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ABSTRACT: 
In this paper, error dynamic model of Strapdown Inertial Navigation System (SINS) is employed for error 

compensation of Strapdown algorithm. Perfect visual sensor data is fused with inertial sensors to produce deviation 

vectors as noisy measurement models. Due to the high dimensional and sparse error dynamic, the system is 

decomposed to cascaded subsystems because of the system structure. Then, distributed (cascaded) Kalman filters 

(KFs) and state feedback compensators are designed according to interactions of subsystems. This not only speeds up 

computations and avoids error propagation but also makes tuning, debugging, and the verifying of the algorithm from 

the perspective of implementation easier and more precise. The proposed architecture is appropriate to be 

implemented by multiple processors. The experimental results based on data from 3D MEMS IMU and camera system 

are provided to demonstrate efficiency of the proposed method. 
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1. INTRODUCTION 

Inertial navigation is a self-contained navigation 

technique in which measurements provided by 

accelerometers and gyroscopes are used to track the 

position and orientation of an object relative to a 

known starting point, orientation, and velocity  [1]. The 

small units consisting of accelerometers and 

gyroscopes are referred to as IMUs [2]. The evolution 

of small silicon based accelerometers and gyroscopes 

(Micro Electro Mechanical Systems (MEMS)), has 

made the use of INSs more widespread. Compared to 

traditional technology, MEMS components are small, 

light, inexpensive, have low power consumption and 

short start-up times. Currently, their major 

disadvantage is the reduced performance in terms of 

accuracy and bias stability [3]. The noisy and erroneous 

MEMS components cause the standalone use of MEMS 

sensors in SINS to deliver high level positioning errors 

for the applications of several seconds duration [4]. To 

overcome this problem, inertial sensors are typically 

used in combination with aiding sources such as vision, 

ultra-wideband (UWB) and the global positioning 

system (GPS) according to the application. The aiding 

sensor is chosen depending on the application. GPSs 

and UWBs are normally fused with inertial sensors to 

navigate autonomous vehicles in outdoor and indoor 

applications, respectively. They are used to stabilize the 

platform and follow a predetermined path. The 

combination of inertial sensors and vision is very 

suitable for applications in robotics and virtual reality 

(VR) [3]. In this paper, the SINS errors are 

compensated using the fusion of vision and inertial 

sensors. Besides, Kalman Filters [5] are employed to 

estimate the SINS errors modeled by a linear state 

space model. 
Due to the complexity of Strapdown algorithm as well 

as the limitations of current processors in serial 

execution, the updating rate is not fast enough to 

support on line estimation in high dimensional systems. 

In order to deal with this problem, parallel 

computations instead of serial ones have been proposed 

more recently [6], [7]. Accordingly, the computation 

speed increases as a result of simultaneous 

computations, the algorithms can be better tuned and 

the implemented program can be easier debugged. 

Similarly in this paper, the derived error dynamic 

model is decomposed to subsystems. Cascaded 

decomposition and estimation paradigm is proposed for 

the system. The idea behind cascaded decomposition is 

that many systems such as the SINS error model can be 

structurally represented as cascaded, observable 

subsystems, which are less complex than the original 

system. The distributed setting is well suited to a 

cooperative modular implementation where each 

module has the task of observing one of the 
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subsystems, possibly using different methods, and 

relying on its own measurements and the information 

gathered from
1
. 

This paper is organized as follows. Some basic 

concepts are presented in Section 2. INS error dynamic 

model is formulated and decomposed in Section 3. 

Cascaded error estimation and compensation 

approaches are proposed in Section 4. Experimental 

results based on data from 3D MEMS IMU and camera 

system and discussions are provided in Section 5 to 

demonstrate the efficiency of the proposed methods. 

Finally, a summary is contained in Section 6. 

2. PRELIMINARIES 

In this section, basic concepts about inertial navigation 

system, faults of inertial sensors and IMU and visual 

measurement models are presented.  
 
2.1. Inertial Navigation System 

IMUs typically contain three orthogonal rate-

gyroscopes and three orthogonal accelerometers, 

measuring angular velocity and linear acceleration, 

respectively. A moving body is described using two 

coordinate systems. The first one is on the body and 

referred to as B-system. However, it is important to 

describe it on an earth fixed coordinate system, referred 

to as the W-system.  Since the measurements from the 

IMU system are made in B coordinate system, they 

should be transferred to the W-system using some 

transformation procedures [8]. Figure 1 depicts the 

relationship between B and W coordinate systems. 

 
Fig. 1. The coordinate systems describing the moving 

body system. The coordinate system of  , ,b b b

x y ze e e  is 

moving with the body, and the coordinate system 

 , ,w w w

x y ze e e  is fixed [2]. 

