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ABSTRACT: 

Spectrum sensing is a key function of Cognitive Radio (CR) networks. An accurate spectrum sensing scheme can 

improve spectrum utilization. But, in practice, detection performance is often degraded with multipath fading, 

shadowing and receiver uncertainty issues. To overcome the impact of these issues, Collaborative Spectrum Sensing 

(CSS) has been shown to be an effective approach to improve the detection performance by exploiting diversity. The 

reliability of CSS can be severely degraded by Spectrum Sensing Data Falsification (SSDF) attacks. By protecting the 

CR networks against SSDF attacks, Weighted Sequential Probability Ratio Test (WSPRT) has been proposed. 

Compared with conventional SPRT, the WSPRT improves correct sensing probability at the cost of increasing 

sampling overhead. In the present study, weighted majority rule is introduced and combined with the WSPRT to 

improve trustworthiness of collaborative spectrum sensing in the presence of SSDF attackers. Furthermore, to avoid 

increasing the sampling overhead, Roulette Wheel Selection (RWS) algorithm is used to collaborative node selection. 

The proposed method is called Developed WSPRT (DWSPRT). Simulation results show that the DWSPRT is an 

effective data fusion approach against SSDF attacks, especially for CR networks located in hostile environments. 
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1.  INTRODUCTION 

Cognitive Radio (CR) technology has been suggested 

to improve the frequency spectrum utilization by 

authorizing unlicensed CR users to operate 

opportunistically in the free space of the licensed 

frequency bands in the presence of the licensed Primary 

Users (PUs) [1]. The main challenge of CR networks is 

the spectrum sensing with the aim of finding the vacant 

frequency bands [2]. 

Collaborative Spectrum Sensing (CSS) has been 

proposed to prevail over the effect of multipath fading, 

shadowing, and hidden station problem [3, 4]. Based on 

how CR users share their local sensing results, the CSS 

can be performed in two scenarios: centralized or 

distributed [5]. In centralized collaborative sensing, the 

CR users send either their decisions or the measured 

data to a Base Station (BS) or Fusion Center (FC) via 

Common Control Channel (CCC). In contrast, 

distributed collaborative sensing does not require any 

FC for decision-making. Each CR user collects the 

sensing reports from its neighbors and decides 

exclusively [6], [7]. When the CR user sends one-bit 

decision, the procedure is called hard decision 

combining and when the user sends the measured data, 

it is called soft decision combining scheme. The 

performance of hard decision and soft decision is 

investigated in [8], [9]. 

    Unfortunately, the CSS is vulnerable to Spectrum 

Sensing Data Falsification (SSDF) attacks [10]. In a 

SSDF attack, the malicious CR user intentionally sends 

a falsified local sensing result to the FC in an attempt to 

cause the FC to make incorrect global decision [10]. To 

mitigate the problem of SSDF attack, many approaches 

have been proposed. 

A new scheme to countermeasure the SSDF attack in 

CSS, called Conjugate Prior-based (CoP) is proposed in 

[11]. The scheme treats the sensing reports as samples 

of a random variable and reconstructs the probability 

density of the random variable using a technique 

known as conjugate prior, and then each sensing report 

is examined for the normality based on a confidence 

interval. Once a sensing report is judged as abnormal, 

this sensing report would be removed from decision-

making process at the FC. 

The authors in [12] proposed an Adaptive Reputation 

based Clustering (ARC) against both independent and 

collaborative SSDF attack. They illustrate that their 

work requires neither the number of attackers nor 

attack strategies. They also compare the performance of 

their algorithm with that of the algorithm proposed in 

[13] under different attacking strategies. 

A hybrid method called Weighted Sequential 

Probability Ratio Test (WSPRT) is presented in [14], 

[15]. The WSPRT calculates the node’s reputation and 
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uses Sequential Probability Ratio Test (SPRT) to 

identify malicious users. Compared with SPRT, the 

WSPRT improves correct sensing probability at the 

cost of increasing sampling overhead. In [15] a priori 

probability that SPRT method requires, is calculated 

based on the log-normal shadowing path loss model, 

and the calculation method utilizes the physical 

location of a sensing terminal. Thus, when a sensing 

terminal moves to a different location, a priori 

probability can be immediately calculated without 

waiting to collect new empirical data. The WSPRT is 

also developed in [16] for a centralized CR network 

and a novel fusion scheme based on spatial correlation 

technique is proposed. The authors utilize geographical 

information with reputational weights to define a two 

level FC for secure collaborative sensing.  

