defined as Legendre expansion 

of full order and reduced order model, respectively, the 

reduced order model's parameters are determined by 

minimizing the following fitness function:  
 

0

l

i i
i

J g g


                                                           (11) 

 

Since, the proposed approach must guarantee the 

stability of the reduced system, the Routh criterion is 

applied for specifying the stability conditions as 

follows: 

The denominator of reduced order model which is 

presented by (10) can be shown as below [41]:  

 

 

 

 

 

 

1 2
1 2 3

3
2 3 4

2 4 5

4
3 5 6
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1 3 2

r r r
r

r
r

r

r
r

r r r

k k r r

s h s h h h s

h h h h s

h h h h

h h h h s

h h h h h h

h h h h

 







  

     

    

    
 

       
 
     

 

       (12) 

 

Which is constructed by taking the coefficients of the 

first two rows of the Routh array with the elements of 

its first column given by  

 

1 2 1 3 2 4 1 3 5 1 3 21, , , , , , k k r rh h h h h h h h h h h h h          (13) 

 

Where, k is equal to 1 for even r and k is equal to 0 for 

odd r.  

 Comparing the entries of the first row with 2 41, , ,d d  

and those of the second row with 1 3 5, , ,d d d the 

relations defined in (14) is obtained:  
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 

 

 

1 1

2 2 3

3 1 3 4

1 3 2

r

r

r k k r r

d h

d h h h

d h h h h

d h h h h  




   


   


 

                                       (14) 

 

Substituting the above relations in reduced order 

model's denominator, the equation (12) is achieved.  

Therefore, the necessary and sufficient condition for all 

the poles of the reduced system to be strictly in the left-

half plane is  

1

2

0

0

0r

h

h

h







 

                                                                   (15) 

and subsequently  

1

2

0

0

0r

d

d

d







 

                                                                   (16) 

Therefore, to have a stable reduced system, the reduced 

order model's parameters are determined by minimizing 

(11) subject to (16). In other words, the reduced order 

model is obtained by minimizing the following fitness 

function:  

 

0

     1, 2, ,

subject to 0    1,2, ,

l

i i
i

j

J g g i l

d j r



  

 

                               (17) 

 

Thus, the reduced order model is achieved such that the 

l first coefficients of Legendre expansion of the full 

order system are equal (or very close) to the l first 

coefficients of Legendre expansion of reduced order 

model. The reduced order model that is achieved by 

this method, tries retaining the important characteristic 

of the original system.  

The proposed method can be summarized in the 

following steps:  

Step 1: The Legendre expansion of the full order 

system in (9) is obtained.  

Step 2: A desire fixed structure is considered for 

reduced order model as defined in (10) where ic  and 

id  are unknown parameters of reduced order model 

that are obtained in the next step.  

Step 3: To obtain the unknown parameters, HS is 

applied. The goal of the optimization is to find the best 

parameters for ( )rG s . Therefore, each harmony is a d

-dimensional vector in which d is i ic d . Each 

harmony is a solution to rG  and for each solution 

(harmony), the Legendre expansion are obtained. Each 

harmony in the population is evaluated using the 

objective function defined by (17) searching for the 

harmony associated with 
bestJ   (the best J) until the 

termination criteria are met. At this stage the best 

parameters are given as parameters of reduced order 

model.  

 

5. SIMULATION AND RESULTS 

To assess the efficiency of the proposed approach, it 

has been applied on three test systems. To obtain a 

reduced-order model, a step-by-step procedure is given 

for the first test system.  

Test system 1: The first system to be reduced is a 

system given in [31] by Mukherjee, where a procedure 

is presented to obtain the reduced system. The system 

is as follows:  

 
7 6 5 4

3 2

8 7 6 5 4

3 2

18 514 5982 3638

122664 222088 185760 40320
( )

36 546 4536 22449

67284 118124 109584 40320

s s s s

s s s
G s

s s s s s

s s s

   

  


    

  

          (18) 

 

 The reduced-order model can be achieved by the 

following steps, using Legendre expansion and HS: 

Step 1: Based on section 2, by considering tf =20, the 

Legendre expansion of the full order system in (18) is 

obtained as:  

     

 

 

 

3

2

3 2

4 3 2
3

1.097 10 1 559.214 1
10

3 3
88.760 1

200 10

3 19 4
337.428

400 40 30 3

7 7 143 19 25
1.920 10

16000 400 600 15 12

Org

s
G

s s

s s s

s s s s

 
        

 

 
     

 

 
        

 

 
        

 

       (19) 

 

Step 2: The full order system in (18) is going to be 

reduced to a third-order system with the following 

transfer function: 
 

  1 2

2
1 2

r

c s c
G s

s d s d




 
                                              (20) 

Where ic  and id  are the unknown parameters of 

reduced order model.  