By processing signals from these devices, it is possible 

to track the position and orientation of a device. All 

IMUs fall into two categories. The difference between 

them is the frame of reference in which the rate-

gyroscopes and accelerometers operate. They are called 

                                                           
1 Some parts of this work have been presented in 5th International 

Conference on Mechatronics (ICOM13), July 2013, Kuala Lumpur, 

Malaysia. 

 

“Stable Platform Systems” and “Strapdown Systems”. 

In stable platform, sensors’ platform is held in 

alignment with the global frame being kept fixed 

isolating from any external rotational motion. It is 

feasible to be mounted using gimbals. However, in 

“Strapdown systems” the inertial sensors are mounted 

rigidly onto the device, and therefore output quantities 

are measured in the body frame rather than the global 

frame. In this paper, we consider Strapdown systems. 

Orientation Tracking is kept by integrating the signals 

from the rate gyroscopes. To track position, the three 

accelerometer signals are resolved into global 

coordinates using the known orientation, as determined 

by the integration of the gyro signals. The global 

acceleration signals are then integrated as in the stable 

platform algorithm. This procedure is shown in Figure 

2 [1]. 

 

 

Fig. 2. Strapdown Inertial Navigation Algorithm [1] 

 

2.2. Quaternions 
In order to represent an attitude, we review attitude 

kinematics using quaternions. For attitude 

representation, quaternions have been most widely 

used. Quaternions are given by a four-dimensional 

vector defined as 

 

 

1

0

2

3

cos / 2
,    

sin / 2

q
q

q

q





 
     

       
     

q q
n q

                            (1) 

Where n  is the unit Euler axis and   is the rotation 

angle around n  [9] and q  is presented as a two-part 

vector. The first part is scalar part, 
0q , and the second 

part is vector part, q . Rotation matrix can also be used 

to explain rotation. It is also exploited as a matrix 

multiplication to produce the rotated vector or for 

mapping a vector from one reference frame to another. 

Denote the rotation matrix as ( )R q . Then, this matrix 

maps a vector 
rB  in a reference frame B  to a vector 

rW  in another frame W , such that 

( ) B

rw  R q r  
                                                            (2) 

Where 
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            
          

  

R q

 

2.3. IMU Sensory Faults and INS Propagated Error  

The measurements from real sensors are corrupted by 

errors. In general terms, the MEMS accelerometers, 

and gyroscopes measurements are disturbed with 

sensory biases and noises. Bias is a constant offset from 

the nominal sensor signal statistics. The angular 

velocity signals obtained from the gyroscopes are 

integrated by the standard INS attitude algorithm; 

therefore errors in the gyroscope signals propagate 

through the calculated orientation. In addition, errors 

which arise in the accelerometers propagate through the 

double integration. This is the obvious cause of drift in 

the tracked position. The important difference between 

errors arising from the accelerometers is that they are 

integrated twice in order to track position, whereas 

rate-gyro signals are only integrated once to track 

orientation [1], [10].  

A general sensor output model used to describe the 

output of inertial sensors has the following form, 

( )m t t S S b
                                                               

(3) 

Where, 
mS  is the sensors’ measured output. 

tS  is the 

true value of the quantity that the sensor is measuring 

and is corrupted by the general offset term of ( )tb . 

The offset term, ( )tb , has the following form, 

0( ) ( )nt t b b b                                                         (4) 

The term 0b  represents constant offset or bias and the 

term ( )n tb  represents the zero mean sampling noise 

with the covariance matrix of 2

3nb I . By appropriate 

replacements the following measurement models are 

obtained, 

0( ) ( ) ( ) ( )k k k k    y ω b b                                    (5) 

   0( ) . ( ) ( ) ( )a a ak k k k  y R q a b b                   (6)
 

 

Where, ω  is real angular velocity vector of the frame 

B relative to frame W, and a  is acceleration vector in 

W coordinate system. 
0b  and 

0ab  are the gyroscope 

and accelerometer bias vectors, respectively. 

 2( ) ~ ,k
 

b
b 0 I  and

 
 2( ) ~ ,

aa k 
b

b 0 I  are the 

zero mean Gaussian sampling noises. 

 

2.4. Visual Measurement Model 

The visual sensor in this paper, comprises three 

cameras combined with three light sources (LEDs). 

They are employed for close range photogrammetry. 

