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ABSTRACT 

With the increasing demand for image-based applications, the efficient and reliable evaluation of image quality has 

increased in importance. Measuring the image quality is of fundamental importance for numerous image processing 

applications, where the goal of image quality assessment (IQA) methods is to automatically evaluate the quality of 

images in agreement with human quality judgments. Numerous IQA methods have been proposed over the past years 

to fulfill this goal. In this paper, a survey of the quality assessment methods for conventional image signals, as well as 

the newly emerged ones, which includes the high dynamic range (HDR) images, is presented. A thorough explanation 

of the subjective and objective IQA, and their classification is provided. Six widely used subjective quality datasets, 

and performance measures are overviewed. Emphasis is given to the full-reference image quality assessment (FR-

IQA) methods, and 9 often-used quality measures (including mean squared error (MSE), structural similarity index 

(SSIM), multi-scale structural similarity index (MS-SSIM), visual information fidelity (VIF), most apparent distortion 

(MAD), feature similarity measure (FSIM), feature similarity measure for color images (FSIMC), dynamic range 

independent measure (DRIM), and tone-mapped images quality index (TMQI)) are thoroughly described. Moreover, 

the performance and computation time of these metrics on four subjective quality datasets are evaluated. 

 

KEYWORDS: Image Quality Assessment (IQA), High Dynamic Range (HDR) Images, Full-Reference (FR), 

Reduced-Reference (RR), No-Reference (NR). 

  

1.  INTRODUCTION 

Digital images are rapidly finding their way into our 

daily lives due to the explosion of information in the 

form of visual signals. Digital images often pass 

through several processing stages before they reach to 

their end users. In most cases, this end user is a human 

observer. Through different processing stages, e.g., 

acquisition, compression, and transmission, images will 

be subjected to different types of distortions which 

degrade the quality of them. For example, in image 

compression, lossy compression schemes would 

introduce blurring and ringing effects in the final result, 

which leads to quality degradation. Moreover, in the 

transmission stage, due to limited bandwidth of the 

channels, some data might be dropped or skipped, 

which results in quality degradation of the received 

image. 

In order to maintain, control, and enhance the quality of 

images, it is essential for image communication, 

management, acquisition, and processing systems to 

assess the quality of images at each stage. IQA plays an 

important role in visual signal communication and 

processing. The application scope of IQA includes, but 

is not confined to, image acquisition [1], segmentation 

[2], printing and display systems [3,4], image fusion 

[5], and biomedical imaging [6,7]. IQA methods can be 

categorized into subjective and objective methods. 

Since human observers are the ultimate users in most of 

the multimedia applications, the most accurate and also 

reliable way of assessing the quality of images is 

through subjective evaluation. However, subjective 

evaluations are expensive and time consuming, which 

makes them impractical in real-world applications. 

Moreover, subjective experiments are further 

complicated by many factors including viewing 

distance, display device, lighting condition, subjects’ 

vision ability, and subjects’ mood. Therefore, it is 

necessary to design mathematical models that are able 

to predict the quality evaluation of an average human 

observer. 

The goal of objective IQA is to design mathematical 

models that are able to predict the quality of an image 
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accurately and automatically. An ideal objective IQA 

method should be able to mimic the quality predictions 

of an average human observer. Based on the 

availability of a reference image which is considered to 

be distortion-free and have perfect quality, the 

objective quality assessment methods can be classified 

into three categories. The first category is full-reference 

image quality assessment (FR-IQA) where the 

undistorted, perfect quality reference image is fully 

available. The second category is reduced-reference 

image quality assessment (RR-IQA) where the 

reference image is not fully available. Instead, some 

features of the reference image are extracted and 

employed as side information in order to evaluate the 

quality of the test image. The third category is no-

reference image quality assessment (NR-IQA) where 

we don’t have access to the reference image. Since in 

many real-world applications the reference image is not 

accessible, NR-IQA methods are very practical in 

practice. 

This paper aims at an overview of the subjective and 

objective IQA. Classification of both subjective and 

objective IQA is presented. Six widely used subjective 

quality datasets and performance measures are 

reviewed. Emphasis is given to FR-IQA measures and 

9 often-used quality measures (including MSE, SSIM 

[8], MS-SSIM [9], VIF [10], MAD [11], FSIM [12], 

FSIMC [12], DRIM [13], and TMQI [14]) are 

thoroughly described. Moreover, the computation time 

and performance of these methods are evaluated on 

four subjective datasets. This paper is organized as 

follows: 

In Section 2, subjective IQA is reviewed, international 

standards on designing subjective experiments are 

presented, and four common standardized subjective 

IQA measures are overviewed. In Section 3, objective 

IQA and its three main categories are reviewed. 

Moreover, a thorough description of six FR-IQA 

methods for gray-scale images (including MSE, SSIM 

[8], MS-SSIM [9], VIF [10], MAD [11], and FSIM 

[12]) is provided. In Section 4, a brief introduction to 

color images quality assessment is presented, and one 

FR-IQA method for color images (namely FSIMC [12]) 

is thoroughly described. In Section 5, a brief 

introduction to HDR images quality assessment is 

provided. Moreover, two FR-IQA methods for images 

with different dynamic ranges (including DRIM [13] 

and TMQI [14]) are comprehensively described. In 

Section 6, six widely used subjective quality datasets 

and performance measures are overviewed. In Section 

7, performance and computation time of FR-IQA 

measures described in previous sections are evaluated 

on four subjective quality datasets (including LIVE 

dataset [15], CSIQ dataset [16], TID2008 dataset [17], 

and the dataset presented in [18]). In Section 8, a 

concise introduction to 3-D IQA is provided, some of 

the objective 3-D IQA methods are briefly reviewed, 

and some 3-D image datasets are presented. Finally, 

Section 9 concludes the paper. 

 

2.  SUBJECTIVE IMAGE QUALITY 

ASSESSMENT 

The most reliable method for assessing the quality of 

images is through subjective testing, since human 

observers are the ultimate users in most of the 

multimedia applications. In subjective testing a group 

of people are asked to give their opinion about the 

quality of each image. In order to perform a subjective 

image quality testing, several international standards 

are proposed [19-25] which provide reliable results. 

Here, we briefly describe some of these international 

standards: 

ITU-R BT.500-11 [19] proposes different methods for 

subjective quality assessment of television pictures. 

This is a widely used standard, which contains 

information about viewing condition, instructions on 

how to perform subjective experiments, test materials, 

and presentation of subjective results. 

ITU-T P.910 [21] proposes the standard method for 

digital video quality assessment with transmission rate 

below 1.5 Mbits/sec. 

ITU-R BT.814-1 [22] is proposed in order to set the 

brightness and contrast of the display devices. 

ITU-R BT.1129-2 [23] is proposed for assessing the 

quality of the standard definition (SD) video sequences. 

In the following subsections, we will briefly describe 

some of the standardized subjective IQA methods: 

 

2.1.  Single stimulus categorical rating 

In this method, test images are displayed on a screen 

for a fixed amount of time, after that, they will 

disappear from the screen and observers will be asked 

to rate the quality of them on an abstract scale 

containing one of the five categories: excellent, good, 

fair, poor, or bad. All of the test images are displayed 

randomly. In order to avoid quantization artifacts, some 

methods use continuous rather than categorical scales 

[19]. 

 

2.2.  Double stimulus categorical rating 

This method is similar to single stimulus method. 

However, in this method both the test and reference 

images are being displayed for a fixed amount of time. 

After that, images will disappear from the screen and 

observers will be asked to rate the quality of the test 

image according to the abstract scale described earlier. 

 

2.3.  Ordering by force-choice pair-wise comparison 

In this type of subjective assessment, two images of the 

same scene are being displayed for observers. 

Afterward, they are asked to choose the image with 

higher quality. Observers are always required to choose 
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one image even if both images possess no difference. 

There is no time limit for observers to make the 

decision. The drawback of this approach is that it 

requires more trials to compare each pair of conditions 

[26]. In [27,28], two methods for reducing the number 

of trials are proposed. 

 

2.4.  Pairwise similarity judgments 

As we mentioned before, in force-choice comparison, 

observers are required to choose one image even if they 

see no difference between the pair of images. However, 

in pair-wise similarity judgment observers are asked 

not only to choose the image with higher quality, but 

also to indicate the level of difference between them on 

a continuous scale. 

One might be tempted to use the raw rating results such 

as: excellent, good, fair, and etc. for quality scores. 

However, these rating results are unreliable. One 

reason for this is that observers are likely to assign 

different quality scales to each scene and even 

distortion types [29]. Here, we briefly introduce two 

scoring methods used in the subjective IQA. 

 

2.5.  Difference mean opinion score (DMOS) 

Instead of directly applying rating results, modern IQA 

metrics use differences in quality between images. 

DMOS is defined as the difference between the raw 

quality score of the reference and test images. DMOS is 

calculated using the following equation: 

 , , ,
d r j r

i j i ref i j
                                               

(1) 

where 
,

r
i j

 is the raw score for the i th  subject and 

the j th  image. Also,  ,
r j
i ref

 denotes the raw 

score given by the i th  subject to the reference 

image corresponding to the j th  test image. 

 

2.6.  Z-score 

In order to easily compare each observer's opinion 

about the quality of images, a linear transform that 

makes the mean and variance equal for all observers is 

employed. The outcome of such transform is called Z-

score and it can be computed using the following 

equation: 

,
,

d d
i j i

z
i j

i



                                                        (2) 

The mean DMOS, d
i

, and the standard deviation, 

i
 , are computed across all images that are rated by 

the i th  subject. 

Subjective quality assessment methods provide 

accurate and reliable measurements of the quality of 

visual signals. However, these methods suffer from 

different drawbacks that limits their applications: 

 They are time consuming and expensive. This 

is due to the fact that subjective results are 

obtained through experiments with many 

observers. 

 They cannot be incorporated into real-time 

applications such as image compression, and 

transmission systems. 

 Their results depend heavily on the subjects’ 

physical conditions and emotional state. 

Moreover, other factors such as display device 

and lighting condition affect the results of 

such experiments. 

Therefore, it is necessary to design mathematical 

models that are able to predict the perceptual quality of 

visual signals in a consistent manner with subjective 

evaluations. 

 

3.  OBJECTIVE IMAGE QUALITY 

ASSESSMENT 

The goal of objective IQA is to design mathematical 

models that are able to predict the quality of an image 

accurately and also automatically. An ideal objective 

IQA method should be able to mimic the quality 

predictions of an average human observer. Objective 

IQA methods have a wide variety of applications [30]: 

 They can be used to monitor image quality in 

quality control systems. For example, image 

acquisition systems can employ an objective 

IQA metric to monitor and automatically 

adjust themselves in order to obtain the best 

quality image data. 

 They can be used to benchmark image 

processing algorithms. For example, if a 

number of image enhancement algorithms are 

available, an objective IQA metric can be 

employed to choose the algorithm that 

provides the higher quality images. 

 They can be used to optimize image 

processing and transmission systems. For 

example, in a visual communication network, 

an objective IQA metric can be employed to 

optimize pre-filtering and bit assignment 

algorithms at the encoder and post-filtering 

and reconstruction algorithms at the decoder. 

Based on the availability of a distortion-free, perfect 

quality reference image, objective IQA methods can be 

classified into three categories. The first category is 

full-reference image quality assessment (FR-IQA) 

where the reference image is fully available. The 

second category is reduced-reference image quality 

assessment (RR-IQA) where only partial information 

about the reference image is available. And the third 

category is no-reference image quality assessment 
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(NRIQA) where neither the reference image nor its 

features are available for quality evaluation. 