Although the WSPRT is a useful technique against 

SSDF attacks but it has two following disadvantages: 

the first disadvantage of the WSPRT is that when the 

decision statistic is suspended between two threshold 

and has not reached to any of the threshold values, the 

spectrum sensing time is expanded, this condition 

occurs more and more by increasing the number of 

attackers. The second disadvantage of the WSPRT is 

that the sampling overhead is significantly large. 

In this study, to mitigate the expansion of sensing time 

in the WSPRT, weighted majority technique, derived 

from conventional majority rule, is introduced and used 

in suspension situations.  Also to prevent increasing 

sampling overhead, Roulette Wheel Selection (RWS) 

algorithm is used for cooperative node selection. The 

proposed approach, which is called Developed WSPRT 

(DWSPRT), can be used to increase the trustworthiness 

of collaborative spectrum sensing in the presence of 

SSDF attackers. We compare the performance of our 

method with the WSPRT [15] under different number 

of attackers. The proposed method counters SSDF 

attacks significantly better than the WSPRT and 

maximizes the correct sensing probability. 

The rest of the paper is organized as follows. Section 2 

briefly introduces collaborative spectrum sensing and 

system model. Section 3 presents the main 

contribution. Simulation results and discussions are 

presented in section 4. Finally, conclusion remarks are 

drawn in section 5.  

 

2.  COLLABORATIVE SPECTRUM SENSING 

AND SYSTEM MODEL 

Spectrum sensing is the main function of CR networks. 

If the spectrum sensing is properly done, it prevents CR 

network interference from PU transmitter. The PU 

detection can be formulated as a binary hypothesis 

testing problem as follow [3]: 
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1
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                            (1) 

where ( )x t denotes the received signal at the CR user, 
 

( )s t  is the transmitted PU signal, 
 

( )h t  is the channel 

gain of the sensing channel,  ( )n t
 
is the zero mean 

Additive White Gaussian Noise (AWGN), 
0H  

represent the null hypothesis that only noise is present 

and 
1H  represent the alternate hypothesis that both PU 

signal and noise is present.  

Let us assume that the probability of detection and false 

alarm rate of the j
th

  CR user are 
jPd  and 

jPFa  

respectively [17, 18].  

   1 0  ;j j

d j Fa jP P x λ|H P P x λ|H            (2) 

Where jx is the decision statistics and represents the 

measured sample power/energy of ( )x t ,   is the local 

threshold that is determined by the target false-alarm 

probability. The probability of miss detection for the j
th

 user is defined as: 

 11j j

m d jP P P x λ|H                                         (3) 

 Accordingly, correct sensing probability of the j
th

 

CR, 
j

cP is as follows: 
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Where  0P H  and  1P H  denote the actual idle and 

busy rate of the channel, respectively.                                             

The proposed system model is a distributed CR 

network including a PU transmitter located D 

kilometers away from the center of CR area, N  users 

are located in a small square area (2Km * 2Km) and 

move according to the Random Way Point (RWP) 

mobility model [19] within the range of the network 

area. It is assumed that among N CR users, there are 

aN
 
malicious users and the communication range of 

PU transmitter covers the whole network. The system 

model is shown in Fig. 1. 

 

 

Fig 1. Network Layout 

 

The local measured sample powers are compared with 

a predefined threshold and the comparison results are 
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sent to FC via CCC. In the current study, the CCC is 

assumed to be error free.  

The received sample power jx (in dB) is obtained as 

follows: 

( ) ( )j t jx P dB PL d                                                 (5) 

Where ( )jPL d  is the log-normal shadowing path loss 

model and can be represented as: 

( ) ( )j jPL d PL d X                                                 (6) 

Where jd is the distance from PU to the j
th

 CR user, 

( )tP dB is the transmitted power of the PU in dB, 

( )jPL d  is the mean of ( )jPL d  and X   is a zero-

mean Gaussian distributed random variable with 

standard deviation 1 .  

