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ABSTRACT: 
In this paper, we investigated Indirect Model Reference Adaptive Neuro Control (IMRANC), for output electrical 

power tracking of a nonlinear non-affine Horizontal Axis Wind Turbine (HAWT). Firstly, the nonlinear system is 

identified by the Nonlinear Autoregressive network with Exogenous inputs (NARX) model that is a recurrent dynamic 

network.  Afterward an IMRANC is designed based on NARX identified model to reach the close loop system in 

order to get the desired reference model. The MLP networks are applied for both of model and controller subsystems 

and are then trained by the Marquardt-Levenberg Back-Propagation (LMBP) algorithm while the Tapped Delay Lines 

(TDL) components are considered over input and feedback paths. Finally, simulation results are presented to validate 

the effectiveness of the proposed method like robustness and good load disturbance attenuation and accurate tracking, 

even in the presence of parameter variations due to changing of hydraulic pressure in hydraulic pitch system and also 

disturbances on the system.  
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1. INTRODUCTION 

Among the renewable energy sources available today, 

wind power is the world's fastest growing. With an 

annual growth rate in installed wind energy capacity of 

30% on average throughout the past 10 years, wind 

turbines are definitely up and coming. For several 

reasons wind energy is growing fast: it is cheap, 

inexhaustible, widely distributed, clean, and climate 

friendly. Since the dynamics of the HAWT are highly 

nonlinear and non-affine and may contain uncertain 

parameters such as the damping ratio and undamped 

natural frequency of hydraulic pitch system due to 

changing hydraulic pressure, many efforts have been 

made in developing control designs to achieve the 

accurate tracking control of the HAWT. Over the last 

decade, there have been numerous progresses in the 

development of controllers for wind turbines as listed 

below: 

1. A. S. Yilmaz et al. [1] proposed pitch angle 

control in wind turbines above the rated wind 

speed by multi-layer perceptron and radial 

basis function neural networks. 

2. C. Sloth et al. [2] designed robust and fault-

tolerant linear parameter-varying control of 

wind turbines. 

3. H. Camblong [3] investigated the digital 

robust control of a variable speed pitch 

regulated wind turbine for above rated wind 

speeds. 

4. P. F. Odgaard et al. [4] used fault tolerant 

control of wind Turbines -a benchmark model. 

5. O. Ognyanova et al. [5] presented robust 

control of a wind turbine. 

6. K. E. Johnson et al. [6] proposed control of 

variable speed wind turbines.  

Furthermore other different dissertations of wind 

turbine control have been published in [7-10]. 

The main contribution of this research is indirect model 

reference adaptive neuro control of Horizontal Axis 

Wind Turbine (HAWT). In this paper the problem of 

output electrical power control of a wind turbine, which 

possesses not only parameter uncertainties but also 

external disturbances, is considered. The HAWT is a 

rapidly growing source of alternative energy that 
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presents numerous control problems. One of these 

problems is the HAWT dynamics that are extremely 

nonlinear. Some papers have recently used a T-S fuzzy 

model which can be utilized to approximate global 

behavior of highly complex nonlinear systems [11-19]. 

Whereas, in this research a recurrent NARX model will 

be designed for dynamic model of the HAWT. This 

study concentrates on developing a controller that can 

track a desired electrical power based on a recurrent 

NARX model of the HAWT and using the MLP 

network despite nonlinear system uncertainties. The 

NARX model is a mighty class of models which has 

been approved that they are well suited for modeling 

nonlinear systems [20-22].  
 First we consider a NARX model on behalf of the 

nonlinear real plant. Now if the error between outputs 

of original system and estimated model is small, then 

applying a control signal to the approximate model 

would cause a similar behavior of the real system. The 

IMRANC scheme then uses a NARX neural network to 

identify unknown parameters and a global neural 

network feedforward controller is designed and trained 

using LMBB algorithm, see [23-25]. Finally, 

simulation results show that the proposed method can 

effectively meet the performance requirements like 

robustness and good load disturbance rejection, good 

tracking and fast transient responses of the HAWT.  

The paper is organized as follows. The wind turbine 

model is presented in Section II and the problem 

statement is described in Section III. In section IV, the 

proposed control scheme is designed.  Simulation 

results of the closed-loop system with the proposed 

controller are presented in Section V and finally the 

paper is concluded in Section VI. 