Objective IQA methods can also be categorized based 

on their application scope [30]. General purpose 

methods are the ones that do not assume a specific 

distortion type. Therefore, these methods are useful in a 

wide range of applications. On the other hand, 

application specific methods are the ones that are 

designed for specific distortion types. An example of 

these methods are the algorithms designed for image 

compression applications. Many quality metrics in 

image compression are designed for block-DCT or 

wavelet-based image compression. 

In the following subsections, the characteristics of the 

three main categories of the objective IQA are 

described. 

 

3.1.  No-reference image quality assessment (NR-

IQA) 

In many real-world applications, such as image 

communication systems, the reference image is not 

available and the quality evaluation is solely based on 

the test image. NR-IQA is a more difficult task in 

comparison to RR-IQA and FRIQA methods. However, 

human beings usually can efficiently assess the quality 

of a test image without using any reference image. This 

is probably due to the fact that our brain holds a lot of 

information about how an image should or should not 

look like in real world [30]. Some NR-IQA methods 

can be found in [31-36]. 

 

3.2.  Reduced-reference image quality assessment 

(RR-IQA) 

In RR-IQA, the reference image is not fully accessible. 

Instead, a number of features are extracted from the 

reference image. These features are employed by the 

quality assessment method as the side information for 

evaluating the quality of the test image. RR-IQA 

methods can be employed in a number of applications. 

For instance, they can be used to track the level of 

visual quality degradation of image and video data 

transmitted via real-time visual communication 

networks. 

Fig.1 shows the framework of an RR-IQA system. At 

the transmitter, a feature extraction process extracts 

certain features from the reference image and transmits 

them through an auxiliary channel. Feature extraction 

process is also applied to the test image at the receiver. 

The feature extraction process at the receiver can also 

be adopted to the side information at the receiver, 

which is shown as a dashed arrow in the figure, or it 

can be the same as in the transmitter. In order to obtain 

a single score for the overall quality of the test image, 

the features extracted from both, the reference and test 

images, are employed. An important parameter in the 

design of an RR-IQA system is the data rate used to 

encode the side information. If a high data rate is 

available, it is possible to include more information 

about the reference image, which allows more accurate 

quality predictions. If the data rate is high enough that 

all the information about the reference image can be 

transmitted, then the RR-IQA metric can be considered 

as a FR-IQA metric. On the other hand, if a low data 

rate is used, then only a small amount of information 

about the reference image can be transmitted. This 

results in less accurate quality predictions. In the case 

of zero data rate, the RR-IQA metric is considered as 

an NR-IQA metric. In real-world RR-IQA systems, the 

maximally allowed data rate is usually low [30]. 

Limited values for the data rate limits the feature 

selection process in RR-IQA systems. Therefore, 

selected features should satisfy following criteria: 

 

Feature 

extraction

Auxiliary 

channel

Distortion 

channel

Feature 

extraction

Test

image
RR-IQA

metric

RR features

Reference

Image Quality

score

Transmitter Receiver

 
Fig. 1. The framework of a RR-IQA system 

 

 They should be able to provide an efficient 

summary of the reference image. 

 They should be sensitive to a variety of 

distortion types. 

 They should possess good perceptual 

relevance. 

 

3.2.1. Methods based on the models of the image 

source 

The methods of this type are often statistical models 

that capture a priori of low level statistical features of 

natural images. These methods often have a low data 

rate. This is due to the fact that the parameters of these 

methods are able to summarize the image information 

in an efficient manner. Some of the methods in this 

category can be found in [37-40]. 

 

3.2.2. Methods based on capturing image distortions 

The methods in this category are most useful when 

sufficient information about the image distortions is 

available. The application scope of these methods is 

limited, since they are unable to capture the distortions 

that they are not designed for. Some of the methods in 

this category can be found in [41-44]. 

 

3.2.3. Methods based on the models of human visual 

system 
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In designing the methods in this category, physiological 

and/or psychophysical studies may be employed. These 

methods have shown good performance for JPEG and 

JPEG2000 compression schemes. Some of the methods 

in this category can be found in [45,46]. 

 

3.3.  Full-reference image quality assessment (FR-

IQA) 

In FR-IQA metrics, the perfect quality reference image 

is fully available for quality prediction process. The 

application scope of these metrics includes image 

compression [47], watermarking [48,49], and so on. In 

the following subsections, we will comprehensively 

describe six FR-IQA methods. The selected methods 

are widely cited in the literature, and have been 

reported to have good performance by researchers. 

Moreover, the authors of the selected metrics have 

released the source codes of their respective metrics. 

Therefore, results of the selected metrics are easy to 

reproduce. The six FR-IQA metrics described in the 

following subsections include mean squared error 

(MSE), structural similarity index (SSIM) [8], multi 

scale structural similarity index (MS-SSIM) [9], visual 

information fidelity (VIF) [10], most apparent 

distortion (MAD) [11], and feature similarity index 

(FSIM) [12]. It is important to note that all of these six 

quality evaluation metrics are designed for gray-scale 

images. 

In all of the following subsections, refI  and tstI  

denote the reference and test images respectively, and 

subscript ref denotes reference and tst test. 

Moreover, W and H represent the width and height 

of images respectively. 

 

3.3.1. Mean squared error (MSE) 
MSE denotes the power of the distortion, i.e., the 

difference between the reference and test images. MSE 

value can be calculated using the following equation:  

 

    
2

1 1

1
, ,

H W

ref tst

j i

MSE i j i j
WH  

  I I
                  (3) 

 

MSE is often converted to peak-signal-to-noise ratio 

(PSNR). PSNR is the ratio of maximum possible power 

of a signal and power of distortion, and it is calculated 

by: 
2

10log
D

PSNR
MSE

 
  

 

                                              (4) 

where D  denotes the dynamic range of pixel 

intensities, e.g., for an 8 bits/pixel image we have 

255D  . 

MSE possesses some characteristics that make it a 

widely used performance measure in the field of signal 

processing. Following are some of these characteristics 

[50]: 

 It is a parameter free and computationally 

inexpensive method. 

 It has a physically clear meaning, i.e., it is a 

natural way of defining the energy of an error 

signal. 

 Since MSE satisfies properties like convexity, 

symmetry, and differentiability, it is 

considered as an excellent measure in 

optimization applications. 

 It is considered as a convention, i.e., it is 

extensively used for optimization and 

assessment in a wide range of signal 

processing applications. 

Despite the above interesting features of MSE, when it 

comes to predicting human perception of image quality, 

MSE shows poor performance. This is due to the fact 

that some of the important physiological and 

psychophysical characteristics of the human visual 

system (HVS) are not accounted for by this measure. 

An instructive example is shown in Fig. 2, where the 

reference image (a) is altered by two types of 

distortions: white Gaussian noise (b), and quantization 

of the LH subbands of a 5-level discrete wavelet 

transform (DWT) of the image with equal distortion 

contrast at each scale (c). 

  

     
(a) (b) MSE = 181.770  (c) MSE = 180.922 

Fig. 2. Harbor image altered with two types of 

distortions: (a) reference image; (b) white Gaussian 

noise; (c) quantization of the LH subbands of a 5-level 

DWT of the image with equal distortion contrast at 

each scale. All images are extracted from [51] 

 

It is important to note that images (b) and (c) have 

nearly similar MSE values. However, they have 

different visual qualities. There exist some implicit 

assumptions when using the MSE measure which 

makes it a poor measure of image quality. These 

assumptions are listed as follows [50]: 

 If the reference and test images are randomly 

re-ordered in a similar manner, the MSE 

between them will remain unchanged. This 

demonstrates that MSE is independent of 

temporal or spatial relationship between 

samples of the reference image. 

 For a specific distortion signal, MSE remains 

unchanged despite of which reference signal it 

is added to. 

 MSE is independent of the error signal 

sample’s sign. 
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 Image signals are considered equally 

important when MSE is computed. 

 

3.3.2. Structural similarity index (SSIM) 
The SSIM algorithm [8] assumes that HVS is highly 

adapted for extracting structural information from a 

scene. Therefore, this algorithm attempts to model the 

structural information of an image. The SSIM 

algorithm is based on the fact that pixels of a natural 

image demonstrate strong dependencies and these 

dependencies carry useful information about the 

structure of a scene. Therefore, a method that is capable 

of measuring structural information change can provide 

a good approximation of perceived image distortion. 

The SSIM algorithm defines image degradation as 

perceived change in structural information. In [8], it is 

stated that the structure of the objects in a scene is 

independent of local luminance and contrast. Therefore, 

to extract the structural information, we should separate 

the effect of illumination. In this algorithm, structural 

information in an image is defined as those traits that 

represent the structure of objects in that image, 

independent of the local luminance and contrast. 

The SSIM algorithm performs similarity measurement 

in three steps: luminance comparison, contrast 

comparison, and structure comparison: 

First, the luminance of each image signal is compared. 

The estimated mean intensity is computed as follows: 
 

 
1 1

1
,

H W

ref ref

j i

i j
WH


 

 I                                          (5) 

 

The luminance comparison function, ( , )ref tstl I I , is a 

function of ref  and tst . Second, the contrast of 

each image signal is compared. For estimating the 

contrast, standard deviation is being used. An unbiased 

estimate of standard deviation in discrete form is as 

follows: 

  

1

2
2

1 1

1
,

1

H W

ref ref ref

j i

i j
WH

 
 

 
  

 
 I               (6) 

 

The contrast comparison function,  ,
ref tst

c I I , is a 

function of ref  and tst . Third, the structure of each 

image signal is compared. Structure comparison 

function, ( , )ref tsts I I , is a function of 
ref ref

ref





I
 

and tst tst

tst





I
. Finally, three comparison functions are 

combined and an overall similarity measure is 

produced. The overall similarity measure, 

( , )ref tstS I I , is a function of ( , )ref tstl I I , 

 ,ref tstc I I , and ( , )ref tsts I I . The function 

 ,ref tstS I I  satisfies following conditions: 

 Symmetry: ( , ) ( , )ref tst tst refS SI I I I . 

 Boundedness: 1 ( , ) 1ref tstS  I I . 

 Unique maximum: ( , ) 1ref tstS I I , if and 

only if ref tstI I . 

Definitions of  ,ref tstl I I ,  ,ref tstc I I , and 

 ,ref tsts I I , are as follows: 

For luminance comparison function we have:  
 

1

2 2

1

2
( , ) ref tst

ref tst

ref tst

T
l

T

 

 




 
I I                                    (7) 

 

Where 1T  is a positive stabilizing constant chosen to 

prevent the denominator from becoming too small. We 

have: 
 

 
2

1 1T t D                                                                   (8) 

 

Where D  is the dynamic range of pixel values and 

1 1t   is a small constant. For contrast comparison 

function we have: 
 

2

2 2

2

2
( , ) ref tst

ref tst

ref tst

T
c

T

 

 




 
I I                                    (9) 

 

Where  
2

2 2T t D  is a positive stabilizing constant. 

And 2 1t  . For structure comparison function we 

have: 

 , 3

3

( , )
ref tst

ref tst

ref tst

T
s

T



 





I I                                      (10) 

Where 3T  is a positive stabilizing constant. In (10), 

 , ref tst  is the correlation coefficient between the 

reference and test images. In the discrete form, 

 , ref tst  can be estimated via following equation: 

 

      , 

1 1

1
, ,

1

H W

ref tst ref ref tst tst

j i

i j i j
WH

  
 

  

 I I       (11) 

 

Finally, structural similarity index is defined as: 

 

     ( , ) ( , ) ( , ) ( , )ref tst ref tst ref tst ref tstSSIM l c s
  

I I I I I I I I     (12) 
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Where ,  , and   are positive constants chosen to 

indicate the relative importance of each component. 

