Thyristor Controlled Series Capacitor For Generation Reallocation Using Firefly Algorithm to Avoid Voltage Instability

 Venkateswara Rao Bathina¹, Venkata Nagesh Kumar Gundavarapu²
 1- GIT, GITAM University, EEE Department, Visakhapatnam, India Email: bvrao.eee@gmail.com
 2- GIT, GITAM University, EEE Department, Visakhapatnam, India Email: gundavarapu_kumar@yahoo.com (Corresponding author)

Received: June 2014

Revised: Jan. 2015

Accepted: March 2015

ABSTRACT:

Modern electric power utilities are facing many challenges due to increasing complexity in their operation and structure. In the recent times, one of the problems that got wide attention is the power system instabilities due to lack of new transmission facilities. Existing transmission facilities can be better utilized by installing Flexible AC Transmission System (FACTS) devices. The Thyristor Controlled Series Capacitor (TCSC) is the most effective FACTS device used to increase the power transferable capabilities of the transmission line. This paper presents a sensitivity analysis based on Complex Power Flow Sensitivity Index (CPSI) calculation for placing the TCSC at an appropriate location. Once the location for installing the TCSC is determined, the optimal tuning of the TCSC and the impact of TCSC on generation reallocation is determined through Firefly Algorithm. This Algorithm was implemented on multi objective function to obtain the Optimal Power Flow. The multi objective function consists of total real power loss, total voltage magnitude deviations, the fuel cost of total real power generation and the branch loading. Simulations have been carried out in MATLAB environment for the IEEE 57-bus system. The results have been taken for Firefly Algorithm based Optimal Power Flow without and with TCSC. The results obtained with Firefly Algorithm were compared with Genetic Algorithm (GA).

KEYWORDS: Firefly Algorithm, Optimal placement, Sensitivity index, TCSC.

1. INTRODUCTION

Modern electric power utilities are facing many problems due to increasing complexity in their operation and structure. In recent years, the transmission lines are operated under the heavily stressed condition, hence there is a risk of consequent voltage instability in the power network. Conventional power systems are controlled mechanically [1], [2]. Mechanical devices are inferior to static devices as they tend to wear out quickly. This necessitates power flow control to shift from mechanical devices to static devices. Static devices called the Flexible Alternating Current Transmission System (FACTS) device [3] were developed, capable of effectively controlling the load flow distribution and the power transfer capability. The FACTS device performance depends upon its location and parameter setting. The power electronic based FACTS introduced in 1980's, provided a highly efficient and economical means to control the power transfer in interconnected AC transmission systems [4].

Power flow through an AC line is a function of phase angles, bus voltages and line impedance. Using FACTS devices, these variables can be effectively and efficiently controlled. A FACTS device in a power system improves voltage stability, reduces the power loss and also improves the stability of the system. However, controlling power flow is the main function of FACTS device [5], [6].

Although several methods were suggested in literature to protect power system networks against voltage collapse, the placement of FACTS controllers has been established as an effective means. However, due to high cost of the FACTS devices, it is important to optimally place these controllers in the system. The Thyristor Controlled Series Capacitor (TCSC) is one of the most effective Flexible AC Transmission System devices. It regulates the power flow through the transmission line. Many authors have found the use of TCSC. The TCSC is used to damp power oscillations and to improve the transient stability of power systems. The optimal placement of Thyristor Controlled Series Compensators

in transmission systems is formulated as a multiobjective optimization problem to minimize the losses [7], [8].

This paper presents a Sensitivity analysis based on Complex Power Flow Sensitivity Index (CPSI) proposed for placing the TCSC at appropriate location. A new metaheuristic optimization technique called the Firefly algorithm is introduced to find the optimal size of the TCSC device and also for generation reallocation to improve stability. Its performance is compared with the Genetic Algorithm (GA) technique. The real and reactive power generation values and bus voltage limits for generator buses are taken as constraints, along with reactance limits of the TCSC, during the optimization. Computer simulations using MATLAB were done for the IEEE 57 bus system. In this paper, a new line-based voltage stability index is proposed to evaluate the stability condition in a power system.