 

2. WIND TURBINE MODEL   

The majority of classic HAWT are three-axis 

horizontal-axis wind turbines and as depicted in Fig. 1, 

structure of them consists of tower, nacelle, hub and 

blade. 

 

 
 

Fig.1. A horizontal-axis wind turbine (HAWT) 

 

The tower provides elevation for the rotor and with the 

obtained increased height, there would be more stable 

wind flows and height allows rotor dimensions to 

increase. The nacelle mounted on the tower contains 

the key components of the wind turbine, including the 

gearbox, the electrical generator, and the main shaft 

providing the mechanical interface to the hub carrying 

the blades. Hub is at the end of the nacelle. The blades 

are attached to the hub using bearings in order to allow 

the blades to be rotated around their own axis. The 

blade angle is referred to as the pitch angle. The blades 

of the rotor are influenced by the passing wind and 

kinetic energy is transferred via the hub to the rotor 

shaft. When the wind interacts with the blade 

aerodynamics, it will emerge a torque on the rotor, 

which is transferred to the generator via the drive train. 

The drive train consists of a low-speed shaft connecting 

the hub to the gearbox, and a high-speed shaft 

connecting the gearbox to the generator. The HAWT 

dynamics can be described as joined block models 

according to Fig. 2 that show the interaction of the 

signals of the wind turbine system [7- 10]. Each of the 

different blocks in the block diagram of the full model 

will be explained in following subsections. 
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Fig. 2. Block diagram of the full model  

 

Wind Model 

Wind is chaotic in nature. Thus, we describe the wind 

speed   as a mean wind speed  ̅ that perturbed by a 

turbulent wind speed  ̃ 

 

   ̅   ̃ (1) 

 

Note that the wind speed    seen by the rotor plane is 

the incoming wind speed   superimposed by the 

nacelle velocity  ̇ resulting from the tower being 

deflected by the wind 

 

      ̇ (2) 

 

The state-space description of turbulence process can 

be expressed as follows 

 

 ̈̃   
 

    

 ̃  
     

    

 ̇̃  
 

    

  
 

(3) 

 

Where   is a zero mean white noise with unit variance, 

and      and    depend on the mean wind speed that is 

shown in Fig.3. According to Fig. 3 an increase in the 

mean wind speed make happens an increase in the  , 

but increase in the mean wind speed contributes to an  

decrease in    and   . 

 

 

 

 
 

Fig.3. Parameters in the turbulence model      and    

as the functions of the mean wind speed 

 

Aerodynamics 

The aerodynamics description is the part of the wind 

turbine that contains the information on how the kinetic 

energy of the wind is passed on the rotating shaft 

through the blades. The model of aerodynamic section 

is based on the assumption of a uniform wind field and 

thus an equal contribution of energy from each blade. 

In this case rotor transforms the kinetic energy from the 

wind passing through the rotor plane to mechanical 

energy at the shaft ant through the generator to 

electrical power. The obtained power    by rotor is  

 

   
 

 
     

         
(4) 

 

Where the swept area by the rotor is      ,    is the 

air density, R is the rotor radius, and    is the power 

efficiency coefficient. In addition to deliver power to 

the wind turbine, the wind will exert a thrust on the 

rotor plane that is, a force on the nacelle of rotor in the 

fore-aft direction. The thrust force     is given by 

 

   
 

 
     

         
(5) 

 

Where    is much like    and they are both functions 

of tip speed ratio   and pitch angle , that are shown in 

Fig. 4. Also tip speed-ratio defined as 
 

  
   

  

 
(6) 

 

Finally the relation between the obtained power by 

rotor    and resulting torque    can be represented as 
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(7) 

 

 

 
 

 
 

Fig.4. The power coefficient    (above) and the thrust 

coefficient    (below) as the functions of the tip speed-

ratio   and pitch angle   

 

Drive Train 

The structural model of drive train is suggested in Fig. 

5. The model consists of the following components: 

   : The inertia of the rotor and the low-speed shaft 

   : The inertia of the gearbox and the high-speed 

shaft and generator 

   : The gearbox ratio 

    and    : The spring constant and viscosity of a 

massless, viscously damped rotational spring  

respectively 

         : The rotational deformation of the low-

speed shaft that can be defined as              
  

  
 

The dynamics of the drive train model can be described 

by set of differential equations  

   ̇                      
  

  
   

   ̇                           
  

  

  

 ̇           
  

  

 
(8) 

 

Where    and    are the torque imposed at the low 

speed shaft by the rotor and generator torque 

respectively. 