The universal quality index (UQI) [52,53] is a special 

case of the SSIM index when: 1 2 3 0T T T    and 

1     . In [8], it is mentioned that it is useful 

to apply SSIM index locally instead of globally. In 

order to achieve this, authors used an 1111  circular 

symmetric Gaussian weighting function 

 ,
 1,  2,  ...,   and 1,  2,  ...,  

i j
w i W j H  w  

with standard deviation of 5.1  samples, normalized to 

unit sum ,

1 1

1
H W

i j

j i

w
 

 . Using this function, the 

estimates of local statistics ref , ref , and  , ref tst

are calculated as follows: 
 

 ,

1 1

,
H W

ref i j ref

j i

w i j
 

 I                                      (13) 

  

1

2
2

,

1 1

,
H W

ref i j ref ref

j i

w i j 
 

 
  
 
 I                  (14) 

 

      , ,

1 1

, ,
H W

ref tst i j ref ref tst tst

j i

w i j i j  
 

   I I      (15) 

 

In order to have a single overall quality measure for the 

entire image, authors of [8] use a mean SSIM (MSSIM) 

index to evaluate the overall quality: 
 

 
1

1
, ( , )

wM
i i

ref tst ref tst

iw

MSSIM SSIM
M 

 I I I I         (16) 

 

where wM  is the total number of local windows, and 

i

refI  and 
i

tstI  are image contents at the i th  local 

window. 
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Fig. 3. The block diagram of the SSIM algorithm 
 

The block diagram of the SSIM algorithm is presented 

in Fig. 3. Some applications of the SSIM algorithm are 

image fusion [5], image watermarking [54], remote 

sensing [55], and visual surveillance [56]. 
 

3.3.2.1. Parameter specification in the SSIM 

algorithm 

There are several parameters in the SSIM algorithm 

that need to be specified. First, for computing (8) the 

values of 1t  and D  are set to be 0.01 and 255 

respectively. Second, for computing (9) the value of 

2t is set to be 0.03. Third, in (10) we have: 
2

2
3

T
T 

. It is stated in [8] that the performance of the SSIM 

algorithm is fairly insensitive to the values of 1T , 2T , 

and 3T . Finally, in order to simplify (12), SSIM 

algorithm sets 1  . 

Authors of [8] have provided a MATLAB 

implementation of the SSIM algorithm that is available 

at [57]. 

 

3.3.3. Multi-scale structural similarity index (MS-

SSIM) 
The SSIM algorithm described earlier is considered a 

single-scale approach that achieves its best 

performance when applied at an appropriate scale. 

Moreover, choosing the right scale depends on the 

viewing conditions, e.g., viewing distance and the 

resolution of the display. Therefore, this algorithm 

lacks the ability to adapt to these conditions. This 

drawback of the SSIM algorithm motivated researchers 

to design a multi-scale structural similarity index (MS-

SSIM) [9]. The advantage of the multi-scale methods, 

like MS-SSIM, over single-scale methods, like SSIM, 

is that in multi-scale methods image details at different 

resolutions and viewing conditions are incorporated 

into the quality assessment algorithm. The block 

diagram of the MS-SSIM algorithm is presented in Fig. 

4. After taking the reference and test images as input, 

this algorithm performs low-pass filtering and 

downsampling (by factor of 2) in an iterative manner. 

At each scale, (9) and (10) are calculated. At each 

scale, (9) and (10) are calculated. However, (7) is 

computed only at sM th  scale. The final MS-SSIM 

index is calculated via following equation: 
 

L ↓2 L ↓2 L ↓2

L ↓2 L ↓2 L ↓2

c1(Iref , Itst)

s1(Iref , Itst)

c2(Iref , Itst)

s2(Iref , Itst)

cM (Iref , Itst)

sM (Iref , Itst)
lM (Iref , Itst)

MS-SSIM 

measure

Reference 

image

Test 

image

s

s
s

 
Fig. 4. The block diagram of the MS-SSIM algorithm. 

L: low-pass filter; ↓2: downsampling by factor of 2 
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     
1

( , )

, . , ,
s

M i is

s

ref tst

M

M ref tst i ref tst i ref tst

i

MS SSIM

l c s
  





           

I I

I I I I I I

        (17) 

 

where  ,i ref tstc I I  and  ,i ref tsts I I  are the 

contrast and the structure comparison function at the 

i th  scale respectively, and  ,
sM ref tstl I I  is the 

luminance comparison function at the sM th  scale. 

Moreover, 
sM , i , and i  are positive constants 

chosen to indicate the relative importance of each 

component. In [9], 
i i i

     for all j , and 

1

1
sM

i

i




 . 

 

3.3.3.1. Parameter specification in the MS-SSIM 

algorithm 
An image synthesis-based approach is used in order to 

calculate the exponents of (17). In [9], for a given 

original 8 bits/pixel gray-scale test image, a matrix of 

test images is constructed. Each element in the matrix 

is an image that is related to a specific MSE value and a 

specific scale. Each test image in the matrix is created 

by randomly adding white noise to the original test 

image. 5 scales and 12 distortion levels are used that 

yields a matrix of total of 60 images. Moreover, 10 

original test images of size 64 64  with different 

contents are used in order to create 10 sets of test 

images, resulting in the total number of test images to 

be 600. As mentioned in [9], 8 subjects (including one 

of the authors) have participated in the subjective 

experiment for calculating the exponents of (17). 

Subjects had general understanding of the human 

vision, but were unaware of the goal of the experiment. 

After seeing all 10 sets of test images in a fixed 

viewing distance, they were asked to choose one image 

in each of 5 scales that they think have the same 

quality. After that, the positions of chosen images in 

each scale is saved and averaged across all test images 

and subjects. Test results are then normalized so that 

their sum be equal to 1. The resulting exponents for 

each of 5 scales are: 
1 1

0.0448   , 

2 2
0.2856   , 3 3

0.3001   ,

4 4
0.2363   , 

5 5 5
0.1333     .  

Authors of [9] have provided a MATLAB 

implementation of the MS-SSIM algorithm that is 

available at [58]. 

 

3.3.4. Visual information fidelity (VIF) 
VIF algorithm [10] models natural images in the 

wavelet domain using Gaussian scale mixtures 

(GSMs). Images and videos that are taken from natural 

environment by using high quality capturing devices 

operating in visual spectrum are classified as natural 

scenes. For a review of natural scene models see 

[59].VIF algorithm consists of three components: 

source model, distortion model, and HVS model. 

 

3.3.4.1. Source model 

As stated earlier, VIF algorithm models natural images 

in wavelet domain using GSM model. A GSM is 

defined as a random field that can be determined as a 

product of two independent random fields [60]. In other 

words, a GSM like c  can be expressed as: 
 

c zu                                                                       (18) 
 

Where z  is a random field containing positive scalars, 

and u  is a Gaussian vector random field with zero 

mean and covariance Cu . In [10], it is assumed that u
constitutes of independent components. VIF algorithm 

models each subband of image’s wavelet 

decomposition as a GSM random field. Each subband 

coefficients are grouped into non-overlapping blocks of 

size nM . 

 

3.3.4.2. Distortion model 
Distortion is modeled in the wavelet domain as signal 

attenuation and additive noise. This model is defined as 

follows: 
 

g d c v                                                                 (19) 
 

where c  is a random field from a subband in the 

reference image, d  is a random field from a subband 

in the test image, g  is a deterministic scalar field, and 

v  is a random field from a stationary white additive 

Gaussian noise with zero mean and covariance 
2C Iv v . In [10], random fields v , z , and u  are 

assumed to be independent from one another. 

Moreover, random field g is considered to be slow 

varying. 

 

3.3.4.3. HVS model 
HVS is modeled as a distortion channel that adds noise 

to the input signal, limiting the amount of information 

that flows through the channel. This visual noise is 

characterized as a zero mean stationary additive white 

Gaussian noise modeled in the wavelet domain. HVS 

noise is modeled as stationary random fields n  and 

n  which are zero mean, uncorrelated multivariate 

Gaussians with the same covariance 
2

 C C I
n n n

, 

where 
2 n  is considered the variance of visual noise). 
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The outputs of the HVS channels are as follows: 

 e c n                                                                    (20) 
 f d n                                                                  (21) 

 

where e  is the output of the HVS channel when the 

input is the reference image and f  is the output of the 

same channel when the input is the test image. Random 

fields n  and n  are assumed to be independent of u , 

z , and v . 

With the source, distortion, and HVS models described 

earlier, the VIF quality measure can be calculated. 

Consider  1 2,  ,  ..., 
rMC c c c  and 

 1 2,  ,  ..., 
rMz z zz  to be a collection of rM  

realization from the random field c and z respectively. 

Moreover, let D, E, and F be defined in a similar 

manner in terms of d, e, and f. In [10], all GSM vectors 

are constructed from a non-overlapping 3 3  

neighborhood. In order to calculate the VIF measure, 

information content of the reference and the test images 

needs to be calculated. 

 
3.3.4.4. Calculating reference image’s information 
The amount of information that can be extracted from a 

particular subband in the reference image, 

 ;I C E z , is calculated as follows: 

     
1

2 2

2 2
1

; =

1
                  = log

2

r

r

M

i i i i i

i

M
i

i

I h z h z

z 







   

 
 
 
 




C I

I

u n

n

C E z c n n

                (22) 

where  .h  and .  denote the differential entropy of a 

continuous random vector and determinant operator 

respectively. Since C
u

 is symmetric, by using matrix 

factorization we can write it as 
T

C
u

Q Q , where 

Q  is an orthonormal matrix, and   is a diagonal 

matrix containing eigenvalues 
k

 . Using this 

factorization, (22) can be written as: 
 

 
2

2 2
1 1

1
; log 1

2

er MM

i k

i k

z
I

 

 
  

 


n

C E z



                     (23) 

 

Where 
e

M  is the total number of eigenvalues in  . 

 

3.3.4.5. Calculating test image’s information 
The amount of information that can be extracted from a 

particular subband in the test image,  ;I C F z , is 

calculated as follows: 

     

 

 

1

2 2 2 2

,

2 2 2
1 ,

;

1
                  = log  .

2

r

r

M

i i i i i i i i

i

M
i i i

i i

I h g z h z

g z  

 





     

  
 
 
 




C I

I

u v n

v n

C F z c v n v + n
      (24) 

 

Using the same factorization as before, (24) can be 

written as: 
 

 
2 2

2 2 2
1 1 ,

1
; log 1

2

er MM

i i k

i k i

g z
I

  

 
    


v n

C F z


             (25) 

 

It has been discovered in [10] that the ratio of equations 

(23) and (25) relates well with visual quality. 

Therefore, by using the assumption that each subband 

is completely independent of others in terms of their 

respective random fields as well as the distortion model 

parameters, the VIF quality measure is calculated as 

follows: 

 

 

;

;

j j j

j subbands

j j j

j subbands

I

VIF
I











C F z

C E z

                                   (26) 

Where j  is the subband index, and  ;
j j j

I C F z  

and  ;
j j j

I C E z  are the corresponding mutual 

information of the j th  subband. In [10], summation 

is performed over subbands at the finest scale. The VIF 

measure can be calculated by using an entire subband 

of image or by using a spatially localized region of 

subband coefficients. In the first case, VIF measure is a 

single number that quantifies the overall quality of the 

image, and in the second case, a sliding window could 

be used to obtain a quality map of the image. The block 

diagram of the VIF algorithm is presented in Fig. 5. 