2. PROBLEM FORMULATION

In this paper, a multi objective function is formulated, to find optimal size of the TCSC device by minimizing certain objective functions subject to network constraints. The multi-objective problem can be written mathematically as follows,

2.1. Objective function

For a given system load, we look for the best configuration of TCSC device and generation reallocation by minimizing the following objective function:

 $Min(F) = min(W_1 * FC + W_2 * F_{Ploss} + W_3 * F_{VD} + W_4 * F_S)$ (1) Where W_1 , W_2 , W_3 , W_4 are the weighting factors $W_1 + W_2 + W_3 + W_4 = 1$ $W_1 = W_2 = W_3 = W_4 = 0.25$

$$X_{TCSC}^{min} \le X_{TCSC} \le X_{TCSC}^{max}$$

$$\bullet \quad Fuel \ cost:$$
(2)

The objective function considering the minimization of total real power generation cost can be represented by following quadratic equation

$$FC = \min\left(\sum_{i=1}^{ng} a_i P_{Gi}^2 + b_i P_{Gi} + c_i\right)$$
(3)
here ng = no. of the generator buses

a, b, c are the fuel cost coefficients of a generator unit

• Active Power Loss:

The objective of this function is to minimize real power losses in the transmission lines. It can be expressed as

$$F_{PLoss} = \min\left(\sum_{k=1}^{ntl} \operatorname{real}\left(S_{ij}^{k} + S_{ji}^{k}\right)\right)$$
(4)

Where ntl=no. Of the transmission lines

 S_{ii} is the total complex power, flows from bus i to bus j in line k.

• *Voltage Deviation:*

To have a good voltage performance, the voltage

deviation at each bus must be made as small as possible. The Voltage Deviation (VD) can be expressed as.

$$F_{VD} = \min(VD) = \min\left(\sum_{k=1}^{N} : V_k - V_k^{ref} : ^2\right)$$
(5)
V_k is the voltage magnitude at bus k

 V_k^{ref} is the reference voltage magnitude at bus k

N is the number of buses

• Branch loading:

The goal of minimizing the branch loading in the transmission lines is to enhance the security level of the system. It can be expressed as

$$F_{S} = \min(S) = \min\left(\sum_{k=1}^{ntl} \left(\frac{:S_{k}:}{:S_{k}^{max}:}\right)^{2}\right)$$
(6)

 S_k is the apparent power in line k and S_k^{max} is the maximum apparent power in line k.

- Equality constraints:
- (7)

 $\sum_{i=1}^{N} P_{Gi} = \sum_{i=1}^{N} P_{Di} + P_L$ Where i=1,2,3,....,N and N = no. of the Buses $\sum_{i=1}^{N} Q_{Gi} = \sum_{i=1}^{N} Q_{Di} + Q_L$ (8)Where $i=1,2,3,\ldots,N$ and N = no. of the buses

P_L is total active power losses

Q_L is total reactive power losses

• Inequality constraints:

$$\circ$$
 Generator bus Voltage limits:
 $V_{Gi}^{min} \leq V_{Gi} \leq V_{Gi}^{max}$ (9)
Where i=1,2,3,.....,N and N = no.of the buses

Real power generation limit: 0

$$P_{Gi}^{\min} \le P_{Gi} \le P_{Gi}^{\max}$$
(10)
Where i=1.2.2 are and non-no of the generator

Where $i=1,2,3,\ldots,ng$ and ng= no.of the generator buses

• Reactive Powergeneration limits:

$$Q_{Gi}^{\min} \le Q_{Gi} \le Q_{Gi}^{\max}$$
 (11)

2.2. Fast Voltage Stability Index (FVSI)

Several techniques were proposed to analyse the static voltage stability condition in a system. Some of them were utilized the voltage stability indices referred either to a bus or to a line as an indicator to voltage collapse. In this paper, a new line-based voltage stability index is implemented to evaluate the line stability condition in a power system. This index is called as Fast Voltage Stability Index (FVSI). The system becomes unstable if FVSI is equal to or greater than unity.