Photogrammetry is the technique of measuring objects 

(2D or 3D) from photographic images and a set of 

colinearity explaining the relationship between the 

position/attitude matrix of the object and observations 

are used to determine the attitude of object [11]. The 

measurement model for quaternions and position are as 

follows, 

( ) ( ) ( )q qk k k y q ν
 
 (7)

 
 

( ) ( ) ( )p pk k k y p ν
  

(8)
   

 

 

Where ,  p qν ν
 
are zero mean measurement noises with 

any known probability density function and covariance 

matrices of 
p

R and 
q

R . 
 

It is worth noting that, quaternion operations [9] has 

been approximated by normal operations in equation 

(7). 

 

3. ERROR DYNAMIC MODEL FORMULATION 

AND DECOMPOSITION 

In this section, inertial navigation system error dynamic 

model is derived and an appropriate tearing technique 

is proposed. 

 

3.1. Error Dynamic Model Derivation 
The INS error dynamic model is derived in this section. 

Since bias is a constant sensory fault, accelerometer 

and gyroscope bias dynamics are modeled as follows, 

1 1( 1) ( )a ak k b b
  

(9)
 

0 0( 1) ( )k k  b b
  

(10) 

After propagation of accelerometer bias in SINS 

algorithm, the speed deviation,  v , is resulted in the 

following dynamics, 

0( 1) ( ) ( )ak k T k   v v b  (11) 

Where, T is the sampling time. Similarly, the dynamics 

of position deviation,p , is obtained as follows, 

( 1) ( ) ( )k k T k    p p v   (12) 

Employing quaternion kinematics, the angular rate 

deviation is propagated through quaternion kinematics. 

The quaternions’ kinematics is given by 

 
1

( ) . 
2

t q S q ω  (13) 

Where 

 

1 2 3

0 3 2

3 0 1

2 1 0

:

q q q

q q q

q q q

q q q

   
 


  
 
 
 

S q
 

Linearizing about zero attitude deviation of

 1 0 0 0
T

 q , and disregarding the quaternion 
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scalar element, 
0 1q   , the following discretized error 

quaternion model is obtained, 

 
0( 1) ( ) ( )

2

T
k k k   q q b

 

(14) 

Now, deviation state vectors of the translational and 

attitude subsystems are defined as follows, 

0

:trans

a



 

 
 


 
  

p

x v

b

,

 0

:att






 
  
 

q
x

b

 

 (15)

 

Accordingly, the error dynamics of the translational 

and attitude subsystems are reformulated as follows,  

( 1) ( )
transtrans trans trans transk k   x A x B η

 
(16) 

( 1) ( )
attatt att att attk k   x A x B η  (17) 

Where 

 2~ ,
trans trans

ηη 0 I   ,  2
T

trans T T   B I I I  

trans

T

T

 
 


 
  

I I 0

Α 0 I I

0 0 I

 

And 

 2~ ,
att att


η

η 0 I  ,   
T

att TB I I  

0.5
att

T 
  
 

I I
Α

0 I
, 

 

3.2. Sensor Fusion  

The required measurement model for the error dynamic 

model is obtained via sensor fusion. To this end, 

camera measurements (
py  and 

qy  ) are assumed to be 

almost perfect (low noise level and fault free) and the 

propagated error through the Strapdown algorithm is 

obtained by simply subtracting the outputs of 

Strapdown algorithm (
IMU Strapp  and 

IMU Strapq ) and 

camera measurements, as follows, 

p IMU Strap  
p

y y p
 

(18a) 

q IMU Strap  qy y q  (18b) 

 

3.3. System Decomposition and Measurement Model 

Extraction 

The high dimensional (15
th

 dimension) IMU error 

dynamic system is considered as a large scale system 

following Jamshidi's definition of large scale systems 

[12]. It implies that a system is considered to be large 

scale if it can be partitioned or decoupled into a number 

of subsystems. Besides, the sparseness of the system 

matrix also causes computational complexity. To 

reduce the complexity, speed up the computations and 

provide an accurate debugging from the perspective of 

programming, it is proposed to decompose the system 

into observable subsystems as system structuring is a 

crucial step to deal with complexity. 

Fundamental decomposition schemes are based either 

on functional decomposition or on structural 

decomposition. In functional approach of the 

decomposition a system is split in its functional, 

physical, or behavioral components. For example a 

system can be functionally split in sensors, controllers, 

and actuators and can be separated behaviorally to its 

basic dynamic behaviors such as linear or nonlinear 

subsystems. However, structural decomposition 

represents how the different parts of the system interact 

with each other leading to system graph representation 

[13], [14] and [15].  For the error system, described in 

previous parts, a structural cascaded decomposition of 

the system model is proposed. According to this 

structure, a system is decomposed into subsystems in a 

cascaded manner. Interactions only take place between 

neighboring levels through well-defined interfaces. In 

cascaded decomposition, the state of the first subsystem 

is considered as the input of the second subsystem and 

so on. 