For all practical distortion types, the VIF measure takes 

its values in the interval [0,1] . 0VIF   means that all 

the information about the reference image has been lost 

due to presence of distortions. For images with higher 

perceptual quality, the value of the VIF measure is 

close to 1. A linear contrast enhancement of the 

reference image, that doesn’t add distortion to it, results 

in the VIF measure greater than 1. Therefore, 1VIF   

means that the test image has a superior visual quality 

than the reference image. 

 

3.3.4.6. Parameter specification in the VIF 

algorithm 
In order to compute (26), values of C

u
, iz , ig ,  v , 

 n  must be estimated. The estimation of C
u

 is done 

using the wavelet coefficients of the reference image in 
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each subband: 
 

1

1ˆ
r

M

T

i i

ir
M 

 C
u

c c                                                          (27) 

By using maximum-likelihood estimation, 
2

iz  can be 

estimated using the following equation [61]: 
 

2 11 ˆˆ T

i i i

m

z
M

 C
u

c c                                                    (28) 

 

Where mM  is the dimensionality of c . The 

parameters ig  and ,iv  can be computed using 

simple regression, since both the reference and test 

image coefficients are available. 
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Fig. 5. The block diagram of the VIF algorithm 

 

Finally,  n  is estimated by running the VIF algorithm 

for different values of this parameter and then choosing 

the value that yields the best performance in terms of 

overall image quality prediction accuracy. 

Authors of [10] have provided a MATLAB 

implementation of the VIF algorithm that is available at 

[62]. 

 

3.3.5. Most apparent distortion (MAD) 
MAD algorithm [11] assumes that HVS employs 

different strategies when judging the quality of images. 

It is mentioned in [1 1] that when HVS attempts to 

view images containing near-threshold distortions, it 

tries to move past the image, looking for distortions. 

This approach is called detection-based strategy. 

Moreover, it is also stated in [11] that when HVS 

attempts to view images containing clearly visible 

distortions, it tries to move past the distortions, looking 

for image’s subject matter. This approach is called 

appearance-based strategy. For estimating distortions in 

detection-based strategy, local luminance and contrast 

masking are used. Moreover, for estimating distortions 

in appearance-based strategy, variations in local 

statistics of spatial frequency components are being 

employed. Here, we summarize each strategy in more 

details. 

 

3.3.5.1. Detection-based strategy 

It is argued in [11] that when HVS views high quality 

images, it tries to look beyond image’s subject matter, 

looking for distortions. Detection-based strategy 

consists of two stages: determining the locations of 

visible distortions, and computing perceived distortion 

due to visual detection. 

First, the locations of visible distortions should be 

determined. In order to describe the non-linear 

relationship between pixel values and physical 

luminance of display device, MAD algorithm primarily 

transforms pixels of the reference and test images to 

luminance values using the following equation: 
 

 


  L I                                                            (29) 

 

Where L  is the luminance image, I  is the reference 

(or test) image, and  ,  , and   are device specific 

constants. Applying (29) to 
ref

I  and tstI  yields  
ref

L  

and 
tst

L  respectively. Since HVS has a non-linear 

response to luminance, it should be converted to 

perceived luminance via: 
 

1

3ˆ L L                                                                       (30) 
 

where L̂  denotes perceived luminance. Applying (30) 

to refL  and tstL  results in ˆ
refL  and ˆ

tstL  

respectively. After computing perceived luminance, an 

error image is computed: 
 

ˆ ˆ ˆ
err ref tst L L L                                                            (31) 

 

To describe variations in sensitivity due to spatial 

frequency, authors of [11] employ contrast sensitivity 

function (CSF) as introduced in [63] with adjustments 

as in [64]. CSF is applied to both, the reference and 

error images which yields ref
I  and err

I  respectively. 

Since presence of an image’s content can affect the 

detection of distortions, a spatial domain measure of 

contrast masking is employed. To model this, first 

ref
I  is divided into blocks of size 1616  with 75 

percent overlap between neighboring blocks. 

Afterward, rms contrast (in the lightness domain) of 

each block is calculated. The rms contrast for block b  

of ref
I  is calculated via: 

 
 

 
ref

ref

ref

b
C b

b




                                                      (32) 
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where  ref b  is the mean of block b in the reference 

image, and  ref b  is the minimum of the standard 

deviation of the four subblocks in b . The same 

procedure is done for err
I  with the exception that the 

rms contrast for this image is calculated via following 

equation: 

 

 

 
    ,     0.5

0               ,     otherwise

err

ref

err ref

b

C b b









 



                         (33) 

Where  err b  is the standard deviation of block b  in 

err
I . In (33), the threshold of 0.5 denotes the fact that 

HVS is relatively insensitive to changes in extremely 

dark regions. After computing  refC b  and  errC b

, a local distortion visibility map,  b , is computed 

as follows: 

 

 

           

        

ln ln    ,     ln ln

ln                    ,     ln ln

0                                         ,     otherwise

err ref err ref

err err ref

C b C b C b C b

b C b C b C b



  

   


   

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 (34) 
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Fig. 6. The block diagram of the detection-based 

strategy in the MAD algorithm 

 

Where   is a threshold value ( 5   , as in [11]). 

Second, the perceived distortion due to visual detection 

( detectd ) is calculated. detectd  is calculated via: 

 

   

1

221
detect

b

d b b
B

 
 

    
 
                                (35) 

 

Where B  is the total number of blocks, and  b  is 

the local MSE of  block b  of size 1616 , that can be 

calculated via following equation: 
 

   
2

,

1
( , )

16 16
p

err

i j M

b i j





 I                                (36) 

where pM  is set of pixels in block b . 

detectd  takes its values in the interval  0, . If 

0detectd  , there are no visible distortions in the test 

image. As the value of detectd  increases, perceived 

distortion increases and consequently, visual quality 

decreases. The block diagram of detection-based 

strategy is presented in Fig. 6. 

 

3.3.5.2. Appearance-based strategy 

It is argued in [11] that when viewing low quality 

images, HVS tries to move past the distortions, looking 

for image’s content. To model this strategy, MAD 

algorithm uses log-Gabor filter responses. Similar to 

detection-based strategy, this strategy is also consists of 

two stages; log-Gabor decomposition of the reference 

and test images, and computing the local statistical 

difference map. 

First, the reference and test images are decomposed 

into number of subbands via a 2-D log-Gabor filter 

bank with frequency responses of the form: 

 
 
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     
  

G


           (37) 

where indices s  and o  correspond to spatial scale and 

orientation respectively, parameters   and   are 

normalized radial frequency and orientation 

respectively, s  is normalized center frequency, r  

controls the filter’s bandwidth, and 0  and 0  are 

center orientation and angular spread of the filter 

respectively. In [11], five scales ( 1,2,...,5s  ) and 

four orientations ( 1,2,...,4o  ) are used for log-

Gabor decomposition, which result in twenty subbands 

per image. 

Second, a local statistical difference map,  b , is 

generated. This map is defined by comparing local 

subband statistics of the reference image with those of 

the test image. For each block of size 1616 ,  b  

is calculated via following equation: 
 

         
5 4

, , , , , ,

1 1

( )

 2 ( )  ref tst ref tst ref tst

s s o s o s o s o s o s o

s o

b

b b b b b b



     
 

      
 

  

(38) 

Where  ,s o b ,  ,s o b , and  ,s o b  correspond to 

standard deviation, skewness, and kurtosis of 1616  

subband coefficients associated with scale s , 

orientation o , and block b . In (38), s  is a scale 

specific weight which takes into account the preference 
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of HVS for coarser scales over fine ones. (in [11], 

0.5,  0.75, 1, 5, and  6s   for finest to coarsest 

scales, respectively). After computing  b , a final 

scalar value of perceived distortion, appeard , is 

calculated as follows: 
 

 

1

2
21

appear

b

d b
B


 

  
 
                                             (39) 

 

appeard  takes its values in the interval  0, . If 

0appeard  , there is no perceived distortion in the test 

image. As the value of appeard  increases, perceived 

distortion increases and consequently, visual quality 

decreases. The block diagram of appearance-based 

strategy is presented in Fig. 7. 

After computing detectd  and appeard , these two values 

are combined to yield an overall measure of perceived 

distortion. In [11], it is hypothesized that HVS uses a 

combination of detection-based strategy and 

appearance-based strategy for assessing the quality of 

images. To model the relation between these two 

strategies, a weighted geometric mean of detectd  and 

appeard  is employed that has the form: 

 

   
1

detect appearMAD d d
 

                                     (40) 

 

where   is a weighting constant chosen to indicate the 

relative importance of each term. MAD measure takes 

its values in the interval  0, . In [11], it is argued 

that  

 

log-Gabor 

decomposition

log-Gabor 

decomposition

Statistical difference 

map generation
(.)2 Combination

Reference

image

Test

image

dappear

Fig. 7. The block diagram of the appearance-based 

strategy in the MAD algorithm 

 

selecting the value for   based on detectd  can yields 

good overall performance. Therefore,   is calculated 

via: 

  2

1

1

1 detectd








                                                (41) 

Where 1  and 2  are free parameters. 

3.3.5.3. Parameter specification in the MAD 

algorithm 
There are several parameters in the MAD algorithm that 

need to be specified. First, for computing (29) the 

values of  ,  , and   are set to be 0, 0.02874, and 

2.2 respectively. These parameters are calculated using 

8 bit pixel values and a sRGB display. Second, the log-

Gabor filter parameters are assigned as follows: 

 0.6666,  1.3333,  2,  2.6666,  3.3333
s

   for finer to 

coarser scales respectively, 0.0413r  , 

0  rad
6


 , and  0

3
0,  ,  ,   rad

4 2 4

  
  . 

Finally, for computing (41) the values of 1  and 2  

are set to be 0.467 and 0.130 respectively. It is 

important to note that the parameters 1  and 2  are 

calculated for the Cornell-A57 dataset [51]. 

Authors of [11] have provided a MATLAB 

implementation of the MAD algorithm that is available 

at [65]. 

 

3.3.6. Feature similarity index (FSIM) 
The FSIM algorithm [12] is based on the fact that HVS 

understands an image mainly due to its low-level 

characteristics, e.g., edges and zero crossings [66-68]. 

In order to assess the quality of an image, FSIM 

algorithm uses two kinds of features. Physiological and 

psychophysical experiments have demonstrated that at 

points with high phase congruency (PC), HVS can 

extract highly informative features [68-72]. Therefore, 

PC is used as the primary feature in the FSIM 

algorithm. However, PC is contrast invariant and our 

perception of an image’s quality is also affected by 

local contrast of that image. As a result of this 

dependency, the image gradient magnitude (GM) is 

used as the secondary feature in the FSIM algorithm. 

Calculating FSIM measure consists of two stages: 

computing image’s PC and GM, and computing the 

similarity measure between the reference and test 

images. 

 

3.3.6.1. PC and GM computation 

The PC model states that Fourier components with 

maximum phase contain the points where features are 

perceived by HVS. This model provides a simple 

structure on how mammalian visual system handles 

detection and identification of features in an image [68-

72]. First, by applying (37) to the reference and test 

images, a set of set of response vectors are created at 

location x , scale s , and orientation o . Second, the 

local amplitude of these vectors at scale s  and 

orientation o  is calculated. Moreover, the local energy 

at orientation o  is also computed. Finally, the PC 
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value at location x  is calculated via following 

equation: 

 
 

 ,

o

o

s o

s o

E

PC
A








x

x
x

                                         (42) 

Where  oE x  is the local energy at orientation o , 

 
,s o

A x  is the local amplitude at scale s  and 

orientationo , and   is a positive stabilizing constant. 

 PC x  is a real number that takes its values in the 

interval  0,1 . 