FVSI can be expressed as

$$FVSI_{ij} = \frac{4 Z^2 Q_j}{V_i^2 x}$$
(12)

Where Z is the line impedance

X is the line reactance

Q_j is the reactive power at bus j (receiving end bus)

Vi is the voltage magnitude at bus i (sending end bus) FVSI value of any line close to unity indicates that the system is prone to voltage collapse. Therefore, FVSI

has to be maintained less than unity in order to maintain a stable system.

3. THYRISTOR CONTROLLED SERIES CAPACITOR

Thyristor controlled series capacitor (TCSC) controller consists of a series capacitor paralleled by a thyristorcontrolled reactor in order to provide smooth variable series compensation. The basic Thyristor-controlled series capacitor scheme was proposed in 1986 by Vithaythil along with others. Apart from enhancing system stability, the TCSC also increases the line power transfer capability. The basic module of a TCSC is shown in Fig. 1. It consists of three components: capacitor banks C, bypass inductor L and bidirectional thyristors. Thyristor inhibition in the TCSC module enables it to have a smoother control over its reactance in response to system parameter variations [9, 10].

Fig.1. Basic TCSC model

 $X_C =$ fixed capacitive impedance

 X_L = variable inductive impedance

 $X_{\text{TCSC}} = \frac{X_{\text{C}} X_{\text{L}}}{X_{\text{L}} - X_{\text{C}}}$ (13)

Where X_{TCSC} = reactance of TCSC

However, it may be argued that the primary function of the TCSC is to reduce the electrical length of the compensated transmission line. So as to increase power transfers significantly with increased transient stability margins. The TCSC power flow model presented in this section is based on the simple concept of a variable series reactance, the value of which is adjusted automatically in order to constraint the power flow across the branch is specified [11, 12]. The amount of reactance is determined efficiently using Firefly Algorithm. The changing reactance X_{TCSC} , shown in Figure 2, represents the equivalent reactance of all the series-connected modules making up the TCSC, when operating in either the inductive or the capacitive regions [13], [14].

Fig. 2. Thyristor-controlled series capacitor equivalent circuit: Inductive and capacitive operative regions

The transfer admittance matrix of the variable series compensator shown in Figure 2 is given by

$$\begin{bmatrix} \mathbf{I}_{k} \\ \mathbf{I}_{m} \end{bmatrix} = \begin{bmatrix} \mathbf{j} \mathbf{B}_{kk} & \mathbf{j} \mathbf{B}_{km} \\ \mathbf{j} \mathbf{B}_{mk} & \mathbf{j} \mathbf{B}_{mm} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{k} \\ \mathbf{V}_{m} \end{bmatrix}$$
(14)

For capacitive operation, we have

$$B_{kk} = B_{mm} = \frac{1}{X_{TCSC}}$$
(15)

$$B_{km} = B_{mk} = -\frac{1}{x_{TCSC}}$$
(16)

For inductive operation the signs are reversed

The active and reactive power equations at bus k are:

$$P_{k} = V_{k}V_{m}B_{km} \sin(\theta_{k} - \theta_{m})$$
(17)

$$Q_{k} = -V_{k}^{2}B_{kk} - V_{k}V_{m}B_{km}\cos(\theta_{k} - \theta_{m})$$
(18)

Where $\theta_k =$ phase angle at bus k.

 $\theta_{\rm m}$ = phase angle at bus m.

The series reactance regulates the amount of active power flowing from bus k to bus m. The change in reactance of TCSC is

$$\Delta X_{\text{TCSC}} = X_{\text{TCSC}}^{i} - X_{\text{TCSC}}^{(i-1)}$$
(19)

The state variable X_{TCSC} of the series controller is updated at the end of each iterative step according to:

$$X_{\text{TCSC}}^{i} = X_{\text{TCSC}}^{(i-1)} + \left(\frac{\Delta X_{\text{TCSC}}}{X_{\text{TCSC}}}\right) X_{\text{TCSC}}^{(i-1)}$$
(20)

 X_{TCSC}^{i} is the reactance of TCSC at ith iteration. $X_{TCSC}^{(i-1)}$ is the reactance of TCSC at (i-1)th iteration.

