
Majlesi Journal of Electrical Engineering                                 Vol. 9, No. 3, September 2015 

 

17 

 

 

Advantages of Multiple -Estimation in the Frequency- 

Selective Block Fading MIMO Environments 

 
Hamid Nooralizadeh 

Department of Electrical and Computer Engineering, Islamshahr Branch, Islamic Azad University, Tehran, Iran 

E-mail addresses: nooralizadeh@iiau.ac.ir; h_n_alizadeh@yahoo.com(Corresponding author) 

 

Received: Jan. 2015  Revised: Feb. 2015  Accepted: March 2015 

 

 

ABSTRACT: 

The performance of the multiple-estimation (ME) is examined in multiple-input multiple-output (MIMO) frequency-

selective fading channels. The least squares (LS) technique, the shifted scaled least squares (SSLS) estimator, and the 

minimum mean square error (MMSE) estimator were probed in this paper. In the uniform and non-uniform power 

allocation, the closed form equations were obtained for total mean square error (TMSE) of the estimators. Analytical 

and numerical results showed that the LS estimator has lower error in the case of ME than single-estimation (SE). 

Moreover, it was seen that the performance of SSLS and MMSE channel estimators in the ME case is better than SE 

particularly at high signal to noise ratios (SNRs). It was shown that for small numbers of sub-blocks used for channel 

estimation, the SSLS and MMSE channel estimators are better than LS. However for large numbers of sub-blocks, 

inversely, the LS channel estimator is better than SSLS and MMSE. The un-equal power allocation was also examined 

analytically and numerically. Simulation results showed that exponential power allocation is proper for SSLS channel 

estimator in ME case.  

 

KEYWORDS: Frequency selective fading, Multiple estimation, Multiple-input multiple-output, Least squares, 

Shifted scaled least squares, Minimum mean square error 

 

1. INTRODUCTION 

Multiple-input multiple-output (MIMO) technologies 

provide substantial benefits in improving the 

achievable capacity of the system and/or quality of 

service [1, 2]. The systemʼs ability to approach the 

MIMO capacity heavily relies on the channel state 

information (CSI). In the coherent receivers [1], 

channel equalizers [3], transmit beamformers [4] and 

the perfect knowledge of the channel is usually needed.  

Training-based channel estimation (TBCE) is widely 

used in practice for quasi-static or slow fading 

channels, e.g., indoor MIMO channels [5-11]. 

However, in outdoor MIMO channels where channels 

are under fast fading, the channel tracking and 

estimating algorithms as the wiener least mean squares 

(W-LMS) [12], Kalman filter [13, 14], recursive least 

squares (RLS) [15], generalized RLS (GRLS) [16], and  

generalized LMS (GLMS) [17] are used. 

Using TBCE, it is shown in [5], [7] that the minimum 

mean square error (MMSE) channel estimator has the 

best performance because it employs more a-priori 

knowledge about the channel. For MIMO Rician flat 

fading channels, the new shifted scaled least squares 

(SSLS) channel estimator is presented in [8]. It is seen 

that this estimator has the best performance among the 

LS-based estimators in Rician channel model. 

Nevertheless, the MMSE channel estimator has lower 

error than that of SSLS in Rician fading channel model 

especially at high signal to noise ratios (SNRs) and 

spatial correlations [7].     

In [9], the performances of the time-multiplexed (TM) 

and superimposed (SI) schemes have been compared in 

MIMO channel estimation. It is shown that in fast 

fading channels and/or for many receiver antennas, the 

SI scheme is better than TM but in other cases this 

scheme suffers from a higher estimation error. In part II 

of this paper [10], to improve the performance of the SI 

scheme, a decision directed approach is applied. 

In [11], the problem of training optimization for 

estimating a MIMO flat fading channel in the presence 

of spatially and temporally correlated Gaussian noise is 

studied in an application-oriented setup. For the task of 

training sequence design in MIMO systems, a more 

general framework is introduced that can treat not only 

the minimization of channel estimator’s mean square 

error (MSE) but also the optimization of a final 

performance metric of interest related to the use of the 

channel estimate in the communication system.  