In order to compute the gradient magnitude of the 

reference and test images, three different gradient 

operators are employed. These operators are: Sobel 

operator [73], Prewitt operator [73], and Scharr 

operator [74]. 

 

3.3.6.2. Similarity measure computation 
Consider 

ref
PC  and 

tst
PC  are PC  maps computed for 

ref
I  and 

tst
I  respectively, and 

ref
G  and 

tst
G  are 

GM  maps for these images. The final similarity 

measure between the reference and test images consists 

of two components: similarity measure between 
ref

PC  

and 
tst

PC  or  PC
S x , and similarity measure between 

ref
G  and 

tst
G  or  G

S x .  
PC

S x  is calculated via 

following equation: 
 

 
   

   
4

2 2

4

2 ref tst

PC

ref tst

PC PC T
S

PC PC T




 

x x
x

x x
                            (43) 

 

Where 4T  is a positive stabilizing constant chosen to 

prevent the denominator from becoming too small. 

 
PC

S x  takes its values in the interval  0,1 .  G
S x  

is calculated via following equation: 
 

 
   

   
5

2 2

5

2 ref tst

G

ref tst

G G T
S

G G T




 

x x
x

x x
                                 (44) 

 

Where 5T  is a positive stabilizing constant.  
G

S x

takes its values in the interval  0,1 . 
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 Fig. 8. The block diagram of the FSIM algorithm 

 

The values of 4T , and 5T  depend on the dynamic 

range of PC  and GM  values respectively. The final 

similarity measure between refI  and tstI ,  LS x , 

is computed via following equation: 
 

     L PC GS S S
 

       x x x                                      (45) 

 

Where   and   are two constants chosen to indicate 

the relative importance of each component (in [12], 

1   ). Since our perception of an image is 

affected differently by different location in an image, 

and also PC value at a location reflects whether or not 

that location is perceptibly significant [72], therefore, if 

anyone of  ref
PC x  and  tst

PC x  be greater than 

the other, it implies that position x  has a high impact 

on HVS when evaluating  LS x  between refI  and 

tstI . As a result, FSIM algorithm uses 

      
m

max ,
ref tst

PC PC PCx x x  as a weighting 

function for  LS x  in the overall similarity measure 

between refI  and tstI . Finally, the FSIM index 

between the reference and test images is defined as 

follows: 
 

   

 

m

m

.LS PC

FSIM
PC









x

x

x x

x

                                         (46) 

Where   is the whole image spatial domain. The 

block diagram of the FSIM index is presented in Fig. 8. 

 

3.3.6.3. Parameter specification in the FSIM 

algorithm 

In order to specify parameters in the FSIM algorithm, 

authors of [12] used a subset of the Tampere image 

dataset 2008 (TID2008) which contained the first 8 

reference images and their corresponding 544 test 

images. Parameters that achieve the highest spearman’s 

rank order correlation coefficient (SRCC) are chosen, 

and are fixed for all conducted experiments. In [12], 
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four scales ( 1,2,...,4s  ) and four orientations (

1, 2,..., 4o  ) are used for log-Gabor decomposition. 

The parameters’ value in FSIM index are: 0.5978
r


, 
0

0.6545 rad , 0.85
4

T  , and 
5

160T  . 

Moreover,  1 1 1 1
,  ,  ,  

6 12 24 48
s

   for finer to coarser 

scales respectively and  0

3
0,  ,  ,   rad

4 2 4

  
  . It is 

mentioned in [12] that Scharr gradient operator [74] 

yields the highest SRCC among Sobel and Prewitt 

operators. Therefore, this operator is used to compute 

GM of the reference and test images. 

Authors of [12] have provided a MATLAB 

implementation of the FSIM algorithm that is available 

at [75]. 

 

4.  OBJECTIVE QUALITY ASSESSMENT OF 

COLOR IMAGES 

Objective FR-IQA methods described thus far are 

designed specifically for grayscale images and they 

don’t make use of images’ color information. Color 

information simplifies the identification and extraction 

of objects in a scene. Therefore, it affects human 

observers’ judgment when assessing the quality of an 

image. In many areas that deal with digital images, 

there is always a demand for objective quality metrics 

that can predict the quality of a test color image with 

respect to its reference version. Applications of such a 

metric can be found in computer graphics when 

comparing the level of photorealism of two different 

rendering methods, image coding when comparing the 

performance of two different compression schemes, 

image processing when evaluating the performance of 

color image enhancement methods, and false-color 

multispectral image fusion [76]. In general, objective 

IQA metrics for gray-scale images can, in principle, be 

extended to incorporate color images. This is 

accomplished by applying these metrics to each of 

three RGB color channels individually, and then 

combining the quality score for each channel together. 

However, this approach does not relate with human 

perception, and this is because RGB color space does 

not represent color as it is perceived by HVS [76]. 

The first color image quality measure is proposed in 

[77]. In this work, a simple model of human color 

vision is presented which quantitatively describes 

different perceptual parameters, e.g., brightness and 

saturation. The perceptual space is considered as a 

vector space with spatial filtering characteristics. 

Moreover, a norm on the vector space is introduced that 

enables measuring the distances and defines a 

distortion measure that correlates well with perceptual 

evaluations. Some of the researches that address color 

image quality assessment can be found in [78-82]. 

Here, we only describe feature similarity index for 

color images (FSIMC): 

 

4.1.  Feature similarity index for color images 

(FSIMC) 

FSIM index described earlier is designed for gray-scale 

images or the luminance component of color images. In 

order to extend FSIM index to incorporate color 

images, first the reference RGB color image is 

transformed into another color space in which the 

luminance component can be separated from 

chrominance. In [12], RGB color image is transformed 

to YIQ color space, where Y denotes luminance 

component and I and Q denote chrominance 

components. RGB color space is transformed to YIQ 

color space via [83]: 
 

Y 0.299 0.587 0.114 R

I 0.596 0.274 0.322 G

Q 0.211 0.523 0.312 B

  



     
     
     
          

                             (47) 

 

Suppose Iref  and Qref  are chromatic components of 

the reference image, and Itst  and Qtst  are chromatic 

components of the test image. The similarity measures 

between chromatic components are computed as 

follows: 
 

 
   

   
6

I 2 2

6

2I I

I I
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


 

x x
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x x

                                     (48) 

 

 
   

   
7

Q 2 2

7

2Q Q

Q Q

ref tst

ref tst

T
S

T




 

x x
x

x x

                                  (49) 

 

Where 6T  and 7T  are two positive stabilizing constant 

chosen to prevent the denominators from becoming too 

small. In [12], the values of 6T  and 7T  are set to be 

equal with each other. The final similarity measure 

between chromatic components,  
C

S x , is the product 

of  
I

S x  and  
Q

S x : 

 

     I QCS S Sx x x                                                (50) 

 

The FSIM index for color images is calculated via: 

 

     

 

m

m

 L C

C

S S PC

FSIM
PC







  
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


x

x

x x x

x

                       (51) 
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where   is a positive weighting constant chosen to 

indicate the relative importance of chromatic 

components. Note that for color images PC and GM are 

computed via their luminance component Y. Moreover, 

the calculation process of PC and GM for color images 

is the same as gray-scale images described in Sec. 

3.3.6. The block diagram of the FSIMC algorithm is 

presented in Fig. 9. 

 

4.1.1. Parameter specification in the FSIMC 

algorithm 
The values of s , o , s , r , 0 , and 0  in the 

FSIMC algorithm are the same as their values in the 

FSIM algorithm. 
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 Fig. 9. The block diagram of the FSIMC algorithm 

 

Moreover, in the FSIMC algorithm we have: 

6 7
200T T  , and 0.03  . 

Authors of [12] have provided a MATLAB 

implementation of the FSIMC algorithm which is 

available at [75]. 

 

5.  QUALITY ASSESSMENT OF HIGH 

DYNAMIC RANGE IMAGES 

There has been a growing interest in recent years in 

HDR images that have greater dynamic range of 

intensity values than low dynamic range (LDR) images. 

In order to visualize HDR images on standard display 

devices, tone mapping operators (TMOs) [84-87] are 

employed. Since TMOs reduce the dynamic range of 

HDR images, they result in information loss and 

quality degradation. Therefore, it is important to assess 

the quality of each tone-mapped image to see which 

TMO provides better quality LDR images. On the other 

hand, due to the advent of various display technologies, 

e.g., HDR display, digital cinema projections, and 

mobile devices’ displays, it is important to measure the 

quality of images with different dynamic ranges to 

evaluate the capability of each displaying device in 

producing higher quality images. 

Subjective evaluation is the most reliable method for 

assessing the quality of HDR and LDR images [88-93]. 

However, as we mentioned before, these methods are 

expensive, time consuming, and cannot be embedded 

into optimization algorithms. Therefore, it is important 

to develop objective IQA methods for evaluating the 

quality of HDR images and their corresponding tone-

mapped versions. The FR-IQA methods described thus 

far cannot be employed for this purpose. This is due to 

the fact that the described methods assume that the 

dynamic range of the reference and test images is 

similar. 

In the following subsections, we will describe two FR-

IQA methods for evaluating the quality of images with 

different dynamic ranges. These methods are: dynamic 

range independent quality measure (DRIM) [13], 

designed for evaluating the quality of images with 

arbitrary dynamic ranges, and tone-mapped images 

quality index (TMQI) [14], designed for evaluating the 

quality of tone-mapped images with respect to their 

reference HDR images. 

 

5.1.  Dynamic range independent quality measure 

(DRIM) 

In [13], an image quality metric capable of assessing 

the quality of images with arbitrary dynamic ranges is 

proposed.  
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 Fig. 10. The block diagram of the DRIM algorithm 

 

The output of this metric is a distortion map that 

indicates the loss of visible features, the amplification 

of invisible features, and the reversal of contrast 

polarity. The DRIM algorithm is sensitive to three 

types of structural changes: 

 Loss of visible contrast: this case describes the 

situation when a contrast that was visible in 

the reference image becomes invisible in the 

test image. This usually happens when a TMO 

compresses the details in the HDR image to a 

level that they become invisible in the 

resulting LDR image. 

 Amplification of invisible contrast: this case 

describes the situation when a contrast that 

was invisible in the reference image becomes 

visible in the test image. This usually happens 

when an inverse TMO, i.e., an operator that 

converts LDR images to HDR images, 

introduces contouring artifacts in the resulting 

HDR image. 

 Reversal of visible contrast: this case happens 

when a contrast is visible in both the reference 

and test images, but with different polarity. 

This usually occurs in image locations 

possessing strong distortions. 

The block diagram of the DRIM algorithm is presented 

in Fig. 10. The inputs for this metric are luminance 
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maps corresponding to the reference and test images. 