A necessary and sufficient condition for the existence 

of cascaded system decomposition is that the system 

and measurement matrices can be transformed into 

block lower-triangular forms [14]. Accordingly, it is 

necessary to generate more measurement models 

computationally and through computational 

differentiation of the measurement models of (18a) and 

(18b). Accordingly, the following measurement models 

are obtained, 

 

 

 

 

   

a

trans trans trans trans

k

k k k k

k



 

 
 

   
 
 

p

v

b

y

y y C x ν

y

   (19a) 

 

 
 

 
   att att att att

k
k k k

k





 
   
 

q

b

y
y C x ν

y
 

(19b) 

Where 

9 9att C Ι , 
6 6trans C Ι  

0: ( ) ( ) ( ) ( )k k k k
      by y ω b b  

0: ( ) ( ) ( ) ( )
a a a ak k k k   by y a b b  

 

 

 

 
trans

a

k

k k

k

 
 

  
 
 

p

v

ν

ν ν

b

,  
 

 att

k
k

k

 
  
 

q
ν

ν
b

 

It is worth noting that only the white noises are related 

to acceleration and angular velocity error subsystems 
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and other noises of 
p
ν , vν  and 

q
ν  are actually 

colored with time varying covariances of  
2

4 3

3

a T k


b
I  ,  

2 2

a
T kb I  and 2 2T k


b I , respectively. However, if the 

sampling time is assumed very small (msec) and the 

sample of k is assumed to be finite, the following 

approximations of noise characteristics are obtained, 

 ~ ,att attν 0 Q  and 
 

 ~ ,trans transν 0 Q  

12

2

att

att

att

T




  
    

   
b

Q 0I 0
Q

0 Q0 I
   and 

1

2

3

2

trans

a trans

trans

trans

T

T

  
  

    
      

b

Q 0 0I 0 0

Q 0 I 0 0 Q 0

0 0 I 0 0 Q

 

According to the proposed cascaded tearing paradigm, 

the system is partitioned to three behavioral cascaded 

subsystems for translational, as follows, 

1 2 3 0: ;   : ;    :trans trans trans a   x p x v x b                     (20) 

 

Accelerometer bias subsystem: 

33 33 3 3( 1) ( )
transtrans trans trans transk k  x A x B η

 
     (21a) 

 3 3 3( ) ( )trans trans transk k k  py C x ν
 
                      (21b)

 
 

Speed error subsystem: 

22 22 1 23 2 2( 1) ( ) . ( )
transtrans trans trans trans trans transk k k   x A x A x B η    (22a) 

 2 2 2( ) ( )trans trans transk k k  vy C x ν
                       

(22b)
 

 

Position error subsystem: 

11 11 1 12 2 1( 1) ( ) . ( )
transtrans trans trans trans trans transk k k   x A x A x B η  (23a) 

 1 1 1( ) ( )trans trans trans ak k k y C x b
                     

(23b) 

Where
 

11 22 33 1 2 3 3 3trans trans trans trans trans trans      A A A C C C I

12 23 3 3trans trans T  A A I , 

2

1 3 3 2 3 3 3 3 3        trans trans transT T    B I B I B I  

 

and two subsystems for attitude, as follows, 

1 2 0: ;   :att att  x q x b                                             (24) 

 

Gyroscope bias subsystem: 

22 22 2 2( 1) ( )
attatt att att attk k  x A x B η                      (25a)

 

 2 2 1( ) ( )att att attk k k  qy C x ν
 
                              (25b) 

 

Angular rate error subsystem: 

11 11 1 12 2 1( 1) ( ) . ( )
attatt att att att att attk k k   x A x A x B η

 
   (26a) 

 1 1 1( ) ( )att att attk k k y C x b                             (26b) 

Where 

11 22 1 2 3 3att att att att    A A C C I  

12 3 3att T A I
, 1 3 3 2 3 3    att att T  B I B I  

 

4. DISTRIBUTED ERROR ESTIMATION AND 

COMPENSATION  
In this section, firstly, separate observers are designed 

for each subsystem introduced in previous section 

(equations (20) to (26)). Then, an error compensation 

procedure is presented. 