 

 
 

Fig.5. Mechanical equivalent for the drive train 

 

Tower 

The tubular steel tower will be deflected in the fore-aft 

direction due to the thrust force on the rotor. A simple 

model approximates the deflection with a linear 

displacement of the nacelle, with the dynamics 

described by 

 

   ̈      ̇         (9) 

 

Where the mass of the tower is   ,    is the tower 

dampener coefficient and    is the tower spring 

coefficient. Also  ,  ̇ and  ̈ denote position, velocity, 

and acceleration of the nacelle, respectively. 

 

Pitch Actuator 

To change the angle of the blade towards the wind in 

the model, a pitch actuator is used for every blade. The 

pitch actuators are placed in the hub of the wind turbine 

and consist of a hydraulic driven servo system. The 

dynamic of hydraulic servo system can be described by  

 

 ̈    
           ̇    

   (10) 

 

Furthermore a first order model of pitch system with a 

pure time delay is suggested as follows 

 

 ̇  
 

  

         
(11) 

 

Practical pitch actuator cannot change the pitch angle 

instantaneously. In fact aforementioned equation 

interprets this latency between the pitch angle reference 

     and the actual blade pitch angle   by means of a 

first order relationship. 

Where    is the pure time delay constant,   and    are 

damping ratio and undamped frequency of the pitch 

actuator, respectively.   

 

Generator 

The generator used in this HAWT model is an 

asynchronous generator that exerts the torque on the 

generator side on the drive train. We will consider the 

generator as a device that attempts to deliver the 

electrical power    specified by the power reference 

signal    . The power is controlled by adjusting the 
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rotor current, which in turn, governs the amount of 

torque exerted by the generator to the high-speed shaft. 

Further, we will assume a loss-less generator, meaning 

that the electrical power equals the product between the 

generator speed and the generator torque: 

  

        (12) 

  

Practical generators cannot change the torque 

instantaneously. We will model this latency by a first-

order relationship between the requested generator 

torque and the actual generator torque 

 

 ̇  
 

  

      
     

(13) 

 

Where    is time delay constant and also the desired 

torque is given by      
 

    

  
 

 

The Uncertain Parameters of Pitch Actuator  

The considered wind turbine has a hydraulic pitch 

system which is modeled as a second-order system as 

described in (8). A drop in the hydraulic pressure 

affects the dynamics of the pitch system by changing 

the damping ratio and undamped natural frequency 

from their nominal values    and    
to their values at 

low pressure     and     
 as described as follows[2]  

 

  
           

       
   

                
           

 (14) 

 

Low hydraulic pressure is characterized as a gradual 

fault, since it affects control actions of the turbine.  

Where         is an indicator function for the fault 

with     and 

    , corresponding to normal pressure and low 

pressure respectively, and  ̇              . 
The nonlinear non-affine state-space dynamic model of 

the HAWT can be described by the set of following 

equations [9,10] 

 

 
 ̇  

 

  
                     

  

  

   

 ̇  
 

    

                        
  

  

   

 ̇     
  

  

 

 ̈  
 

  

     ̇          

 ̇  
 

  

 
    

  

     

 ̇  
 

  

         

 ̈    
           ̇    

   

 ̈̃   
 

    

 ̃  
     

    

 ̇̃  
 

    

  
(15) 

 

Where state x, input u and disturbance d vectors of 

system are defined as 

 

  [       ̇     ̇  ̃  ̇̃]
 
 

  [
    

    
]   *

 ̅
 
+ (16) 

 

3. PROBLEM STATEMENT 

The dynamics of wind turbines are highly nonlinear 

and non-affine and may also contain uncertain 

parameters. Generally, in a HAWT the control signals 

are the pitch angle reference and desired output power 

and the main objective is the output electrical power. 