First, the detection thresholds are predicted and a 

perceptually normalized response map is generated. In 

order to predict detection thresholds, authors of [13] 

employ the detection model in [94], which is designed 

specifically for HDR images. This model takes into 

account spatial sensitivity changes due to local 

adaption, non-linear response of the photo receptors, 

and light scattering in the eye’s optics. To ensure the 

accuracy of predictions, the DRIM algorithm calibrates 

its detection model with measurements in [95]. For 

optical transfer function (OTF) and CSF, models in 

[96] and [97] are employed respectively. Second, the 

perceptually normalized response is decomposed into 

several bands of different orientations and scales. In 

order to do this, cortex transform, i.e., the collection of 

the band-pass and orientation selective filters, as 

proposed in [97] is employed. Third, for prediction of 

three distortion types separately for each band, the 

conditional probability of each distortion type is 

calculated as follows: 

 
, , ,

/ /

s o s o s o

loss ref vis tst invP P P                                                      (52) 

, , ,

/ /

s o s o s o

ampl ref inv tst visP P P                                                    (53) 

, , , ,

/ /

s o s o s o s o

rev ref vis tst visP P P R                                              (54) 

 

where 
,s o

lossP , 
,s o

amplP , and 
,s o

revP  denote the conditional 

probability of loss of visible contrast, amplification of 

invisible contrast, and reversal of visible contrast in the 

scale s  and orientation o  respectively. Subscripts 

/ .ref  and / .tst  denote the reference and test images 

respectively, also . /vis and . / inv correspond to 

visible and invisible contrast. The parameter R  is 

equal to 1 if the contrast polarity in the reference and 

test images differs from one another, and is zero 

otherwise. Fourth, because (52) through (54) possess 

non-linear operators, the probability map 
,s oP  may 

contain spurious distortions. In order to prevent this 

problem, each probability map is filtered one more time 

using its corresponding cortex filter 
,s o

B . The filtered 

probability map is computed as follows: 

 

  , 1 , ,ˆ s o s o s o

loss lossP P F F B                                          (55) 

where F  and 
1

F  denote the 2-D Fourier and inverse 

Fourier transforms respectively. Although (55) is 

written for 
,s o

lossP , the filtered probability maps for 

,s o

amplP  and 
,s o

revP  are computed in a similar manner. 

Finally, the probability of detecting a distortion in any 

subband is calculated as follows: 
 

 ,

1 1

ˆ1 1
s oM M

s o

loss loss

s o

P P
 

                                          (56) 

 

Where oM  and sM  are total numbers of orientations 

and scales respectively. Equ. 56 is based on the 

assumption that detecting each distortion in each 

subband is an independent procedure. The probability 

maps revP  and amplP  are calculated in a similar 

manner. 

In order to visualize each of the three distortion types, 

an in-context distortion map approach similar to [97] is 

employed, and a custom viewer application for detailed 

inspections is introduced. In order to generate the in-

context map, luminance of the test image is copied to 

all three RGB channels, and each channel is scaled 

using the detection probability of their corresponding 

distortion types. In [13], only the distortion types with 

highest probability of detection at each pixel location is 

used for visualization purposes. Green is chosen for 

loss of visible contrast, blue corresponds to 

amplification of invisible contrast, and red denotes 

reversal of visible contrast. By using custom viewer 

application employed in [13], one can dynamically set 

the level of distortion types and the background image 

to an appropriate level in order to investigate each 

distortion types separately. 

Applications of the DRIM algorithm, as stated in [13], 

are: comparison of TMOs, evaluation of inverse TMOs, 

and comparison of different types of display devices. 

To the best of our knowledge, authors of [13] have not 

published a publicly accessible source code for the 

DRIM algorithm. However, in [98], authors have 

provided an online implementation of the DRIM 

algorithm where the reference and the test images can 

be uploaded and after assigning the parameters by the 

user, the probability maps and the final in-context 

distortion map is generated. 

 

5.2.  Tone-mapped images quality index (TMQI) 

In [14], an objective IQA method for tone-mapped 

images is proposed. This metric is a combination of 

multi-scale structural fidelity measure and statistical 

naturalness measure. The TMQI algorithm consists of 

two stages: structural fidelity measurement, and 

statistical naturalness measurement. 

Since TMOs compress the dynamic range of HDR 

images, they result in the loss of information. 

Moreover, this loss of information may not be visible in 

the LDR images for the human observers to see. 

Therefore, structural fidelity is an important part of 

tone-mapped images quality assessment. Consider x  

and y  to be two local image patches obtained from 

the HDR and tone-mapped LDR images respectively. 

TMQI algorithm defines its structural fidelity measure 
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as follows: 
 

  8  , 9

2 2

8 9
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local

x y x y

T T
S x y
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  

   

   


   
                  (57) 

 

Where x , y , and  , x y are the local standard 

deviations and cross correlation between image patches 

x  and y  respectively, and 8T  and 9T  are two 

positive stabilizing constants designed to prevent the 

denominators from becoming too small. Compared 

with (12), the luminance comparison function is 

missing, and the structure comparison function, 

denoted by the second part of (57), is exactly the same. 

The reason for the absence of luminance comparison 

function is that since TMOs change the local luminance 

and contrast, the direct comparison of these two 

characteristics is inappropriate. The first component of 

(57) is a modified version of (9) that compares the 

strength of two image signals. This modification is 

based on two intuitive considerations: 

 When the signal strength of the HDR and 

LDR image patches are either above the 

visibility threshold or below it, the difference 

between them should not be penalized. 

 The difference in signal strength between 

HDR and LDR image patches should be 

penalized when signal strength in one patch is 

above visibility threshold and is below it in 

the other patch. 

In order to compensate above considerations, the local 

standard deviation   is passed through a non-linear 

mapping that yields    in (57). This mapping has the 

following characteristics: 

 Signal strengths above visibility threshold are 

mapped to 1. 

 Signal strengths below visibility threshold are 

mapped to 0. 

 Smooth transition between 0 and 1. 

The non-linear mapping described above is related to 

the visual sensitivity of contrast. HVS follows a 

gradual increasing probability in observing contrast 

changes. Some psychometric functions that describe 

the detection probability of signal strength have been 

used to model the data taken from psychophysical 

experiments [99,100]. TMQI algorithm employs a 

commonly used psychometric function known as 

Galton’s ogive [101]. This function has the form of 

cumulative normal distribution function denoted by: 
 

 
 

2

2

1
exp  

22

a

a

aa

z
P a dz



  

 
  

  


                       (58) 

 

Where P  is the probability of detection, a  is the 

amplitude of sinusoidal stimuli, a  is the modulation 

threshold, and a  is the standard deviation of normal 

distribution. It has been shown that the ration 
a

a




k  

is approximately a constant, known as Crozier’s law 

[101,102]. Usually, k  takes its values between 2.3 

and 4, and 3k  results in the probability of detection 

to be considerably low [101]. In order to quantify 

visual contrast sensitivity, CSF is used. TMQI 

algorithm uses the following equation for CSF [63]: 
 

     
1.1

2.6 0.0192 0.114 exp[ 0.114 ]f f f  A           (59) 

 

Where f  is the spatial frequency. In order for CSF to 

be compatible with psychological data, it needs to be 

scaled by a constant  . In TMQI algorithm, CSF 

measurement, as presented in [103], is used. The 

modulation threshold,  a f , is calculated via: 

 
 

1
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f
f





A

                                                        (60) 

Equ. 60 is the threshold value based on contrast 

sensitivity measurement with assumption of pure 

sinusoidal stimuli.  a f  needs to be converted into a 

signal strength threshold. In order to achieve this, it is 

important to note that signal amplitude scales with 

contrast and mean signal intensity. Therefore, the 

threshold value defined on signal standard deviation,  

 

L ↓2 L ↓2 L ↓2
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S1 S2

Structural fidelity 

measure
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SMs

Fig. 11. The block diagram of the structural fidelity 

measure in the TMQI algorithm. L: low-pass filter; 

↓2: downsampling by factor of 2 

 

 s f , is computed as follows: 
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Where   is the mean intensity of the signal. 

According to Crozier’s law [101,102]:  
 s

s

f
f


 

k

. 

Finally, the non-linear mapping between   and    is 

defined as follows: 
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x   and y   in (57) are the mapped versions of x  

and y  respectively. Equ. 57 is computed using a 

sliding window approach which yields a map 

containing the variations of structural fidelity across the 

entire image. TMQI algorithm adapts a multi-scale 

approach same as MS-SSIM algorithm, in which HDR 

image and its corresponding LDR version are 

iteratively low-pass filtered and downsampled (by 

factor of 2). The block diagram for computing 

structural fidelity measure is presented in Fig. 11. At 

each scale, the local structural fidelity map is computed 

and averaged in order to obtain a single score: 
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where ix  and iy  are the i th  image patch in the 

HDR and LDR images respectively, and pM  is the 

total number of image patches in the scale s . The 

overall structural fidelity score is calculated as follows: 
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                                                                 (64) 

 

where sM is the total number of scales, and s  is a 

constant chosen to indicate the relative importance of 

the scale s . 

Structural fidelity alone is not a sufficient measure for 

evaluating the overall quality of images. Another 

important characteristic of a high quality LDR image is 

that it should look natural. According to the results of a 

subjective experiment conducted in [104], TMQI 

algorithm uses brightness and contrast for its statistical 

naturalness model. 

 

Calculating 

fm

Calculating 

fd

× 1/K 
LDR

image
Statistical naturalness

measure

Fig. 12. The block diagram of the statistical naturalness 

measure in the TMQI algorithm 

 

This model is based on statistics of about 3000 8 

bits/pixel gray-scale images available at [105,106]. In 

order to compute statistical naturalness measure, TMQI 

algorithm computes the histograms of mean and the 

standard deviation of these images. It is mentioned in 

[14] that these histograms can be well-fitted by 

Gaussian and Beta probability density function 

respectively: 
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Where  B .,.  denotes Beta function. According to 

[107], brightness and contrast are mostly independent 

characteristics in terms of natural image statistics and 

biological computation. Therefore, the joint probability 

density function of contrast and brightness is the 

product of their respective probability density 

functions. As a result, TMQI algorithm defines its 

statistical naturalness measure via following equation: 
 

1
f fm dN

K
                                                               (67) 

Where  max f ,fm dK   is a normalization factor 

designed to bound N  in the interval  0,1 . The block 

diagram of the statistical naturalness measure is 

presented in Fig. 12. 
After computing structural fidelity and statistical 

naturalness measure, the overall quality index is 

calculated via: 
 

 1Q S N                                                    (68) 

 

Where 0 1   is a constant chosen to indicate the 

relative importance of each component, and   and   

are two constants chosen to indicate each component’s 

sensitivity. The overall quality measure, Q , takes its 

values in the interval [0,1] . Two application of the 

TMQI algorithm, as mentioned in [14], are the 

parameters tuning in TMOs and adaptive fusion of 

tone-mapped images. 

 

5.2.1. Parameter specification in the TMQI 

algorithm 

There are several parameters in the TMQI algorithm 

that need to be specified. First, for computing (57) the 

values of 8T  and 9T  are set to be 0.01 and 10 

respectively. It is mentioned in [14] that the overall 

performance of the TMQI algorithm is insensitive to 

the values of parameters 8T  and 9T  up to an order of 

magnitude. Second, TMQI algorithm employs the same 

procedure as SSIM algorithm for creating the fidelity 
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map of each scale, i.e., using a Gaussian sliding 

window of size 11 11  and standard deviation of 1.5 

samples. Third, the viewing distance is set to be 32 

cycles/degree. Therefore, the spatial frequency 

parameter in (59) is set to be 16 cycles/degree for the 

finest scale measurement. The spatial frequency 

parameter employed for the remaining finer scales are 

8, 4, 2, and 1 cycles/degree. Fourth, the value of mean 

intensity in (61) is set to be equal to the dynamic range 

of LDR images. In other words, 128  . Fifth, 

according to psychophysical experiment in [9], the 

parameters in (64) are defined as: 5sM   and 

 0.048,  0.2856,  0.3001,  0.2363,  0.1333s 

for scales 1 to 5 respectively. Finally, since TMQI 

algorithm is designed specifically for gray-scale 

images, color images are first converted from RGB 

color space to Yxy color space and then the structural 

fidelity measure is applied to the Y component only. 
The parameters of (65) and (66) are estimated by first, 

fitting the histograms of means and standard deviations 

of images in [105,106] using Gaussian and Beta 

probability density functions, and then using 

regression. These parameters, are found to be 

115.94m   and 27.99m   in (65), and 

4.4d   and 10.1d   in (66). 