The ( )jPL d  in equation (6) employs the HATA model 

[21], which has been proposed by the 802.22 working 

group as the path loss model for a typical CR network 

environment. The HATA model has different versions 

for urban and rural environments [20]. The current 

study used the one for rural environments since the real 

implementation of CR networks is likely to first occur 

in rural areas where licensed spectrum is less utilized. 

The model is given by: 

 
 

227.77 46.05log 4.78( )

13.82 1.1 0.7

(44.9 6.55 )

j c c

te c re

te j

PL d f logf

logh logf h

logh logd

  

  

 

            (7) 

Where cf
 
is the signal frequency, teh

 
is the effective 

transmitter antenna height in meters, and reh
 

is the 

effective receiver antenna height in meters, and jd
 
is 

the transmitter-receiver distance in kilometers. 

The conditional Probability Density Functions 

(PDFs) of received power jx , under two hypothesis 

0H
 
and 1H

 
are shown in Fig. 2, hence the values of 

FaP   and mP
 
are depicted. 

 

 

Fig. 2. Conditional PDFs of received power 

It is assumed that the transmitted power of the PU and 

the location of CR users are known. Hence, the mean 

value of received power is known. For simplicity and 

without loss of generality, the standard deviation of 

path loss model (
1σ ) and noise (

0σ ) are considered the 

same 1 0(σ σ σ)  . 

The values of 
j

FaP  and 
j

mP  from equation (2) and 

(3) can be written as:   
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Where Q(.) is the Q-function for standard normal 

distribution, assuming that the mean and variance of 

the noise are the same among all CR users, and hence, 

the index j is omitted from
j

FaP .  

There are several hard decision methods which can be 

found in: K-out-N, Bayesian detection, Neyman-

Pearson (N-P), SPRT [21] and WSPRT techniques [14, 

15]. In K-out-N, all of the sensing reports are summed 

up and compared with the threshold K, if the sum of 

reports is greater than K, then the channel status is 

determined to be occupied and 1H  is accepted; 

otherwise the band is determined to be follow and 0H

is accepted. A threshold value 1 is an OR fusion rule, a 

value N is an AND fusion rule and N/2 is a majority 

fusion rule. Bayesian and N-P detection are both LRT 

methods, but each of them has different threshold 

selection methods. 

The LRT hypothesis testing can be expressed as: 

 
 
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N
j

N

j j
H
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
                                        (9) 

Where ju is the binary sensing report of the j th
 user. 

 0jP u |H
 
and  1jP u |H   are the conditional PDFs 

of ju under two hypothesis 0H
 
and 1H

 
respectively. 

  is the global threshold that is determined by the 

target false alarm or miss detection probability.  

The hypothesis test step of WSPRT is based on 

SPRT, which is a hypothesis test for sequential analysis 

and supports a variable number of observations [21]. 

The decision variable of SPRT is defined as: 

 
 

1

1 0

     
n

j

n

j j

P u |H

P u |H

                                           (10) 

Note that the number of samples n  is a variable and 

can be different from N . For n N  every node 

contribute at least one sample.   

The fusion decision is based on the following criterion: 

1 1

0 0

0 1

accept

accept

take another observation

n

n

n

H

H





 

  

  
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The values of 0 and 1 are defined as: 
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Where   and B  are the tolerated false alarm 

probability and the tolerated miss detection probability, 

respectively [21].  

The WSPRT is the modified version of likelihood ratio 

in (10), so that the decision variable also takes a 

sensing terminal’s reputation into consideration. The 

decision variable is 
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Where 
jw
 
is defined as the weight of the j

th
 user and 

is a function of node’s reputation 
jr  which is defined 

as [15] 
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Where the variable ( 0)g 
 

is used to meet the 

requirement of ensuring that enough weight is allocated 

to a sensing terminal. The reputation value of each CR 

user is set to zero at the beginning; whenever its local 

spectrum sensing report is consistent with the final 

sensing decision, its reputation is incremented by one; 

otherwise it is decremented by one. Assuming the final 

decision isU , then 
jr

 
is updated according to the 

following relation: 

( 1) ju U

j jr r


    

The advantage of the WSPRT is that the calculation 

method utilizes the physical location of a sensing 

terminal. Thus, when a sensing terminal moves to a 

different location, a priori probabilities can be 

immediately calculated without waiting to collect new 

empirical data. 