4. COMPLEX POWER FLOW SENSITIVITY INDEX FOR OPTIMAL PLACEMENT OF TCSC

A method based on the sensitivity, the sum of variations of complex power flow in all lines with respect to the change of reactance of a line is proposed. The TCSC has been modelled as a variable series reactance X_{TCSC} . By installing TCSC in line which may decrease or increase the total line reactance. The index is computed

using Newton Raphson power flow. CPSI at a line j is given as:

$$CPSI_{j} = \sum_{n=1}^{nn} \left(\frac{\Delta S_{n}}{\Delta X_{j}} \right)$$
(21)

Where $n=1, 2, 3, \dots$, ntl and ntl = no.of the transmission lines.

 ΔS_n is change in complex power flow in line n ΔX_i is change in reactance of the line j

This index is calculated for all the lines. The minimum and maximum values of CPSI are obtained. Normalized complex power flow sensitivity index is defined as:

$$CPSI_{n}(j) = \frac{CPSI_{j} - CPSI_{min}}{CPSI_{max} - CPSI_{min}}$$
(22)

Where $\text{CPSI}_n(j)$ is the normalized complex power flow sensitivity index at line j.

Highest normalized complex power flow sensitivity index is the best location for placement of TCSC. From the Table I it is observed that highest positive value of $CPSI_n(j)$ is 1 for line number 76 and TCSC is placed in line number 76. Complex power flow sensitivity Index values for all lines in the IEEE 57 bus system are given in Table 1.

Table 1. Complex power flow sensitivity Index values for all lines in the IEEE 57 bus system

S .No	Line No	CPSI _n (j)	S. No	Line No	CPSI _n (j)
1	76	1	41	80	0.8837
2	36	0.9987	42	32	0.88
3	73	0.9986	43	17	0.8666
4	35	0.9982	44	58	0.863
5	46	0.9951	45	6	0.8616
6	31	0.9915	46	50	0.8593
7	44	0.991	47	68	0.8551
8	54	0.99	48	39	0.8506
9	29	0.9889	49	15	0.8426
10	19	0.9836	50	10	0.8324
11	74	0.9833	51	14	0.832
12	43	0.9804	52	2	0.8316
13	30	0.9759	53	26	0.8217
14	20	0.9755	54	47	0.8142
15	56	0.9733	55	59	0.8055
16	75	0.9679	56	24	0.8032
17	55	0.9675	57	65	0.7947
18	11	0.9582	58	22	0.794
19	77	0.9523	59	60	0.7883

20	34	0.9514	60	41	0.7746
21	38	0.951	61	21	0.7716
22	69	0.945	62	25	0.7583
23	70	0.9434	63	40	0.7499
24	64	0.9412	64	57	0.7478
25	42	0.9351	65	28	0.7311
26	16	0.9348	66	48	0.7248
27	67	0.9291	67	18	0.7194
28	66	0.9283	68	8	0.7106
29	27	0.9244	69	79	0.6948
30	78	0.9241	70	37	0.6865
31	7	0.9219	71	52	0.6816
32	9	0.9195	72	13	0.6612
33	12	0.9141	73	51	0.6058
34	71	0.9101	74	3	0.5956
35	5	0.9079	75	49	0.5916
36	4	0.8954	76	45	0.5844
37	62	0.8922	77	53	0.4902
38	63	0.8914	78	1	0.4612
39	23	0.8909	79	61	0.353
40	72	0.8868	80	33	0

5. FIREFLY ALGORITHM

The Firefly algorithm is a kind of stochastic search techniques based on the mechanism of natural behavior of fireflies. The firefly algorithm is a metaheuristic algorithm, enthused by the sporadic behavior of fireflies. The primary objective for a firefly's flash is to act as a signal system to entice other fireflies [15], [16]. This algorithm is based upon the following assumptions those are all fireflies are unisexual, so that one firefly will be a focus for all other fireflies. Charismatic is proportional to their vividness, and for any two fireflies, the less bright one will catch the fancy of the brighter one. However, the vividness can decrease as their distance increases. If there are no fireflies dazzling near a given firefly, then it will move haphazardly and the vividness should be associated with the objective function. Vividness is proportional to the value of search-space function in case of the maximization problem.