Parameters of (68) are determined in a way that best fit 

the subjective evaluation data presented in [108]. In 

this subjective experiment, subjects were trained to 

look simultaneously at two LDR images generated via 

two different TMOs, and then pick the LDR image that 

they think has higher overall quality. In order to find 

the best parameters, an iterative learning method is 

employed. In this method, at each iteration a pair of 

images are chosen randomly from a random dataset. If 

the output of the overall quality measure is of the same 

order as the subjective rank, then the model parameters 

are left unchanged. Otherwise, each parameter is 

updated to lower the difference between subjective and 

objective scores. The iteration process continues until 

convergence occurs. It has been reported in [14] that 

this process has good convergence property. In order to 

evaluate the robustness of the proposed iterative 

learning process, a leave-one-out cross validation 

procedure is employed. It is mentioned in [14] that 

although this procedure ended up with a different value 

for parameters at each time, the results were fairly close 

to one another and they were all of the same rank 

orders for all datasets. Finally, the parameters of (68), 

are found to be: 0.8012  , 0.3046  , and 

0.7088  . 

Authors of [14] have provided a MATLAB 

implementation of the TMQI algorithm that is available 

at [18]. 

6.  SUBJECTIVE DATASETS AND 

PERFORMANCE MEASURES IN IMAGE 

QUALITY ASSESSMENT 

6.1.  Subjective datasets 

In order to evaluate the performance of a newly 

proposed IQA method, many subjective quality 

datasets have been introduced. Here, we briefly 

introduce six most widely used subjective quality 

datasets. These datasets include: Cornell-A57 dataset 

[51], IVC dataset [109], Tampere image dataset 2008 

(TID2008) [17], LIVE dataset [15], Toyoma-MICT 

dataset [110], and categorical image quality (CSIQ) 

dataset [16]. 

The Cornell-A57 [51 ] dataset constitutes of 54 

distorted images with six types of distortions. The 

distortions in this dataset are: quantization of the LH 

subbands of a 5-level DWT of the images using 9/7 

filters, additive white Gaussian noise, baseline JPEG 

compression, JPEG2000 compression without visual 

frequency weighting, blurring via a Gaussian filter, and 

JPEG2000 compression with the dynamic contrast-

based quantization algorithm. 

The IVC dataset [109] consists of 10 reference images 

and 185 distorted versions of them. Distortion types in 

this dataset are: JPEG2000 compression, JPEG 

compression, blurring, and local adaptive resolution 

coding. 

The TID2008 dataset [17] consists of 1700 test images 

generated from 25 reference images with 17 distortion 

types at four different distortion levels. 654 observers 

from three different countries participated in subjective 

ratings. Lightening condition, screen size, monitor type, 

and color gamma are varied between experiments in 

collecting TID2008 dataset. Distortion types in this 

dataset are: additive Gaussian noise, additive noise in 

color components is more intensive than its counterpart 

in the luminance component, masked noise, spatially 

correlated noise, high frequency noise, impulse noise, 

Gaussian blur, image denoising, JPEG compression, 

JPEG2000 compression, transmission errors in JPEG 

compression, transmission errors in JPEG2000 

compression, contrast change, intensity shift, local 

block-wise distortions of different intensity, and 

noneccentricity pattern noise. Quality ratings for each 

image in TID2008 dataset are reported as mean opinion 

score (MOS). 

The LIVE dataset [15] consists of 29 reference images. 

Distortions in this dataset are: JPEG compression, 

JPEG2000 compression, white Gaussian noise, 

blurring, and fast fading channel distortion of 

JPEG2000 compressed stream. Total number of 

distorted images in this dataset is 779. Quality ratings 

for each image in this dataset are reported as DMOS. 

The Toyoma-MICT dataset [110] consists of 14 

original images. Totally, it consists of 196 images (168 

test images and 28 reference images). Distortions in 
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this dataset are: JPEG and JPEG2000 compression. 

Method used for subjective rating in this dataset is 

single stimulus categorical rating. Quality ratings for 

each image in this dataset are reported as MOS. 

The CSIQ dataset [16] consists of 30 reference images 

each distorted using six types of distortions at four to 

five distortion levels. Distortions in this dataset are: 

JPEG and JPEG2000 compression, global contrast 

decrements, additive white and pink Gaussian noise, 

and Gaussian blurring. Total number of distorted 

images in this dataset is 866. 

 

6.2.  Performance measures 

By taking into account the non-linearity of subjective 

ratings introduced during the subjective experiments, it 

is necessary to perform a non-linear mapping on the 

objective scores before measuring the correlation 

between the subjective and objective scores. According 

to the video quality experts group (VQEG) research 

[111], in order to obtain a linear relationship between 

an objective IQA method’s score for an image and its 

corresponding subjective score, each metric score x  is 

mapped to  q x . The non-linear mapping function 

 q x  is given by the following equation: 
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       (69) 

The parameters  1 2 3 4 5, , , ,      are calculated 

through minimizing the sum of squared differences 

among the subjective and the mapped scores. In order 

to compare the performance of a newly proposed IQA 

method with the existing ones, performance evaluation 

metrics are used. Here, we describe six commonly used 

performance measures in IQA: 

The Pearson’s linear correlation coefficient (PLCC) is 

the linear correlation coefficient between the predicted 

MOS (DMOS) and subjective MOS (DMOS). PLCC is 

a measure of prediction accuracy of an IQA metric, i.e., 

the capability of the metric to predict the subjective 

scores with low error. The PLCC can be calculated via 

following equation: 
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Where is  and iq  are the subjective score and the 

mapped score for the i th  image in an image dataset 

of size dM  respectively, and q and s  are the means 

of the mapped scores and subjective scores 

respectively. 

The Spearman’s rank correlation coefficient (SRCC) is 

the correlation coefficient between the predicted MOS 

(DMOS) and the subjective MOS (DMOS). SRCC 

measures the prediction monotonicity of an IQA 

metric, i.e., the limit to which the quality scores of a 

metric agrees with the relative magnitude of the 

subjective scores. The SRCC can be calculated via 

following equation: 
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Where id  is the difference among the i th  image’s 

rank in the objective and subjective experiments. SRCC 

is independent of any monotonic non-linear mapping 

between objective and subjective scores. 

The Kendall’s rank correlation coefficient (KRCC) is a 

non-parametric rank correlation measure that can be 

calculated via following equation: 
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Where cM  and dcM  are the numbers of concordant 

and disconcordant pairs in the dataset respectively. 

Like SRCC, KRCC is a measure of the prediction 

monotonicity. 

The outlier ratio (OR) is defined as the percentage of 

the number of the predictions outside the interval of 

2  times the standard deviation of the subjective 

scores. OR can be calculated via following equation: 

dM
OR

M
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                                                                 (73) 

Where M   is the number of outliers. OR measures the 

prediction consistency of an IQA metric, i.e., the limit 

to which the metric maintains the accuracy of its 

predictions. 

The root mean square error (RMSE) can be calculated 

via following equation: 
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Like PLCC, RMSE is a measure of prediction 

accuracy. 

The mean absolute error (MAE) can be calculated via 

following equation: 
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Like PLCC and RMSE, MAE is a measure of 

prediction accuracy. 

A good IQA metric should have higher PLCC, KRCC, 

and SRCC while lower RMSE, MAE, and OR. 
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7.  EVALUATION RESULTS 

7.1.  Evaluation of prediction performance 

In this subsection, we will evaluate the prediction 

performance of the FR-IQA methods described in 

previous sections: PSNR, SSIM [8], MS-SSIM [9], VIF 

[10], MAD [11], FSIM [12], FSIMC [12], and TMQI 

[14]. For all these methods, we have used their original 

MATLAB implementation provided by their respective 

authors. 

Since the DRIM algorithm [13] does not generate a 

single quality score for the entire image, it is 

impossible to compare its results with subjective 

evaluations. Therefore, we have not included this 

metric in all evaluations. Moreover, since the described 

FR-IQA methods are for different category of images 

(some for grayscale images, some for color images, and 

some for HDR images), we evaluate the performance 

of each category separately. The performance 

evaluation process for TMQI algorithm [14] is done on 

the dataset presented in [18]. For the remaining 

algorithms, we choose three datasets, these datasets 

include: TID2008 dataset [17], LIVE dataset [15], and 

CSIQ dataset [16]. It is important to note that in all our 

evaluations, the reference images are excluded and only 

test images are employed. 

Table 1 shows our test results of the 8 FR-IQA methods 

on four subjective quality datasets. To provide an 

evaluation of the overall performance of the image 

quality metrics under consideration, Table 2 gives the 

 average SRCC, KRCC, PLCC, RMSE, and MAE 

results over three datasets, where the average values are 

calculated in two cases. In the first case, the 

performance measures’ scores are directly averaged, 

while in the second case, different weights are assigned 

to different datasets depending on their sizes (measured 

as the number of images, i.e., 1700 for TID2008, 866 

for CSIQ, and 779 for LIVE datasets respectively). 

Since TMQI algorithm’s performance is measured in 

only one dataset, it is not included in Table 2. 

As it can be seen from Table 1, for TMQI algorithm 

only SRCC and KRCC measures are calculated. This is 

due to the fact that PLCC, RMSE, or MAE are used 

when subjects rank the quality of images in a specific 

range, e.g., from 1 to 10. However, in the subjective 

experiment in [18] subjects were asked to rank the 

images from best to worst quality and thus the scores 

given by subjects do not represent the quality of 

images. Hence, only the SRCC and KRCC measures 

are calculated for evaluation of TMQI algorithm. 

 

7.2.  Evaluation of computation time 

We have also evaluated the computation time of each 

selected FR-IQA methods. Since authors of [13] have 

not published a publicly available source code of their 

algorithm, we have not included DRIM algorithm in 

our evaluation. As we mentioned before, since the 

selected methods are for different category of images, 

we evaluate their computation time separately. 