In order to perform the individual channel estimation at 

the destination, in [18], the SI training strategy is 

applied into the MIMO amplify-and-forward (AF) one-

way relay network (OWRN). The discussion is 
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restricted to the case of a slow, frequency-flat block 

fading model. A specific suboptimal channel estimation 

algorithm is applied in [18] using the optimal training 

sequences and to verify the Bayesian Cramér-Rao 

lower bound (CRLB) results, the normalized MSE 

performance for the estimation is provided. 

In order to estimate MIMO frequency selective or 

MIMO inter-symbol interference (ISI) channels, 

training sequences should have both good 

autocorrelations and cross correlations. Furthermore, to 

separate the transmitted data and training symbols, one 

of the zero-padding (ZP) based guard period or cyclic 

prefix (CP) based guard period is inserted. In [19], a set 

of sequences with a zero correlation zone (ZCZ) is 

employed as optimal training signals. In [20], a novel 

transmit diversity scheme applicable to frequency 

selective channel is proposed. It is shown that with 

ZCZ complementary codes, both full space diversity 

and full frequency diversity can be obtained. In [21], 

different phases of a perfect poly-phase sequence such 

as the Frank sequence or Chu sequence are proposed. 

Furthermore, in [22-25], Golay complementary sets of 

poly-phase sequences have been used.  

In [24], the performance of the best linear unbiased 

estimator (BLUE) and linear minimum mean square 

error (LMMSE) estimator is studied in the frequency 

selective Rayleigh fading MIMO channel. It is 

observed that the LMMSE estimator has better 

performance than the BLUE, because it can employ 

statistical knowledge about the channel.  

In this paper, TBCE method is studied in the 

frequency-selective Rician fading MIMO channels 

using the new multiple-estimation (ME) method. In 

[26], SSLS and MMSE estimators are proposed that are 

suitable to estimate the above-mentioned channel 

model. Analytical results show that the proposed 

estimators achieve much better minimum possible 

Bayesian Cramér-Rao lower bounds (CRLBs) in the 

frequency selective Rician MIMO channels compared 

with those of Rayleigh one.  

In this paper, the results of [26] in the single-estimation 

(SE) case are extended to the ME case. Here, the 

multiple estimates of the channel during received N 

sub-blocks are combined optimally. The optimal 

weight coefficients are achieved for the least squares 

(LS), SSLS, and MMSE channel estimators. 

Furthermore, the minimum total mean square error 

(TMSE) under optimal training is obtained for all 

estimators. Simulation results show that all estimators 

have better performance in the ME case than SE case 

especially at high SNRs. Increasing the number of  sub-

blocks N results in better performance with LS 

estimator than SSLS especially at medium SNRs. 

Therefore, the SSLS and MMSE estimators are mainly 

appropriate for Rician frequency selective fading 

channels with a short coherence time (fast fading). 

However the LS estimator is better than SSLS for 

channels with a long coherence time (slow fading). 

The un-equal power allocation is also considered in this 

paper. Using the SSLS and MMSE estimators, it is 

shown that in linear power allocation the results are 

analogous to the uniform power allocation. 

Nevertheless, in exponential power allocation the 

channel estimation errors are lower than the uniform 

power allocation with SSLS estimator.  

The rest of this paper is organized as follows. Section 2 

introduces the channel and signal model. The SE and 

ME methods in the Rician frequency-selective fading 

MIMO channels are investigated in Section 3. 

Simulation results are presented in Section 4. Finally, 

concluding remarks are presented in Section 5. 

 

2. CHANNEL AND SIGNAL MODEL  

It is considered block transmission over block non-flat 

Rician fading MIMO channel with NT transmit and NR 

receiver antennas. The frequency selective fading sub-

channels between each pair of Tx-Rx antenna elements 

are modeled by L+1 taps as 

, , ,[ (0) (1) ( )]h
T

rt r t r t r th h h L , [1, ]Rr N   and 

[1, ]Tt N . It is assumed that all sub-channels have 

identical power delay profile (PDP) as (b 0, b 1, …, b L). 

Then, the l 
th

 taps of all the sub-channels have the same 

power b l, [0, ]l L , i.e., 2
,{| ( ) | } ; , ,r t lE h l b l t r  . 