Despite this capability, the WSPRT has two following 

disadvantages:  

The first disadvantage of the WSPRT is that when the 

decision statistic nW  is suspended between two 

threshold and has not reached to any of the threshold 

values, the spectrum sensing time is expanded, this 

condition can occurs for the following three reasons: 

 First, due to multipath fading, shadowing and 

hidden station problem, the received power signal is 

neither weak nor strong that makes nW  placed 

between two threshold values 0  and 1 .  

 Second, the practical environment for distributed 

networks is mobile and with regarding to the 

limited transmission range of each CR users; some 

users have less number of neighbors and with 

sampling of these neighbors, 
nW  will not reach the 

threshold values. 

 Third, for some nodes, in many cases, more 

malicious nodes are neighbors and they make the 

decision statistic nW  regularly experiences large 

and small. After polling from all neighbors, 
nW  is 

suspended. 

Fig. 3 shows nodes distribution in a typical CR mobile 

Ad-Hoc network with some nodes having enough 

trustful neighbors and others with less trustful 

neighbors.  

 

 

Fig. 3. A snapshot of nodes distribution in a typical 

network with Random Way-Point mobility 

 

The second drawback of the WSPRT is that although 

this method is a reputation-based mechanism, but the 

sampling (polling) process is completely uniform 

random and has no priority in node selection. With the 

proper policy, the chance of high reputation nodes can 

be increased for selection and sampling overhead will 

be decreased, however, in this case, the nodes must be 

able to identify their neighbors. 

 

3.  DEVELOPED WSPRT (DWSPRT) 

The procedure of the proposed algorithm is 

described by the following two different algorithms.  

 

3.1.  Weighted majority rule 

In the WSPRT approaches, the decision statistic in 

some cases remain pending and it doesn’t reach none of 

the threshold values, this situation is more experienced 

by increasing the number of attackers. It seems, in this 

case, due to conservative policy, the final report of the 

channel will be set busy to avoid interference to PU. 

However, this method increases the amount of false-

alarm rate. Thus, weighted majority rule is introduced 

and is used in suspended situation. In the weighted 

majority rule, the local decision of each node based on 

the presence or absence of PU is as follow: 
1

'

0

  ( 1)
juN

n j

j

S w





                                                    (13) 
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The value '

nS  is compared with the predefined 

threshold c  and final decision is made as follows: 

1

0

'    

H

n

H

S c



                                                                     (14) 

It should be noted that the weighted majority algorithm 

has no impression on the number of samples, because it 

is used when the sampling is done from all of the 

neighbors. 

 

3.2.  Roulette Wheel Selection (RWS) algorithm 

In the WSPRT method, user node selection for 

gathering the spectrum sensing results is uniform 

random and has no priority, while the high reputation 

nodes would have a greater chance for selection. The 

simplest selection scheme is RWS algorithm; however, 

each node must identify its neighbors. The RWS is a 

stochastic algorithm and involves the following 

technique:  

The individuals are mapped to contiguous segments of 

a line, such that each individual's segment is equal in 

size to its fitness (weight). A random number is 

generated and the individual whose segment spans the 

random number is selected. The process is repeated 

until the desired number of individuals is obtained 

(called mating population). This technique is analogous 

to a roulette wheel with each slice proportional in size 

to the fitness. For selecting the mating population the 

appropriate number of uniformly distributed random 

numbers (uniform distributed between 0 and 1) is 

independently generated. 

In order to explain the proposed method in a clear way, 

the process flow of the proposed DWSPRT approach is 

illustrated in Fig 4, where nnbr is the number of CR 

nodes in the neighborhood of the FC. 

 

 

Fig. 4. Procedure of the proposed DWSPRT approach 

 

4.  SIMULATION RESULTS AND DISCUSSIONS 

In the simulations, assuming a 250m transmission 

range for CR users, a distributed network is created. 

The maximum speed of each node in the network is 10 

m/s and maximum idle time is supposed to be 120s. A 

PU transmitter, TV tower with the activity ratio of 0.2 

is considered D meter away from the center of the 

network.  