 

 

Table 1. Performance evaluation of 8 FR-IQA algorithms described in this paper 
 

CSIQ dataset 

 KRCC SRCC PLCC MAE RMSE 

SSIM 0.6907 0.8756 0.8613 0.0991 0.1334 

PSNR 0.6084 0.8058 0.8000 0.1195 0.1575 

MAD 0.7970 0.9466 0.9502 0.0636 0.0818 

FSIM 0.7567 0.9242 0.9120 0.0797 0.1077 

VIF 0.7537 0.9195 0.9277 0.0743 0.0980 

MS-SSIM 0.7393 0.9133 0.8991 0.0870 0.1149 

 

LIVE dataset 

 KRCC SRCC PLCC MAE RMSE 

SSIM 0.7963 0.9479 0.9449 6.9325 8.9455 

PSNR 0.6865 0.8756 0.8723 10.5093 13.3597 

MAD 0.8421 0.9669 0.9675 5.2202 6.9037 

FSIM 0.8337 0.9634 0.9597 5.9468 7.6780 

VIF 0.8282 0.9636 0.9604 6.1070 7.6137 

MS-SSIM 0.8045 0.9513 0.9489 6.6978 8.6188 
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TID2008 dataset 

 KRCC SRCC PLCC MAE RMSE 

SSIM 0.5768 0.7749 0.7732 0.6547 0.8511 

PSNR 0.4027 0.5531 0.5734 0.8327 1.0994 

MAD 0.6445 0.8340 0.8308 0.5562 0.7468 

FSIM 0.6946 0.8805 0.8738 0.4926 0.6525 

VIF 0.5860 0.7491 0.8084 0.6000 0.7899 

MS-SSIM 0.6568 0.8542 0.8451 0.5578 0.7173 

 

CSIQ dataset 

 KRCC SRCC PLCC MAE RMSE 

FSIMC 0.7690 0.9310 0.9192 0.0762 0.1034 

 

LIVE dataset 

 KRCC SRCC PLCC MAE RMSE 

FSIMC 0.8363 0.9645 0.9613 5.8403 7.5296 

 

TID2008 dataset 

 KRCC SRCC PLCC MAE RMSE 

FSIMC 0.6991 0.8840 0.8762 0.4875 0.6468 

 

Dataset in [18] 

 KRCC SRCC 

TMQI 0.5579 0.7385 

 

Table 2.Average performance over three datasets 
 

Direct Average 

 KRCC SRCC PLCC MAE RMSE 

SSIM 0.6879 0.8661 0.8598 2.5621 3.3100 

PSNR 0.5659 0.7448 0.7486 3.8205 4.8722 

MAD 0.7612 0.9158 0.9162 1.9467 2.5774 

FSIM 0.7617 0.9227 0.9152 2.1730 2.8127 

VIF 0.7226 0.8774 0.8988 2.2604 2.8339 

MS-SSIM 0.7335 0.9063 0.8977 2.4475 3.1503 

 

Dataset Size-Weighted Average 

 KRCC SRCC PLCC MAE RMSE 

SSIM 0.6574 0.8413 0.8360 1.9729 2.5504 

PSNR 0.5220 0.6943 0.7017 2.9016 3.7018 

MAD 0.7300 0.8941 0.8935 1.5148 2.0085 

FSIM 0.7431 0.9111 0.9037 1.6559 2.1476 

VIF 0.6858 0.8432 0.8747 1.7464 2.1999 

MS-SSIM 0.7126 0.8921 0.8833 1.8658 2.4015 

 

Direct Average 

 KRCC SRCC PLCC MAE RMSE 

FSIMC 0.7681 0.9265 0.9198 2.1347 2.7599 

 

Dataset Size-Weighted Average 

 KRCC SRCC PLCC MAE RMSE 

FSIMC 0.7491 0.9149 0.9072 1.6276 2.1090 
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Table 3. Evaluation of computation time 
 

Computation Time for an image of size 512*512 (in seconds/image) 

 SSIM PSNR MAD FSIM VIF MS-SSIM 

Time 0.0293 0.0035 2.0630 0.3508 1.3647 0.0834 

 

Computation Time for an image of size 512*512  (in seconds/image) 

 FSIMC 

Time 0.3776 

 

Computation Time for an image of size 512*512  (in seconds/image) 

 TMQI 

Time 0.4087 

 

We measured the average computation time required to 

evaluate the quality of images of size 512512 , 

Experiments were performed on a laptop with Intel 

Core i7 processor at 1.6 GHz. The software platform 

was MATLAB R2013a. The results are listed in Table 

3. 

8.  QUALITY ASSESSMENT OF 3-D IMAGES 

The number of digital 3-D images available for human 

consumption has increased at a fast pace in recent 

years. According to the statistics collected by the 

motion picture association of America (MPAA), half of 

all moviegoers saw at least one 3- D movie in 2011, 

and those under 25 years old saw more than twice that 

number [112]. In order to meet this increasing demand, 

the number of 3-D movies has been increasing at least 

50 percent annually over the recent years [112,113]. 

Aside from movies, other forms of 3-D contents are 

finding their way into our daily lives via 3-D television 

broadcasts [114], and 3-D on mobile devices [115]. 

These contents bring with themselves a variety of 

complex technological and perceptual problems. For a 

consistent, comfortable, and plausible perception of 

depth, a large number of parameters in the imaging and 

processing stages need to be determined in a 

perceptually meaningful way. However, due to some 

inevitable trade-offs in real-world applications, the 

visual quality of these 3-D contents will degrade. 

Therefore, in order to maintain and improve the quality 

of experience (QoE) of 3- D visual contents, subjective 

and objective quality assessment methods are needed. 

These methods are of high importance for display 

manufacturers, content providers, and service 

providers. Compared to its 2-D counterpart, 3-D IQA 

faces more new challenges. These include depth 

perception, virtual view synthesis, and asymmetric 

stereo compression. One natural question is the 

applicability of 2-D IQA methods to the 3-D images. 

The works in [116,117] try to answer this question. The 

results demonstrated that 2-D objective IQA methods 

can well evaluate the quality of 3-D images only in the 

case of symmetric images, i.e., the PSNR’s of the two-

eye images are approximately the same. 
Some of the proposed quality descriptors of 3-D 

contents that quantify the overall viewing experience of 

a 3-D representation are as follows [118]:  
 Depth quality: the depth characteristics of 3-

D data need to be examined in order to 

validate the suitability of the content for 

viewing [119]. 
 Naturalness: the limit that enables viewers to 

easily fuse left and right views into a natural-

looking 3-D image with smooth depth 

representation [120]. 
 Presence: a natural-looking 3-D scene 

enhances the viewers’ sense of presence 

[121]. 
 Value-add: the perceived benefit of 

displaying a content in 3-D over displaying 

the same content in 2-D [122]. 
 Discomfort: the overall subjective perception 

resulting from physiological and/or 

psychological effects of 3-D viewing content 

[123]. 
 Overall 3-D QoE as typically measured in 

terms of DMOS. 
It is important to note that there are no commonly 

accepted methods for quantifying the above descriptors 

yet. However, Standards have recently been introduced 

to address this issue. Here, we summarize some of 

these standards:  
 ITU-R [124] has released a new 

recommendation on subjective quality 

assessment of 3-D TV systems. The focus of 

this recommendation is on picture quality, 

depth quality, and visual comfort. 

 The VQEG is addressing three main areas, 

including finding ground truth data for 

subjective evaluation methodology 

validation, validating objective 3-D video 

quality evaluation, and determining the 

effects of viewing environment on 3-D 

quality assessment. 
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 IEEE initiated work on a standard for quality 

assessment of 3-D contents, 3-D displays, and 

3-D devices based on human factors. This 

work looks into characteristics of display, 

device, environment, content, and viewers. 

The classification of 2-D IQA methods (namely FR-

IQA, RR-IQA, and NR-IQA) can be used in the case of 

3-D images. However, the definitions do not apply in 

quite the same way [125]. This is due to the fact that it 

is impossible to gain access to the reference and test 3-

D images as they are perceived. This results since we 

only can access the left and right views of a scene, and 

we cannot access the Cyclopean image, i.e., a single 

mental image of a scene generated by the brain through 

combining the images received from the two eyes. This 

applies to both, the reference and test Cyclopean 

images. Therefore, the problem of 3-D IQA is double-

blind [125].  
The first objective IQA for 3-D images is presented in 

[126]. In this work, a quality metric which uses the 

reliable 2-D IQA methods (including SSIM [8], UQI 

[52,53], method in [45], and the metric in [38]) is 

proposed. It is noteworthy that this method doesn’t take 

into account the depth information of 3-D images.  
Based on utilized information, 3-D IQA methods can 

be classified in two categories [127]: methods based on 

color information only, and methods based on color 

and disparity information. 

  

8.1.  Methods based on color information 

The methods in this category are based solely on color 

information [128-132]. In [128], quality scores on the 

SIFT-matched feature points are computed. In [129], a 

multiple channel model is employed to estimate the 3-

D image quality. In [130], an RR-IQA method for 3-D 

images is proposed. This method makes use of 

extracted edge information. In [131], the Gabor 

response of binocular vision is modeled for measuring 

the quality of 3-D images. In [132], a state of the art 3-

D IQA method for 3-D video compression is proposed. 

 

8.2.  Methods based on color and disparity 

information 
The methods in this category make use of both, color 

and disparity information in order to evaluate the 

overall quality of 3-D data [133-135]. In [133], an RR-

IQA method for 3-D images is proposed which is based 

on eigenvalues/eigenvectors analysis. In [134,135], two 

NR-IQA methods for 3-D images are proposed. 

 

8.3.  Subjective 3-D image quality datasets 
In this subsection, some of the subjective 3-D image 

quality datasets are introduced:  
LIVE 3-D IQA dataset [136] consists of 20 reference 

image, 5 distortion categories, and total number of 365 

test images. The quality scores in this dataset are in the 

form of DMOS. This dataset is the first publicly 

available 3-D IQA dataset that makes use of true depth 

information along with stereoscopic pairs and human 

opinion scores. Distortion types in this dataset are: 

JPEG compression, JPEG2000 compression, additive 

white Gaussian noise, Gaussian blur, and fast fading 

model based on the Rayleigh fading channel.  
IVC 3-D images dataset [137] consists of 6 reference 

images and 15 distorted version of each image plus 

their respective subjective scores. The distortion types 

in this dataset are: JPEG compression, JPEG2000 

compression, and blurring. Total number of images in 

this dataset is 96.  
To the best of our knowledge, the only 3-D dataset for 

HDR images and their corresponding tone-mapped 

versions is available in [138]. In this dataset, 9 

reference 3-D HDR images are tone-mapped using 8 

TMOs. The total number of images in this dataset is 81. 

Moreover, the statistics of these images (including min, 

max, and mean luminance) and their histograms are 

also available in this dataset. 

  

9.  CONCLUSION 

The growing demand for digital image technologies in 

applications like medical imaging, biomedical systems, 

monitoring, and communications has highlighted the 

need for accurate quality assessment methods. Many 

processes can affect the quality of images, including 

compression, transmission, display, and acquisition. 

Therefore, accurate measurement of the image quality 

is an important step in many image-based applications. 

IQA aims at quantifying the quality of image signals 

including 3-D images, retargeted images, and HDR 

images by means of objective quality metrics. The goal 

of objective IQA is to design algorithms that can 

automatically evaluate the quality of images in a 

perceptually consistent manner. These methods are 

crucial to multimedia systems since they remove or 

reduce the need for extensive subjective evaluation.  
In this paper, an overview of subjective and objective 

IQA was presented. Four most commonly used 

subjective IQA methods were briefly introduced. 

Moreover, the three main categories of objective IQA 

were described. 3-D, Color and HDR images quality 

assessment were also reviewed. The central theme of 

this study was on FR-IQA methods and we thoroughly 

described 9 methods of this category. The prediction 

performance and computation time of these methods 

were also evaluated.  
IQA has been a rapidly developing field of research in 

recent years. The number of algorithms that are being 

proposed are growing at a fast pace. Of course, only a 

small number of methods have been discussed in detail 

in this paper. The selected methods are widely cited in 

the literature and have been reported to have good 

performance by researchers. Another criterion for our 



Majlesi Journal of Electrical Engineering                                                                            Vol. 9, No. 1, March 2015 

 

79 

selection is that the source code for most of these 

methods has been made available online, so the 

interested readers can implement them and regenerate 

the reported results. There are number of factors that 

need to be taken into account when selecting an IQA 

method for a specific application. Some of these factors 

include the availability of the reference image, 

computation time, implementation complexity, 

application goal, and quality prediction accuracy. By 

considering all these factors, one can make the right 

choice for each specific application.  
We have also provided a brief introduction to 3-D IQA, 

and summarized the issues associated with this field of 

research. It is important to note that with the advances 

in 3-D coding, transmission, and displays, the quality 

assessment of 3-D images has been studied 

independently for each of these areas. A number of 

elements must be taken into account for achieving a 3-

D IQA method. Among these are: dependencies 

between display, content, and the viewer, also 

individual user constraints, preferences, and perception 

of depth must be considered. Once we are able to 

further develop our knowledge of the perception of 

stereoscopic distortions, we can achieve better 3-D IQA 

algorithms.  
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