It is also assumed unit power for each sub-channel, i.e., 

0

1
L

l
l

b


 .  

For Rician frequency selective fading channels, the 

elements of the matrix H l, l [0, L], are defined 

similar to [27, 28] in the following form: 

1 1
H  M H

l

l l l l

b
b

+ +



 
                             (1) 

Where κ is the channel Rice factor. The matrices M l  

and H l  describe the line of sight (LOS) and scattered 

components, respectively. It is assumed that the 

elements of M l ,  l, are complex as (1 ) / 2j  and 

the elements of the matrix H l ,  l, are independently 

and identically distributed (i.i.d.) complex Gaussian 

random variables with the zero mean and the unit 

variance. The frequency selective fading MIMO 

channel can be defined as the NR × NT (L+1) matrix H = 

{H 0, H 1, …, H L}, where H l has the following 

structure: 
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( ) ( ) ... ( )

( ) ( ) ... ( )
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( ) ( ) ... ( )

H

T

T

R R R T

N

N

l

N N N N

h l h l h l

h l h l h l
l L

h l h l h l

 
 
 

   
 
 
 

    (2) 

Moreover, it is assumed that the elements of matrices 

1
H l  and 

2
H l , 1 2,l l , are independent of each other. 

Hence, the elements of the matrix H are also 

independent of each other. 

Suppose that h = vec (H). The NR NT (L+1) × NR NT 

(L+1), so the covariance matix of h can be obtained as 

follows: 

{ } { }C R h h C I
R T

H
h h N NE E   -                        (3) 

where 

1

0 0 ... 0

0 0 ... 01

1

0 0 0 ... L

b

b

b




 
 
 


 
 
  

C                            (4) 

Each transmitted block has N sub-blocks which contain 

training and data symbols as shown in Figure 1. The 

frame structure is the same for all Tx antennas. 

Training and data symbols are located in the first and 

end part of the sub-blocks, respectively. In practice, the 

channel is estimated using training symbols in the 

training phase. Then, the results are used for data 

detection. In order to estimate the channel matrix H, 

the NP ≥ NT (L+1) +L symbols are transmitted from 

each Tx antenna. The L first symbols are CP guard 

period that are used to avoid the interference from 

symbols before the first training symbols. At the 

receiver, because of their pollution by data, due to 

interference, these symbols are discarded. Hence, by 

collecting the last NP – L received vectors of (1) into 

the NR × (NP – L) matrix Y = [y (L+1), y (L+2), …, y 

(NP)], the compact matrix form of received training 

symbols can be represented in a linear model as 

Y = H X + V                                                             (5) 

Where X is the NT (L+1) × (NP – L) training matrix. The 

matrix X is constructed by the NP -vector of transmitted 

symbols in the form of 

1 2( ) [ ( ), ( ),..., ( )]x 
T

T
Ni x i x i x i  as follows:  

( 1) ( 2) ... ( )

( ) ( 1) ... ( 1)

(2) (3) ( 1)

(1) (2) ... ( )

x x x

x x x

X

x x x

x x x

P

P

P

P

L L N

L L N

N L

N L

  
 

 
 
 
 

  
  

           (6) 

Note that ( )tx i  is the transmitted symbol by the t
 th

 Tx 

antenna at symbol time i. The matrix V in (5) is the 

complex NR -vector of additive Rx noise. The elements 

of the noise matrix are i.i.d. complex Gaussian random 

variables with zero-mean and σ
 2 

variance, and have the 

following correlation matrix:     
2{ }

P

H
V R N LE N  R V V I                                (7) 

The elements of H and noise matrix are independent of 

each other. The elements of the columns of H have the 

following NT (L+1) × NT (L+1) co-variance matrix:  

{ }

( )

C R M M H H M M

C I
T

H H H
H H

R N

E

N 

   

 
                 (8) 

In a particular case, when the uniform PDP is used, i.e., 

b0 = b1 = …= bL =1/ (L+1), the result is 

( 1)
(1 )(1 )

C I
T

R

H N L

N

L


 
                                     (9) 

 