The goal of turbine control is tracking of output power 

when certain power is applied. Furthermore, control 

performance of HAWT is highly sensitive to variations 

of disturbances and system parameters. Noting that 

these variations are noxious factors in the turbine 

control system, in this paper an IMRANC power 

control will be presented to reduce their effects.  The 

major contributions of this study are: 

 Successful employment of a proper NARX model on 

behalf of the original nonlinear plant with neglectable 

error between outputs of the original system and 

estimated model 

 Successful validation of proposed NARX NN model 

in comparison with the nonlinear non-affine system 

 Successful design of feasible IMRANC power 

controller based on aforementioned NARX model in 

the presence of parameters uncertainties as well as 

disturbances 

 Successful development of transient responses and 

disturbance attenuation of the output power tracking 

 Successful robustness of the designed system 

ensuring that all closed-loop performance 

specifications are satisfied in the presence of the 

unavoidable model uncertainty when the parameters in 

the system dynamic are varied  

 Successful design of the controller in the event that 

the control signals don't exceed the allowable limits for 

the system even with a wide range of system 

uncertainties 

 Successful responses of electrical power control for 

various power commands, in order to prove afford 

tracking of different power reference inputs 

 

4. PROPOSED CONTROL SCHEME 

A. MLP Networks and Levenberg-Marquardt BP 

Algorithm 
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Neural networks have been applied successfully in the 

identification and control of dynamic systems. The 

universal approximation capabilities of the multilayer 

perceptrons (MLPs) make it a popular choice for 

modeling nonlinear systems and for implementing 

general-purpose nonlinear controllers [23-25]. The 

MLPs have been applied effectively to solve some 

difficult and diverse problems by training them in a 

supervised manner with a highly popular algorithm 

known as the error back-propagation algorithm. This 

algorithm is based on the error-correction learning rule. 

As such, it may be viewed as a generalization of an 

equally popular adaptive filtering algorithm: the 

ubiquitous least-mean-square (LMS) algorithm. 

Basically, error back-propagation learning consists of 

two passes through the different layers of the network: 

a forward pass and a backward pass. In the forward 

pass, an activity pattern (input vector) is applied to the 

sensory nodes of the network, and its effect propagates 

through the network layer by layer. Finally, a set of 

outputs is produced as the actual response of the 

network. During the forward pass the synaptic weights 

of the networks are all fixed. During the backward 

pass, on the other hand, the synaptic weights are all 

adjusted in accordance with an error-correction rule. 

Specifically, the actual response of the network is 

subtracted from a desired (target) response to produce 

an error signal. This error signal is then propagated 

backward through the network. The synaptic weights 

are adjusted to make the actual response of the network 

move closer to the desired response in a statistical 

sense. An architectural scheme for an MLP network 

having three layers is illustrated in Fig. 6. According to 

three-layer feedforward network in Fig. 6, the net input 

to unit i in layer k + 1 is [23]. 

 

        ∑     

  

   

                   

 

(17) 

The output of unit i will be 

 

                      (18) 

 

For an M layer network the system equations in matrix 

form are given by 
 

      

                        

            (19) 

 

The task of the network is to learn associations between 

a specified set of input-output pairs 

  

,(     )  (     )           - 

 

The performance index for the network is 

  
 

 
∑(     

 )
 
(     

 )

 

   

 
 

 
∑   

   

 

   

 

 

 

(20) 

 

Where   
  is the output of the network when the qth 

input,    , is presented, and         
  is the error 

for the qth input. For the standard backpropagation 

algorithm we use an approximate steepest descent rule. 

The performance index is approximated by 

 

 ̂  
 

 
  

    
(21) 

 

 

 
 

Fig. 6. Structure of an MLP neural network 
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Where the total sum of squares is replaced by the 

squared errors for a single input/output pair. The 

approximate steepest (gradient) descent algorithm is 

then 

 

           
  ̂

        
 

 

         
  ̂

      
 

 

(22) 

 

Where   is the learning rate. Define 

 

       
  ̂

      
 

 

(23) 

 

As the sensitivity of the performance index to changes 

in the net input of unit i in layer k. Now it can be 

shown, using (l7), (21), and (23), that 

 

  ̂

        
  

  ̂

      
 

      

        
               

  ̂

      
  

  ̂

      
 
      

      
        

 

(24) 

 

It can also be shown that the sensitivities satisfy the 

following recurrence relation  

 

    ̇          
      

 ̇ (  )

 

[
 
 
 
 ̇           

  ̇          
    
    ̇         ]