There are two important disputes in firefly algorithm, first is light intensity variation and other is vividness variation. It is assumed that vividness of the firefly is ascertained by its vividness, which in turn associated with search-space function. The vividness of the firefly is calculated as an objective value F(x) at a particular location x. Vividness is relative and it varies with distance between two fireflies. Light is also absorbed by the air and it also gets decreased with increasing distance, so vividness is allowed to show a discrepancy with the degree of absorption. The firefly algorithm function can be described as: initially consider an objective function F(x). Generate an initial population of n fireflies X_{i} , i=1, 2, 3...n. Calculate light intensity at X_i which is determined by F (X). Delineate the light

Vol. 9, No. 2, June 2015

absorption coefficient. Now compare the light intensities of fireflies and move the firefly which is having less light intensity towards the brighter one. Then vary the vividness with distance. Now echelon the fireflies and discover the best solution. It may create as the best. In the optimization problem where the numbers of fireflies are greater than the number of local optima, the initial locations of n fireflies should be distributed relatively uniformly throughout the entire search space. During the execution, the fireflies converge into all of these local optima, the global optima is determined. Firefly algorithm will approach the global optima when n tends to infinite and number of iterations is greater than 1 but in reality it has abrupt convergence. The basic steps of the FA can be summarized by the pseudo code [17].

The step by step implementation of Firefly algorithm can be described as follows:

Step I. Initialize the load flow data, and Firefly parameters such as the size of the population (N), the maximum number of generations (N_gen) , Randomness, Absorption coefficient and the number of variables to be optimized (D).

Step II. Generate the initial population of N individuals randomly in the feasible area. Consider the optimized variables. (i.e. the real and reactive power generation of the generator buses, the parameter setting of the TCSC). Therefore, all the solutions are practicable solutions and the object is to find the best possible one.

Step III. Evaluate the fitness for each individual in the population according to the objective function.

Step IV. Generate a new resident.

Step V: Stop the process and print the best individual if the stopping criterion is satisfied, else go back to step IV.

6. RESULTS AND DISSCUSSION

In order to find the use of the Firefly Algorithm for Optimal Power Flow with the TCSC, the IEEE57 bus system is taken. An OPF program using Firefly algorithm is implemented in MATLAB software without and with the TCSC. The results are presented and analysed. The input parameters of Firefly Algorithm for the test system are given in the Table 2. The generator characteristics of the IEEE 57 bus are given in Table 3.

Table 2. Input	parameters of Firefly.	Algorithm
----------------	------------------------	-----------

S. No	PARAMETERS	QUANTITY
1	NUMBER OF FIREFLIES	20
2	MAX GENERATION	50
3	Alpha	0.5

Vol. 9, No. 2, June 20	15	15	1]	Ð	2	2	e	ın	Γu	J	2,	0.	N	9.		ol	V
------------------------	----	----	----	---	---	---	---	----	----	---	----	----	---	----	--	----	---

4	Beta	0.5
5	Gама	1

 Table 3. Generator Characteristics of IEEE 57 Bus

Generator bus number	a (\$/MW ² /hr)	b (\$/MW/hr)	c (\$/hr)	P_G^{min} (MW)	P_G^{max} (MW)
1	0.0775	20	0	0	575
2	0.01	40	0	0	100
3	0.25	20	0	0	140
6	0.1	40	0	0	100
8	0.02222	20	0	0	550
9	0.01	40	0	0	200
12	0.32258	20	0	0	410

In IEEE 57 bus system, bus 1 is considered as slack bus and buses 2,3,6,8,9,12 are considered as generator buses. It consists of 50 load buses and 80 transmission lines. Considering all the parameters of the system, generation reallocation is carried out with a multi objective function which is formed by considering the cost of the real power generation, active power losses, voltage deviation and branch loading. Results are presented in Table 4 to 6.