3. MULTIPLE CHANNEL ESTIMATION 

In order to improve the performance of the estimators, 

the multiple estimates of the channel during received N 

sub-blocks are combined. It is assumed that the channel 

response is fixed within N sub-blocks. In other words, 

the coherent time of the channel is enough to use N sub-

blocks for channel estimation. Such a channel is proper 

for indoor MIMO channels with low mobility. Suppose 

that N estimates 
1

ˆ ˆ, ...,
N

H H  of the MIMO channel are 

obtained based on the training matrices 1 ,..., NX X , 

respectively. The results are combined in the following 

linear method:   

ME
1

ˆ ˆ
N

n n
n

a


 H H                                                     (10) 

Where the optimal weight coefficients 1 ,..., Na a  are 

obtained so that the TMSE (11) is minimized subject to 

1

1
N

n
n

a


 . 

2

1

ˆEME

N

n n
n F

J a


  
   

  

H H                                   (11) 

Then, the optimization problem is                    

1

2

,..., 1 1

ˆmin E . 1
N

N N

n n n
a a n nF

a S T a
 

  
   

  

H H     (12) 

In this section, the problem (12) will be solved 

considering the LS, the SSLS, and the MMSE channel 

estimators.  

 

3.1. Multiple LS (MLS) estimator 

For linear model of (5), the LS estimator which 

minimizes tr {(Y-HX) 
H

 (Y-HX)} is [29]: 
1ˆ ( )H YX XX

H H
LS

  

Under optimal training, it is shown that the error of the 

estimator is minimized as follows [26]  
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2 2

min

( ( 1))
( ) T R

LS

N L N
J

P

 
                             (14) 

Where P is a given constant value as the total power of 

training matrix X. Using (5), the LS estimator (13) can 

be rewritten as 
1ˆ ( )H H

LS
 H H V X XX                                       (15) 

Using (15) and the constraint 
1

1
N

n
n

a


 , the error of the 

MLS estimation will be written as 

 

2

1

2
1

1

2
1

1

1 1

*

1 1

22

1

ˆE

E ( ( ) )

E ( )

E{ {( ) ( )}}

{ E{ } }

{

MLS

N

n n
n F

N
H H

n n n n n
n F

N
H H

n n n n n
n F

N N
H H H

n n n n m m m m
n m

N N
H H

n m n n n m m m
n m

N

R n
n

J a

a

a

tr a a

tr a a

N tr a











 

 



  
   

  

  
   

  

  
  

  

  

  

 

H H

H H V X X X

V X X X

V X Ε V X Ε

Ε X V V X Ε

}nΕ

(16) 

Where 1( )H
n n n

Ε X X  and the latter one is obtained 

using the following equation: 

2 ;
E{ }

;

PR N LH
n m

N n m

n m

 
 

 


I
V V

0
                  (17) 

Then, for MLS estimation, the problem (12) can be 

written as 

1

2

,..., 1 1

min . 1
N

N N

n n n
a a n n

tr a S T a
 

 
  

 
Ε            (18) 

The LS estimator is unbiased. The constraint in (18) 

guarantees that the MLS estimation is also unbiased.  

To solve (18), the Lagrange multiplier method is used. 

The problem can be written as    

1

2

1 1

( ,..., , ) 1
N

N N

n n n
n n

L a a tr a a
 

   
       

   
Ε       (19) 

To find 1 ,..., Na a , the partial derivatives of (19) with 

respect to ( 1,2,..., )ia i N  are computed. Then, the 

results are set equal to zero. Finally, the optimal weight 

coefficients in the MLS estimation are obtained from 

[5]:     

1

1
; 1,...,

{ } 1/ { }
n N

n l
l

a n N

tr tr


 

Ε Ε

                  (20) 

It is straightforward to show that under optimal training 

for LS estimator 
2

1
( 1)

( ( 1))
{ } {( ) } {( ( 1) / ) }

T

H T
n n n T n N L

n

N L
tr tr tr N L P

P





   Ε X X I   (21)  

Where nP  is the total power of training matrix X n 

which is used during the training phase in the sub-block 

n. Suppose that n nP k P  is the transmitted power 

during the n-th ( 1,..., )n N  training period and 

1

N

tot n
n

P P N P


   is the total transmitted power 

during the N training periods. Then 
1

N

n
n

k N


  and 

using (21), the optimal weight coefficients (20) can be 

rewritten as 

2 2

1 1

1

(( ( 1)) / ) ( / ( ( 1)) )
n

n n

N N

T n l T l
l l

k P k
a

N
N L k P P N L P

 