 
 
 

 

 ̇     
      

  
 

 

(25) 

This recurrence relation is initialized at the final layer 

 

     ̇ (  )        (26) 

 

The overall learning algorithm now proceeds as 

follows; first, propagate the input forward using (19); 

next, propagate the sensitivities back using (25) and 

(26); and finally, update the weights and offsets using 

(22) and (24). While backpropagation is a steepest 

descent algorithm, the Marquardt-Levenberg algorithm 

[23] is an approximation to Newton's method. Suppose 

that we have a function      which we want to 

minimize with respect to the parameter vector  , then 

Newton's method would be 

 

                     

 ( )  ∑  
    

 

   

 

 

 

(27) 

 

Where        is the Hessian matrix and       is the 

gradient. Then it can be shown that 

 

  ( )             

   ( )    ( ) ( )   ( ) 

 ( )  

[
 
 
 
 
 
 
 
      

   

      

   

 
      

   

      

   

      

   

 
      

   

    
      

   

      

   

 
      

   ]
 
 
 
 
 
 
 

 

 ( )  ∑     

 

   

        

 

 

(28) 

 

Where  ( ) is the Jacobian matrix. For the Gauss-

Newton method it is assumed that  ( )   , and the 

update (27) becomes 

 

      ( ) ( )     ( )     (29) 

 

The Marquardt-Levenberg modification to the Gauss-

Newton method is 

 

      ( ) ( )         ( )     (30) 

 

The parameter   is multiplied by some factor ( ) 

whenever a step would result in an increased     . 

When a step reduces    ,   is divided by  . Notice 

that when   is large, the algorithm becomes steepest 

descent (with step 
 

 
), while for small  , the algorithm 

becomes Gauss-Newton. The Marquardt-Levenberg 

algorithm can be considered as a trust region 

modification to Gauss-Newton. The key step in this 

algorithm is the computation of the Jacobian matrix. 

For the neural network mapping problem, the terms in 

the Jacobian matrix can be computed by a simple 

modification to the backpropagation algorithm. The 

performance index for the mapping problem is given by 

(20). It is easy to see that this is equivalent in form to 

(27), where  

 

                                             

           ,  
and       . Standard backpropagation calculates 

terms like 
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  ̂

        
  

 ∑   
      

   

        
  

 

(31) 

 

For the elements of the Jacobian matrix that are needed 

for the Marquardt algorithm we need to calculate terms 

like 

 
      

        
 

(32) 

 

These terms can be calculated using the standard 

backpropagation algorithm with one modification at the 

final layer 

 

     ̇ (  ) (33) 

 

Note that each column of the matrix in (33) is a 

sensitivity vector which must be backpropagated 

through the network to produce one row of the 

Jacobian. The Levenberg-Marquardt  Back Propagation 

(LMBP)  algorithm thus proceeds as follows: (I) 

Present all inputs to the network and compute the 

corresponding network outputs (using (19)), and errors 

        
 . Compute the sum of squares of errors 

over all inputs  ( ) (II) Compute the Jacobian matrix 

(using (24),(25),(28) and (33)) (III) Solve (30) to obtain 

   (IV) Recompute the sum of squares of errors using 

    . If this new sum of squares is smaller than that 

computed in step I, then reduce   by  , let     , and 

go back to step I. If the sum of squares is not reduced, 

then increase   by   and go back to step III (V) The 

algorithm is assumed to have converged when the norm 

of the gradient in (28) is less than some predetermined 

value, or when the sum of squares has been reduced to 

some error goal. 

 

B. IMRNC Design 

An IMRANC (Indirect Model Reference Adaptive 

Neuro Control) is formed by combining an online 

parameter estimator, which provides estimates of 

unknown parameters at each instant, with a control law 

that is motivated from the known parameter case [26], 

[27]. In the IMRANC, the plant parameters are 

estimated on-line and used to calculate the controller 

parameters based on explicit plant model. In IMRANC, 

a good understanding of the plant and the performance 

requirements it has to meet allow the designer to come 

up with a model, referred to as the reference model, 

that describes the desired Input / Output (I/O) 

properties of the closed-loop plant. The objective of 

IMRANC is to find the feedback control law that 

changes the structure and dynamics of the plant so that 

its I/O properties are exactly the same as those of the 

reference model. The typical structure of an IMRANC 

scheme is shown in Fig.7. 