As metaheuristic algorithms are based on probabilistic approach, the solutions obtained are not unique. The Firefly algorithm based Optimal Power Flows is run 50 times and its best, worst and average values are determined. The best value is considered for Optimal Power Flow solution.

Table 4. Objective function parameters of multi objective optimization using FA-OPF considering without TCSC in IEEE 57 bus system

	FA-OPF without TCSC				
Variables	(Best)	(Average)	(Worst)		
PG1(MW)	276.2743	276.3723	277.4703		
PG2(MW)	46.3705	46.624	46.4775		
PG3(MW)	90.1467	90.28095	91.4152		
PG6(MW)	51.1067	51.25265	51.7986		
PG8(MW)	549.4493	549.6961	549.9428		
PG9(MW)	152.2256	152.6625	153.0993		

PG12(MW)	76.2740	76.97365	77.6733
Total real power generation (MW)	1241.847	1243.862	1247.877
Total reactive power generation (MVAR)	341.5264	355.8214	382.1164
Total real power generation cost (\$/hr)	46977.18	47002.45	47027.71
Active power Loss (MW)	46.0472	48.0621	52.0772
Voltage deviation (p.u)	5.7421	5.89075	6.0394
Branch loading (p.u)	13.3127	13.50345	13.8942
FVSI value for all lines (p.u)	7.6171	7.7984	8.1797
Reactance of TCSC			
Objective function value	11760.57	11767.01	11773.44

 Table 5. Objective function parameters of multi

 objective optimization using FA-OPF considering with

 TCSC in IEEE 57 bus system

FA- OPF with TCSC connected in Line						
		number 76				
Variables	(Best)	(Average)	(Worst)			
PG1(MW)	258.3014	259.2575	260.2136			
PG2(MW)	73.8020	74.09415	74.3863			
PG3(MW)	74.7152	74.79305	74.8709			
PG6(MW)	65.3063	65.47055	65.6348			
PG8(MW)	549.9490	549.7355	549.5220			
PG9(MW)	141.3715	141.5272	141.6829			
PG12(MW)	77.1977	77.3757	77.5537			
Total real power generation (MW)	1240.643	1242.254	1243.864			
Total reactive power generation (MVAR)	309.4265	318.978	368.5294			
Total real power generation cost (\$/hr)	46412.35	46483	46553.63			
Active power Loss (MW)	44.8432	46.4538	48.0644			
Voltage deviation (p.u)	4.8530	5.095	5.7370			
Branch loading (p.u)	12.7971	13.0313	13.2655			
FVSI value for all lines (p.u)	7.3326	7.5435	8.1544			
Reactance of TCSC (p.u)	0.3111	0.3238	0.3405			
Objective function value	11618.96	11637.19	11655.42			

The results from Table 4, 5, 6 show that , for minimization of the multi objective function by using Firefly algorithm with TCSC, the generation cost of the

Vol. 9, No. 2, June 2015

best solution is 46412.3565\$/hr with 44.8432 MW line loss, 4.8530 voltage deviation and 12.7971 branch loading. The results in Table VI indicate the values of the different parameters of the multi objective function using Firefly algorithm and genetic algorithm considering without & with TCSC. From this table it is observed that Firefly algorithm gives better results compared to genetic algorithm.

 Table 6. Comparison of objective function parameters using GA and FA-OPF considering without and with TCSC in IEEE 57 bus system