Step 3: HS is applied to obtain the unknown 

parameters. Since, the goal of the optimization is to 

find the best parameters for ( )rG s , therefore, each 
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harmony is a d -dimensional vector in which 6d  . 

The HMS is selected to be 6, HMCR and evaluation 

number is set to be 0.9 and 1000, respectively.  Each 

harmony is a solution to rG  and for each solution 

(harmony), the Legendre expansion are obtained. Each 

harmony in the population is evaluated using the 

objective function defined by (17) searching for the 

best J until the termination criteria are met. At this 

stage the best parameters are given for reduced order 

model where, the following reduced order model is 

obtained:  

2

17.8387 5.4503

7.4171 5.4289
Legendre

s
G

s s




 
                               (21) 

 

The Legendre expansion of obtained reduced order 

model is as:  

     

 

 

 

3

2

3 2

4 3 2
3

1.096 10 1 556.535 1
10

3 3
84.846 1 +

200 10

3 19 4
334.383

400 40 30 3

7 7 143 19 25
1.915 10

16000 400 600 15 12

Legendre

s
G

s s

s s s

s s s s

 
       

 

 
   

 

 
       

 

 
       

 



      (22) 

Comparing (19) and (22) shows that a good 

approximant is achieved for  G s .  

The step response of the full order system and that of 

the system with second-order reduced models are 

shown in Fig. 2. This figure shows that, the obtained 

reduced order model is an adequate low-order model 

that retains the characteristics of full order model.  

Also, to show the efficiency of the proposed method, 

the step and frequency responses of the obtained 

reduced model are compared with those available in the 

literature. Figs. 3-4 , show the comparison of the results 

obtained to the one proposed by Mukherjee [31], the 

one proposed by Mittal [31], Optimal Hankel norm 

approximation (HSV) [42] and Balanced Truncation 

(BT)[42]

 

 
Fig. 2. Step response of full order and obtained reduced order model for test system 1 
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Fig. 3. Step response of full order and reduced order model by the proposed method and other methods for test system 1 

 

 

 
Fig. 4. The frequency response of full order and reduced order model by the proposed method and other methods for test 

system 1 
 

These figures show that the achieved results from the 

proposed method are very similar to original system 

comparing to other methods.  

The steady-state gains of full and reduced systems 

should be equal since it is a very important requirement 

for model reduction. Also, the frequency responses of 

full and reduced systems are very similar, which will 

make the stability and performance characteristics of 

both systems to be the same. 

Furthermore, some specifications such as steady state 

value, rise time, settling time and maximum overshoot 

are compared in Table 1. Also, H  norm of the error 

between the step responses of full order and reduced 
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order models ( re y y  ) is given in Table 1. It is 

clearly seen that the specifications of reduced order 

model that is achieved by the proposed method are 

close to the specifications of original system.  
 

Table1. Comparison of methods for test system1 
Method Steady state 

value 

Overshoot 

(%) 

Rise time Settling time ISE Infinity 

norm of 

error 

Infinity 

norm of 

model 

Original 

system 

1 120 0.0569 4.82 - - 2.4747 

Legendre 1 119 0.0572 5.35 0.0028 0.0397 2.4266 

BT 0.94 134 0.0529 5.97 0.0493 0.0596 2.4301 

HSV 0.944 132 0.0556 5.48 0.0481 0.0559 2.4321 

Proposed by 

Mukherjee 

1 129 0.0856 3.35 0.0569 0.3361 2.7514 

Proposed by 

Mittal 

0.995 107 0.141 5.47 0.2692 0.7696 2.4118 

  

Also, the plot of re y y   is illustrated in Fig. 5 for 

reduced systems. This figure illustrates that the 

obtained error by the proposed method in this paper is 

less than other methods.  