 
Fig. 7. Typical structure of IMRANC 

 

The nonlinear autoregressive network with exogenous 

inputs (NARX) network is a recurrent dynamic 

network, with feedback connections enclosing several 

layers of the network. The NARX model is based on 

the linear ARX model, which is commonly used in 

time-series modeling [20], [21]. The defining equation 

for the NARX model is 

 

                        (    )        

                   
 (34) 

Where, the next value of the dependent output signal 

     is regressed on previous values of the output 

signal and previous values of an independent 

(exogenous) input signal. The NARX networks can 

learn to predict one time series given past values of the 

same time series, the feedback input, and another time 

series, called the external or exogenous time series. 

Some considerable qualities about NARX networks 

with gradient-descending learning gradient algorithm 

can be explained as: 

(1)Learning is more efficient in NARX networks than 

in other neural network (the gradient descent is better 

in NARX)  

(2)These networks converge much faster and generalize 

better than other networks 

In this paper an NARX network is utilized as a model 

of the plant that you want to control. The NARX model 

can be trained using the training functions described in 

MLP Networks and LMBP algorithm (referring to 

section III). The diagram of the proposed NARX 

network for plant model having one hidden layer is 

illustrated in Fig. 8. 

 

 
 

Fig. 8. NARX network for plant model 

jar:file:///C:/Program%20Files/MATLAB/R2010b/help/toolbox/nnet/help.jar%21/backprop.html#12953
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Where the TDL (Tapped Delay Line) components are 

input and feedback delays, S
1
 and S

2
 are number of 

neurons in the hidden and output layers respectively, 

u(t) is network input,  ̂    is network target, f 
1
 and f 

2
 

are transfer functions in hidden and output layers 

respectively and R
1
 is number of elements in input 

vector. The NARX model for approximation of plant 

can be applied in various ways, but it seems to be 

simpler by using a feedforward neural network with the 

embedded memory (the first TDL), plus a certain delay 

from the output of the second layer to input (the second 

TDL). The IMRANC architecture has two 

subnetworks. One subnetwork is the model of the plant 

that you want to control and the other subnetwork is the 

controller (according to Fig. 7). At first the I/O data is 

collected from the implemented HAWT and create and 

train aforementioned NARX network based on LMBP 

algorithm. Where the implemented HAWT based on 

block diagram of the full model (in Fig.2) and the 

nonlinear non-affine state-space dynamic model (15)-

(16) is presented in Fig. 15 (Appendix I). Afterward 

total IMRANC system is designed and the NARX 

model is inserted inside. In this way a feedforward 

network is selected for IMRANC system and the 

feedback connections are then added. Also, learning in 

the plant model subnetwork is turned off, since it has 

already been trained and the controller subnetwork is 

only trained. The final IMRANC network can be 

viewed in Fig.9. 

 
Fig.9. The Proposed Indirect Model Reference Adaptive Neuro Control System (IMRANC) 

 

According to Fig. 9 layers 3 and 4 make up the NARX 

neural network subnetwork of the plant model and 

layers 1 and 2 make up the neural network controller. 

In this diagram f 
1
 and f 

2
 are transfer functions in 

hidden and output layers of NN controller respectively 

and also the transfer functions in hidden and output 

layers of NARX NN plant model are symbolized by f 
3
 

and f 
4
 respectively. The tangent-sigmoid (TanSig) 

transfer function was used for hidden layers of 

controller as a nonlinear function, and model and the 

linear (Lin) transfer function is also utilized for output 

layers of them. The mathematically equation of TanSig 

transfer function is given as 

 

             

          
 

      
   

 

(35) 

 

In other words f
 1

 and f
 3

 are tangent-sigmoid and also f
2
 

and f
4
 are linear transfer functions. As a result, each 

two-layer subnetwork of NN model and NN controller 

are designed by TanSig-Lin architecture. Where 
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TanSig output neurons are often used for pattern 

recognition problems, while linear output neurons are 

used for function fitting problems.  