	TCSC III		s system	
Variables	GA-OPF without TCSC	FA-OPF without TCSC	GA OPF with TCSC at line no 76	FA- OPF with TCSC at line no 76
PG1(MW)	242.8286	276.2743	241.8295	258.3014
PG2(MW)	100.0000	46.3705	100.0000	73.8020
PG3(MW)	71.9212	90.1467	69.8740	74.7152
PG6(MW)	100.0000	51.1067	100.0000	65.3063
PG8(MW)	550.0000	549.4493	550.0000	549.9490
PG9(MW)	110.6312	152.2256	110.6312	141.3715
PG12(MW)	69.8740	76.2740	71.9212	77.1977
Total real power generation (MW)	1245.255	1241.847	1244.255	1240.643
Total reactive power generation (MVAR)	354.4808	341.5264	321.1757	309.4265
Total real power generation cost (\$/hr)	47701.16	46977.18	47689.09	46412.35
Active power Loss (MW)	49.4550	46.0472	49.2455	44.8432
Voltage deviation	5.9295	5.7421	4.9056	4.8530
Branch loading (p.u)	13.8480	13.3127	14.1600	12.7971
FVSI value for all lines (p.u)	7.9431	7.6171	7.5205	7.3326
Reactance of TCSC (p.u)			0.4201	0.3111
Objective function value	11942.59	11760.57	11939.35	11618.96

From Figure 3 it is observed that the active power losses of the system are reduced by an appreciable amount with the placement of TCSC in Firefly algorithm based Optimal Power Flow.

Fig. 3. Comparisons of Real Power Losses

Table 7 indicates the reactance of TCSC for different specified real power flows through the line. From this Table it has been observed that by increasing power flow through the line, reactance of TCSC value has been decreased.

Table 7. Reactance of TCSC for Different Methods
with Specified Power Flow in TCSC (TCSC placed in
Line number 76)

		/	
S.No	Real power flow through TCSC installed line	X _{TCSC} (GA-OPF with TCSC)	X _{TCSC} (FA-OPF with TCSC)
1	P=1MW	4.6656	4.5355
2	P=1.5MW	2.5481	2.2900
3	P=2MW	1.4457	1.2916
4	P=2.5MW	0.7341	0.5922
5	P=3MW	0.4201	0.3111
6	P=3.1MW	0.1383	0.0759

Algorithm					
function	β=0.2 γ=1	β=0.2 γ=1	β=0.5 γ=1	β=0.5 γ=1	
Average	11776.5986	11783.926	11776.8334	11764.9974	
Worst	11828.7426	11787.3778	11776.8334	11772.8469	
Best	11768.19	11782.542	11766.5818	11760.5724	
* α , β = randomness coefficients, γ = absorption					

 Table 8. Best, Worst and Average of the Objective

 Function value for IEEE57-Bus System Using Firefly

Vol. 9, No. 2, June 2015

* α , β = randomness coefficients, γ = absorption coefficient

Table 8 represents the objective function values with varying Firefly algorithm parameters and it is observed that taking randomness coefficients equal to 0.5 and absorption coefficient equal to one in Firefly algorithm gave better results compared to other values, so in this analysis Firefly algorithm parameters are considered as above values.

Figure 4 and Figure 5 show the convergence of the objective function using Firefly algorithm and Genetic algorithm considering without and with TCSC respectively. From these figures it is observed that Genetic Algorithm takes more number of generations to converge when compared to Firefly algorithm. Firefly Algorithm gives better result and converges quickly.

Fig. 4. Convergence of the Objective Function using FA and GA with TCSC

Fig. 5. Convergence of the objective function using FA and GA without TCSC

Figure 6 represents the comparison of voltage profiles with and without TCSC using Firefly Algorithm. It is observed that by installing TCSC optimally in power systems, it improves the voltage profile of the buses. Figure 7 represents the Fast Voltage Stability Index for lines with and without TCSC using Firefly Algorithm. It is observed that by incorporating the TCSC in the system, voltage stability has been improved.

Fig. 6. Comparison of the Voltage Magnitudes with and without TCSC

Fig. 7. Comparison of the FVSI with and without TCSC using Firefly Algorithm

7. CONCLUSION

In this paper, the system performance is valued with the placement of series compensating device TCSC using Genetic and Firefly algorithms. The placement of the TCSC is done through Complex Power Flow Sensitivity index, while sizing and generation reallocation is obtained through Firefly and Genetic algorithms. Optimal Power Flow solutions for the system are obtained by considering a multi objective function. The results obtained for the IEEE 57 bus systems using the proposed methods without and with TCSC disclose a noticeable reduction in real power losses and increase in power transfer capability in transmission lines by incorporating TCSC in the system. In view of the technique employed the Firefly

Vol. 9, No. 2, June 2015

algorithm gave a better performance than Genetic algorithm.