  

  

    (22) 

Using (21) and (22), under optimal training, the TMSE 

(16) is minimized as follows  

(min)

2 2 2
2

2
1

( ( 1)) ( ( 1))N
T R T

MLS R n
n

N L N N L
J N k

P NP N






 
   (23) 

Comparing (23) and (14), it is seen that in the MLS 

estimation the error reduces by the number of sub-

blocks N which is used for channel estimation. It is 

notable that the error (23) is independent of nP , the 

transmitted power during the n-th training period. It 

means that for uniform training powers and non-

uniform training powers during N training periods, the 

error is the same.  

  

3.2. Multiple SSLS (MSSLS) estimator 

Consider (5), the SSLS channel estimator can be 

expressed in the following form [8]  

ˆ ˆ (1 )
SSLS LS    H H M                                      (24) 

{ }

{ } LS

tr

tr J
 



H

H

C

C
                                                 (25) 

Generally speaking, the scaling factor in (25) is 

between 0 and 1. When the channel fading is weak      

(κ  ∞ or AWGN) or the transmitted power is small, 

i.e., tr {CH} << JLS, the scaling factor γ 0. Also, when 

the channel fading is strong (κ  0 or Rayleigh) or the 

transmitted power is large, i.e., tr {CH} >> JLS, the 

scaling factor γ  1. Finally, in the Rician fading 

channel (0 <  κ  < ∞), we have 0 < γ < 1.    

According to [8], optimal training for LS and SSLS 

estimators is identical. Under optimal training, the 

TMSE minimizes as follows: 
2 2 2

min 2 2 2

( 1) { }
( )

{ } ( 1)

R T
SSLS

R T

N N L tr
J

P tr N N L








 

H

H

C

C
        (26) 
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Using (15), the SSLS channel estimator (24) can be 

rewritten as 
1ˆ ( ) (1 )

SSLS

H H      H H VX XX M                (27) 

Using (27), the TMSE of MSSLS estimator is expressed 

as 
2

1

2

1

2

1 1 1

2

1 1

*

ˆE

E ( (1 ) )

E (1 )

E (1 )( )

E{ {((1

MSSLS

N

n n
n F

N
H

n n n n n n n
n F

N N N
H

n n n n n n n n n
n n n F

N N
H

n n n n n n n
n n F

n

J a

a

a a a

a a

tr a





  

 

  
   

  

  
        

  

  
          

  

  
       

  

 

H H

H H V X Ε M

H V X Ε )M

H M V X Ε

* * *

1 1

1 1

)( ) )

((1 )( ) )}}

N N
H H

n n n n n n
n n

N N
H

n n n n n n n
n n

a

a a

 

 

    

      

H M Ε X V

H M V X Ε

                                                                              (28) 

Using (7), (17), 
1

1
N

n
n

a


 , and with some calculations 

the result is   

* *

1 1

2 22

1

(1 )(1 ) { }

{ }

MSSLS

N N

n n n n
n n

N

R n n n
n

J a a tr

N a tr

 



     

 

HC

E

             (29) 

The optimization problem is  

1

2 2* * 2

,..., 1 1 1 1

min (1 )(1 ) { } { } . 1
N

N N N N

n n n n R n n n n
a a n n n n

a a tr N a tr S T a
   

         HC E   (30) 

The SSLS estimator is biased. The constraint in (25) 

results in that the MSSLS estimation is also biased. 

Using the Lagrange multiplier method, the result is 

1

* *

1 1

2 22

1 1

( ,..., , ) (1 )(1 ) { }

{ } 1

N

N N

n n n n
n n

N N

R n n n n
n n

L a a a a tr

N a tr a

 

 

      

 
     

 

HC

E

 (31) 

By differentiating (31) with respect to 

( 1,2,..., )ia i N  and setting the results equal to zero 

the result is 

2* * 2 *

1

(1 ) { } { }
N

i n n R i i i
n

a tr N a tr


        HC E  (32) 

In general, equation (32) cannot be solved analytically. 