In this research both of NARX NN model and NN 

controller have only one hidden layer and number of 

neurons in their hidden layer are 15 (S1=S3=15). The 

number of output neurons in NN model and NN 

controller are 1 and 2 respectively, because HAWT has 

one objective z(t) and control signals u(t). Where 

desired output power      and pitch angle reference 

     are defined as the control signals and electrical 

power    of HAWT is described as the main control 

objective that the    equals the product between the 

generator speed    and the generator torque    : 

 

        (36) 

 

The first and second samples of objective z(t), control 

signals u(t) and reference input r(t) as lags of the input 

and output of the system are given for two-step ahead 

prediction in IMRANC system. In other words the TDL 

of input and feedbacks are selected 1:2. 

 

5. SIMULATION RESULTS 

In this section, we show the effectiveness of the 

proposed method by performing some simulation 

studies over a 4.8 MW horizontal axis wind turbine. 

The parameters of this turbine are presented in Table I 

(Appendix II) [2].  

The nonlinear non-affine state-space dynamic of the 

HAWT described in (15) leaves a dynamic system with 

four inputs: the mean wind speed  ̅ and the white noise 

  as the disturbances and on the other hand the pitch 

angle reference signal      and power reference      as 

the control signals. The pitch angle reference and 

power reference are considered controllable inputs and 

the wind speed and white noise are uncontrollable 

disturbances. Furthermore the produced power    is 

defined as the main control objective. The proposed 

IMRANC uses two neural networks: a controller 

network and a plant model network, as shown in the 

Fig.7. The NARX plant model is identified first and we 

will approve that the proposed NARX NN model can 

estimate states of the original plant (5) without any 

model error between the plant and NARX model. 

Fig.10 compares states of the proposed NARX NN 

model in comparison with the nonlinear non-affine 

system (15), where the dashed lines denote the 

estimated state variables  ̂    by the NN model and 

solid lines indicate states of the original plant     . 

Accordingly, design of a NARX NN model is required 

to satisfy  ̂          and this condition guarantees 

that the steady-state errors between  ̂    and      

converges to 0. As it is evident in this figure, the 

proposed model estimates states of the nonlinear plant 

(15) without any steady-state error, which means that 

the NARX model can represent the original system in 

the pre-specified domains with a suitable 

approximation.  

The controller is then trained so that the plant output 

follows the reference model output. In this part we will 

study the produced electrical power tracking 

performance in the presence of parameter variations in 

the pitch actuator component and also both of the 

disturbances using the proposed IMRANC scheme 

(Fig.9) based on LMBB algorithm.  

Fig. 11 shows the mean wind speed  , wind speed seen 

by the rotor plane     and thrust force on the hub of 

tower    . As can be observed, the behaviors of   and 

   can changes the thrust force of the rotor. The 

increasing of the   and    increases    until at t=30 sec, 

the highest value of thrust force is occurred (3.3x10
5
 N) 

and when   is reached to constant value 30 m/s,     is 

decreased to zero again. 

Fig. 12 (a) illustrates electrical power    regulation 

responses of HAWT at different output power 

commands (Per (MW)) by using the proposed 

IMRANC. Furthermore the pitch angle reference     

and the desired output power      as two control signals 

for various power commands are shown in Figs 12 (a) 

and (b) respectively. According to Fig. 12 (a), the 

proposed system has satisfactory performance for 

various power commands in order to generate different 

produced output power. 

Fig. 13 shows tracking of output power and related 

control signals based on a rectangular trajectory. From 

the mentioned figure, you can see that the plant model 

output does follow the reference trajectory with the 

correct critically-damped response and without the 

steady state error, even though the input sequence was 

not the same as the input sequence in the training data. 

In addition referring to figs. 13 (b) and (c) the pitch 

angle reference and  desired output power as the input 

signals are limited to [0 , 4.8] (MW) and [-2 , 40] () 

respectively. Also fig. 13 validates the effectiveness of 

the proposed controller like robustness and good load 

disturbance attenuation and accurate tracking, even in 

the presence of parameter variations (changing the 

damping ratio and undamped natural frequency from 

their nominal) due to a drop in the hydraulic pressure 

and also disturbances. 

For assess the effectiveness and the robustness of the 

proposed method, two sets of HAWT system are 

defined. These sets are symbolized by Sysnom and  

Syslow, in the event that the set Sysnom is indeed the 

nominal model (when hydraulic pressure is normal, 

   ) and the set Syslow introduce variations in the 

physical parameters (when hydraulic pressure is low, 

   ). 