REFERENCES

- [1] P., Kundur, Power System Stability and Control, New York: McGraw-Hill, Inc, 1993.
- [2] G. W. Stagg, A. H., El-Abid, "Computer Methods in Power System Analysis", McGraw-Hill Book Co, 1968.
- [3] E., Acha, H., Ambriz-Perez, and C., Fuerte-Esquivel, "A Thyristor Controlled Series Compensator Model for the Power Flow Solution of Practical Power Networks", *IEEE Trans on Power Systems*, Vol. 15, No. 1, February 2000, pp. 129-136.
- [4] H., Ambriz-Pérez, E., Acha, and C., Fuerte-Esquivel, "TCSC-firing angle model for optimal power flow solutions using Newton's method", *International Journal of Electrical Power & Energy Systems*, Vol. 28, No. 2, 2006, pp. 77-85.
- [5] M., Abdel-Moamen, N. P., Padhy, "Power Flow Control and Solutions with Multiple and Multi-Type FACTS Devices", *Electric Power Systems Research*, Vol. 74, 2005, pp. 341-351.
- [6] M. Basu, "Optimal power flow with FACTS devices using differential evolution", *Electrical Power Energy System*, Vol. 30, 2008, pp 150–156.
- [7] T. Niknam, M. R. Narimani, J. Aghaei, and R. Azizipanah-Abarghooee, "Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index", Published in *IET Generation, Transmission & Distribution*, IET Generation Transmission. Distribution, Vol. 6, Iss. 6, 2012, PP. 515–527.
- [8] S. Amely Jumaat, I. Musirin, M. Murtadha Othman, and H. Mokhlis, "Particle Swarm Optimization Techniques for Optimal Location and Sizing of Series Thyristor Controlled Capacitor", Conference International Innovation, on Research Management and Technology (ICIMTR2012), Malacca, Malaysia: 21-22 May, 2012, pp. 640-645.

- Vol. 9, No. 2, June 2015
- [9] S. Abazari, Gh. Shahgholian, and O. Ghanaati, "Optimal Choice and Allocation of FACTS Devices to Decrease Power Network Loss's Using Genetic Algorithms", *Majlesi Journal of Electrical Engineering*, Vol. 3, No. 1, 2009, pp. 45-52.
- [10] P. Christa, S. Jaya, and T. Venkatesh, "Multiobjective optimization problem for the Thyristor Controlled Series Compensators placement with multiple decision-making approaches", International Transactions on Electrical Energy Systems, Vol. 23, Iss. 2, 2013, pp. 249–269.
- [11] L. Gyugyi, N. G. Hingorani, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission System", *IEEE Press*, 2000.
- [12] R. C. Gerbex, A. J. Germond, "Optimal Location of Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms", *IEEE Transaction on Power Systems*, Vol. 16, August 2001, pp. 537-544.
- [13] X. Lei, D. Retzmann Jiang, "Stability improvement in power systems with non-linear TCSC control strategies", European Transactions on Electrical Power, Vol. 10, Iss. 6, 2000, pp. 339-345.
- [14] E. Acha, C. Fuerte Esquivel, and H. Ambriz-Perez, "FACTS: Modelling and Simulation in Power Networks", John Wiley & Sons, Ltd, 1999.
- [15] X.-S. Yang, "Firefly algorithms for multimodal optimization", Stochastic Algorithms: Foundation and Applications SAGA 2009, Vol. 5792, 2009, pp. 169-178.
- [16] X. S. Yang, "Firefly algorithm, Levy flights and global optimization", in Research and Development in Intelligent Systems XXVI, pp. 209-218, Springer, London, UK, 2010.
- [17] S. Lukasik, S. Zak, "Firefly algorithm for continuous constrained optimization tasks", in Proceedings of the International Conference on Computer and Computational Intelligence (ICCCI '09), pp. 97–106, Springer, Wroclaw, Poland, October 2009.