The 3D view of the normalized node distribution 

density is shown in Fig. 5 which outcomes from the 

simulation of random waypoint model. This figure 

shows that the nodes presence probability in the square 

area of the network has dome outward. In the network, 

the density of nodes in the center of area is more than 

that of borders. This phenomenon would provoke the 

already mentioned problem of suspension situation. 
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Fig. 5. 3D view of nodes distribution density in the network 

area 

 

In the simulations, the SSDF attackers get two 

strategies. The attackers that send wrong reports of 

their sensing results are called as always-false 

attackers. Another one is always-free attackers; such 

that they always send the channel is free. We have 

simulated the DWSPRT approach under both attacks. 

The average noise power, 
0n , is assumed to be -106 

dBm and the standard deviation of path loss model and 

noise is considered as the same as 11.8n   . A  

and   for determining the threshold values ( 0  and 

1 ) are 10
-5 

and 10
-6

 respectively. The parameter g
 
is 

also set as 5. Each node in the network, acts both as a 

spectrum sensing unit and FC. Distributed spectrum 

sensing function is done with 30s intervals and the 

whole simulation time is two hours. 

It is assumed that the transmitter frequency is at UHF 

band with value of 617MHz. Also the effective heights 

of transmitter and receiver antennas are 100m and 1m, 

respectively. At the transmission side, the Effective 

Isotropic Radiated Power (EIRP) is 100kW. An energy 

detector with reception sensitivity of -94 dBm is 

assumed. This sensitivity is the least energy level, 

which is detectable by an energy detector. 

We fix 500N   and 60D Km , while changing 

attack types and varying aN
 

from 0 to 160 at an 

interval of 20. The distance of 60 Km is well beyond 

the grade B service counter of TV reception [4]. The 

threshold value of weighted majority c
 
is selected as 

zero. We are interested in two metrics: correct sensing 

ratio and number of samples (overhead). The first 

metric is the number of correct final sensing decision 

derived by the number of total sensing decisions, the 

number of samples refers to the average number of 

samples that FC needs to collect from each CR to make 

a final decision, and it measures the overhead of a 

particular data fusion technique.  

In figure 6, the simulation results of WSPRT and 

the proposed DWSPRT, in the presence of always false 

attackers, are presented. As shown in the figure, 

WSPRT experiences a greater magnitude decrease than 

DWSPRT. In DWSPRT, using the weighted majority 

rule, in suspension situations, causes the better correct 

sensing ratio. 

 

 

Fig. 6. The performance of WSPRT and DWSPRT 

against always-false SSDF attacks.  
 

Figure 7 shows the number of samples which are 

needed for decision fusion with WSPRT and the 

proposed DWSPRT. Always-false malicious attackers 

are considered in the simulation. As depicted in the 

figure, the number of samples for DWSPRT is less than 

that of WSPRT. We obtained it as the fact that in 

DWSPRT due to using RWS algorithm, high reputation 

nodes have a greater chance of selection in cooperative 

spectrum sensing. Thus, the decision statistic quickly 

reaches the threshold values and consequently the 

number of samples (overhead) is significantly 

decreased. Figures 8 and 9 also depict the similar 

results for always-free SSDF attacks. 

 

 

Fig. 7. The performance of WSPRT and DWSPRT against 

always-false SSDF attack 
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Fig. 8. The performance of WSPRT and DWSPRT 

against always-free SSDF attacks.  

 

 

Fig. 9. The performance of WSPRT and DWSPRT 

against always-free SSDF attacks.  

 

5.  CONCLUSIONS AND FUTURE WORKS 

In this study, distributed spectrum sensing in CR 

networks was investigated, also the reason that most 

data fusion schemes in collaborative spectrum sensing 

are vulnerable to Spectrum Sensing Data Falsification 

(SSDF) attack, was discussed. Weighted Sequential 

Probability Ratio Test (WSPRT) was developed and 

demonstrated that the proposed method, Developed 

WSPRT (DWSPRT), is a robust defense strategy 

against SSDF attacks. Simulation results supported our 

expectation and showed that sampling overhead can be 

reduced and correct sensing ratio can be increased. 

As part of our on-going work, we plan to study an 

analytical model for probability of suspension and 

weighted majority rule in DWSPRT technique.  
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