Fig. 14 shows tracking of output power to a certain 

command and control signals against parameter 
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uncertainties, with regard to the proposed method. 

These figures illustrate the input signals and power 

responses for sets Sysnom and Syslow, when the damping 

ratio and undamped natural frequency parameters in the 

hydraulic pitch system are varied based on  . In one 

world when hydraulic pressure is normal the 

parameters of the pitch actuator section are    

          
   

 
       

       
   

 
  and when 

hydraulic pressure is low and a fault is occurred, the 

parameters of the pitch actuator section are transformed 

to            
   

 
       

      
   

 
 .It is clear 

that the system has good robustness when the 

parameters in the system dynamics are varied in the 

aforementioned ranges. 

 

 

 

 

 

 
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
 

(g) (h) 

  
(i) (j) 

Time (Sec) 
 

Fig.10. States of the proposed NARX NN model  ̂    (dashed) and the original plant      (solid) 
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(a)  Angular speed of  rotor shaft            (f)  Generator shaft torque          

(b)  Angular speed of  generator shaft            (g)  Blade pitch angle        

(c)  Rotational torsion angle of the low-speed shaft        (h) Pitch angle velocity  ̇       
(d)  Position of top of tower        (i)  Turbulent wind speed  ̃       

(e)  Velocity of top of tower   ̇       (j)  Turbulent wind acceleration  ̇̃        
 

 

 
(a) 

 
(b) 

 
(c) 

Time (sec) 
 

Fig.11. (a) mean wind speed as the disturbance (b) 

wind speed seen by the rotor plane (c) thrust force on 

the hub of tower 

 

 
(a) 

 
(b) 

 
(c) 

Time (sec) 
 

Fig.12. (a) Electrical power    (b) Pitch angle 

reference      (c) Desired output power      

 

 
(a) 

 
(b) 
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(c) 

Time (sec) 
Fig.13. (a) Electrical power tracking response 

(solid) and reference trajectory (dashed) (b) Pitch angle 

reference as the first signal control (c) Desired output 

power as the second signal control 

 

 
(a) 

 
(b) 

 
(c) 

Time (sec) 
 

Fig.14. The responses of Sysnom (solid) and Syslow 

(dashed) with varying   and    (a) Electrical power (b) 

Pitch angle reference (c) Desired output power 

 

6. CONCLUSION 

In this paper, an IMRANC has been designed for 

output electrical power tracking and disturbance 

attenuation of an HAWT. First to identify real system, 

the NARX neural network model was employed. 

Afterward, we have shown that the proposed model can 

accurately represent the original system without steady 

state model error. The IMRANC scheme is then 

designed based on the NARX model and trained using 

LMBB algorithm. The simulation results on the turbine 

were shown that the proposed control approach has 

robustness, precise tracking and good disturbances 

attenuation against disturbances and parameter 

variations. The major achievements of this research are: 

(i) The proposed NARX model accurately represent the 

original nonlinear system (ii) the successful features of 

both the robustness and nominal performance have 

been presented by simulation records (iii) The 

performance requirements like good disturbance 

rejection, tracking and fast transient responses in the 

proposed method were successfully assess (iv) The 

control signals did not exceed the allowable limit (0 to 

4.8 MW for desired output power and -2 to 40 degree 

for pitch angle reference) for two defined sets even 

with a wide range of system uncertainties. 
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Appendix II. Nominal Parameter Values Of HAWT 

 

 

 Description Value Parameter 

Rotor radius 57.5       

Air density 1.225           
Swept area by the rotor 10387      

   
Inertia of the rotor and low-speed shaft 55.10

6
            

Inertia of the gearbox and high-speed shaft and generator 390            

Gearbox ratio 95     

 Spring constant of rotational spring   2.7              

Viscosity of rotational spring   945                   
Mass of the tower 484        

Tower dampener coefficient 66.7              

Tower spring coefficient 2.55          
Damping ratio of the pitch actuator in normal pressure 0.6            

Undamped frequency of the pitch actuator in normal pressure 11.11             

Damping ratio of the pitch actuator in low pressure 0.9             
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Undamped frequency of the pitch actuator in low pressure 3.42              

Pure time delay constant in pitch actuator 10        

Pure time delay constant in generator 10        

Generator efficiency 0.92    

 

 

 