 
Fig. 5. The plot of re y y  for test system 1 

 

Test system 2: In [41], a procedure is presented to 

obtain a reduced order system by Routh-Pade 

approximation using Luus-Jaakola algorithm. To 

compare the proposed method with Luus-Jaakola 

algorithm, the system given in [41] is adopted which is 

a third-order system:  
2

3 2

8 6 2

4 5 2

s s
G

s s s

 


  
                                               (23) 

Based on the explanations given for test system 1, the 

obtained reduced system by the proposed method is as 

follows:  

2

7.8922 4.7858

3.6104 4.7874
Legendre

s
G

s s




 
                            (24) 

The step response of the original system and the 

obtained reduced model are shown in Fig. 6. In this 

figure, the responses of the system with second-order 

primary reduced models obtained by other methods are 

also included for comparison. Also, the plot of 

re y y  is given in Fig. 7.   
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Fig. 6. Step response of full order and reduced order model by the proposed method and other methods for 

test system 2  

 

 
Fig. 7. The plot of re y y   for test system 2 

Furthermore, maximum overshoot, rise time, settling 

time, steady state value, ISE and H  norm of 

re y y   are shown in Table 2. Once again, the 

results obtained confirm that a satisfactory 

approximation has been achieved. It is clearly seen that 

the specifications of reduced order model that is 

achieved by the proposed method are close to the 

specifications of the original system, and better than 

other methods.  
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Table1. Comparison of methods for test system1 
Method Steady state 

value 

Overshoot (%) Rise time Settling time ISE Infinity 

norm of 

error 

Infinity 

norm of 

model 

Original 

system 

1 86.5 0.129 6.74 - - 2.3001 

Legendre 1 88.2 0.128 2.44 0.0338 0.1240 2.2713 

BT 0.836 123 0.103 3.15 0.3802 0.1635 2.2790 

HSV 0.836 115 0.118 3.44 0.4043 0.1635 2.2743 

Proposed by 

Luss 

1 66.1 0.13 1.71 0.1404 0.3425 1.9772 

 

Test system 3: the third test system is a multivariable 

system given in [32]:  

 

 

  

 

  

 

  

 

  

 

   

   
11 12

21 22

2 5 4

1 10 2 5

10 6

1 20 2 3

1
           

s s

s s s s
G s

s s

s s s s

a s a s

a s a sD s

  
 

    
     
 

     

 
  

 

            (25) 

Where  

 

 

 

 

 

 

 

6 5 4 3 2

5 4 3 2
11

5 4 3 2
12

5 4 3 2
21

5 4 3 2
22

41 571 3491 10060 13100 6000

2 70 762 3610 7700 6000

38 459 2182 4160 2400

30 331 1650 3700 3000

42 601 3660 9100 6000

D s

s s s s s s

a s s s s s s

a s s s s s s

a s s s s s s

a s s s s s s



     

     

     

     

     

      (26) 

Based on the explanations given for test system 1, the 

obtained reduced system by the proposed method is as 

follows:  

 
 

   

   
11 12

21 22

1
Legendre

b s b s
G s

b s b sD s

 
     

 
                 (27) 

Where  

 

 

 

 

 

2

11

12

21

22

2.602 1.243

1.480 1.243

1.774 0.291

0.668 0.622

1.955 1.241

D s s s

b s s

b s s

b s s

b s s

  

 

 

 

 

                                      (28) 

The comparison of the proposed method with the one 

proposed by Parmar in [32] is shown in Figs. 8-9, 

which illustrate a better performance of the proposed 

method.  

 

Fig. 8. Step response of full order and reduced order model by the proposed method and the one proposed by 

Parmer for test system 3 (input1- output1) 
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Fig. 9. Step response of full order and reduced order model by the proposed method and the one proposed by 

Parmer for test system 3 (input2- output2)

6. CONCLUSION 

In this paper, an approach based on orthogonal 

polynomials using Legendre expansion and harmony 

search is investigated for order reduction. Routh array 

is applied to determine the stability conditions. To 

present the accuracy and efficiency of the method, 

three systems are reduced. The proposed method was 

compared with some order reduction techniques where 

the results obtained showed that the proposed approach 

has high accuracy which results in an adequate low-

order model that retains the characteristics of full order 

model.  
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