  

4.1. Cascaded Error Estimation 
The proposed estimation architecture is depicted in 

Figure 3. Similar to centralized KF, cascaded KFs are 

designed by minimization of the trace of estimation 

error covariance. Accordingly, the following equations 

are obtained for position error subsystem to update 

Kalman error covariance and Kalman gain, 

 1trans k P   

    1 1 1 1 1 1 1 11 +
T T

trans trans trans trans trans trans trans transk k  I K C P I K C K R K  (27a) 

1 ( )trans k K

    
1

1 1 1 1 1 11 1T T

trans trans trans trans trans transk k k k


  P C C P C R  (27b) 

 

 1 1trans k k  P  

111 1 11 12 2 12( 1) ( 1)
trans

T T

trans trans trans trans trans transk k   A P A A P A Q  (27c) 

Where it is assumed that the estimation error 

covariance matrix is block diagonal, that is, 

 

1

2

3

trans

trans trans

trans

 
 


 
  

P 0 0

P 0 P 0

0 0 P

                                (28) 

 

However, this condition appears restrictive in practice 

and one rarely knows the true cross covariances and it 

is often assumed that the covariance matrix is diagonal 

[14]. 

Similarly, Kalman gains and error covariance matrices 

are calculated for the other subsystems. 

 

4.2. Distributed Error Compensation 
The bias of the Strapdown system is corrected by state 

regulators. The deviations can almost be corrected 

manipulating Strapdown algorithm using normal state 
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feedback controllers. Figure 4 depicts the schematic of 

cascaded error estimation and compensation for 

translational subsystems where, Kacc, Kvel and Kpos are 

state feedback gains related to acceleration bias, 

velocity and position errors, respectively. 

 

5. EXPERIMENTAL RESULTS 

In this section, experimental results based on data from 

3D MEMS IMU and 3D camera system are analyzed 

and discussions are provided to investigate the 

efficiency of the proposed method. The structure of the 

camera, IMU and rigid body is depicted in Figure 5. 

The Crista IMU three-axis inertial sensor is exploited. 

It consists of MEMS gyroscopes and accelerometers 

mounted on orthogonal axes to provide 300 0/s rate and 

10g acceleration [16]. High speed and high accuracy, 

K600 Krypton Camera, is used to precisely measure the 

position of static and dynamic targets in 3-D space. The 

real data gathered at a sampling rate of 1 KHz from 

IMU and Camera system interfaced with QNX 

Neutrino RTOS [17] in target-host architecture in 30 

sec. They are then processed offline using MATLAB 

2008 in mfile environment with sampling rate of 0.05 

sec. The results have been presented in figures 6 to 8 

for both compensated and non-compensated cases for 

translational subsystem. It can be easily seen that the 

biases and errors are compensated using the proposed 

approach and when they are not compensated, the 

speed and position deviations increase linearly and 

quadratically, respectively because of Strapdown 

integrations. 

Other advantages of the proposed modular approach 

reside not only in easier debugging and more efficient 

computations but also it leads to less computational 

time compared with centralized approach. In order to 

obtain an estimation of each subsystem states in central 

architecture, it is necessary to wait for the whole 

algorithm to be performed. However, in the cascaded or 

any other modular architecture, the estimation of each 

subsystem is computed separately. So, less 
computational time is needed for each subsystem. For 

example, in one simulation in MATLAB mfile, 

estimation of bias acceleration takes 0.943 ms in the 

central approach; however, it takes 0.4 ms in the 

cascaded structure. Computation time is an important 

factor in most of engineering problems such as fault 

diagnosis, where it is so important to detect and isolate 

faults in time avoiding its propagation through the 

whole system. It is worth noting that this time has been 

computed when it is simulated in a single processor, 

however, using multi-processors leads to smaller 

computation time.  

Despite the advantages, the linearization of nonlinear 

quaternion dynamic can be mentioned as the method 

drawback.  

 

6. CONCLUSION 

In this paper, a cascaded structure for error estimation 

and compensation of inertial navigation system was 

employed. Perfect visual sensor data was fused with 

inertial sensors to provide deviation vectors as noisy 

measurement models. High dimensional and sparse 

error dynamic was decomposed to cascaded subsystems 

and cascaded KFs and state feedback compensators 

were designed accordingly. The efficiency of the 

proposed method were evaluated from different aspects 

of computation time, estimation accuracy and error 

compensation  using experimental results based on data 

from a 3D MEMS IMU and a 3D camera system.  
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Fig. 4. Schematic of cascaded error estimation and compensation for translational subsystem ( Kacc, Kvel and Kpos are 

state feedback gains related to acceleration bias, velocity and position errors, respectively) 

 

 

Fig. 5. Camera system, IMU and rigid body 

 

 

Fig. 6. Accelerometer Bias: Estimations and measurements for both compensated and non-compensated cases  
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Fig. 7. Speed Deviation: Estimations and measurements for both compensated and non-compensated cases  

 

Fig. 8. Position Deviation: Estimations and measurements for both compensated and non-compensated cases  
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