Nevertheless, in the uniform power allocation 

1 ... /N totP P P N P     where 1γ ... γ γN    

and 1 ... N  E E E , (32) can be rewritten as: 

2* 2 *(1 ) { } { }R itr N a tr       HC E         (33)  

Using 
1

1
N

n
n

a


 , the result for Lagrange multiplier 

will be 
2

* 2(1 ) { } { }Rtr N tr
N




     HC E                    (34) 

Substituting (34) back into (33), the result is  

1
; 1,...,na n N

N
                                               (35) 

Using (21), (25), and (35), it is shown that under 

optimal training the TMSE (29) is minimized as  

(min)

2
2 2 2

2 2 2

2
2 2 2

2 2 2

(1 )
{ }

{ } (1 )

(1 ) { }

{ } (1 )

MSSLS
R T

R T

R T

R T

N N L
J tr

P tr N N L

N N L P tr

N P tr N N L









 
  
   

 
  

   

H

H

H

H

C
C

C

C

     (36) 

When N =1, (36) reduces to the special case of (26) for 

single channel estimation with the SSLS estimator. It is 

seen that the second term in (36) decreases when the 

number of sub-blocks N increases. In the non-uniform 

power allocation, 

n nP k P ,
1

N

tot n
n

P P N P


  ,
1

N

n
n

k N


 , suppose 

that /n na k N  for        n = 1, 2, …, N. With some 

calculations, the TMSE (29) is minimized in this case 

as: 

(min)

2
2

2 2 2
1

2 3
2 2 2

2 2 2 2
1

{ }
{ } 1

{ } (1 )

{ }
(1 )

( { } (1 ) )

MSSLS

N
n

n n R T

N
n

R T
n n R T

tr k
J tr P

N k P tr N N L

tr k
P N N L

N k P tr N N L










 
   

   

 
   

  

H
H

H

H

H

C
C

C

C

C

   (37) 

When 1nk  , (37) reduces to (36).   

 

3.3. Multiple MMSE (MMMSE) estimator  

For linear model of (5), the MMSE channel estimator of 

H is given by [26] 

ˆ ( )MMSE   H M Y MX A                                       (38) 

Where 
2 1( )

P

H H
H R N L HN 

 A X C X I X C                (39) 

The performance of the MMSE channel estimator is 

measured by the error matrix ε = H – H   MMSE, whose 

pdf is Gaussian with zero mean and the following 

covariance matrix: 

1 1

2

1
E{ } ( )H H

RN

    ε ε HC R ε ε C XX          (40) 

Then, the MMSE estimation error is given by 
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2

1 1

2

ˆE E{ ( )}

1
{( ) }

H
MMSE MMSE

F

H

R

J tr

tr
N

 

 
   

 

 H

H H ε ε

C XX

          (41) 

To minimize (41) subject to the transmitted power 

constraint { }Htr PXX , the Lagrange multiplier 

method is used. The problem can be written as follows:  

1 1

2

1
( , ) {( ) } [ { } ]H H H

R

L tr tr P
N

 


    HXX C XX XX    (42) 

where η is the Lagrange multiplier. By differentiating 

(42) with respect to X and setting the result equal to 

zero, it is obtained that the optimal training matrix 

should satisfy the following equation: 
2 1

12
( 1)

{ }
T

H R H
N L R

T

P N tr C
N

N










  HXX I C    (43) 

Substituting (43) back into (41), the TMSE will be 

minimized as  
2

min 2 1

( 1)
( )

( / ) { }

T
MMSE

R

N L
J

P N tr 




 HC
                      (44) 

Using (5) and (38), the MMSE channel estimator can be 

rewritten as 

ˆ ( )MMSE    H M H M XA VA                             (45) 

Using (11) and (45), the TMSE of MMMSE channel 

estimator is expressed as 
2

1

2

1

2

1 1

*

1 1

*

1 1

ˆE

E ( ( ) )

E ( )( )

{( ) ( )

E{ } }

P

P P

MMMSE

N

n n
n F

N

n n n n n
n F

N N

N L n n n n n n
n n F

N N
H H

N L n n n N L m m m
n m

N N
H H
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Where 
2 1( )

P

H H
n n H n R N L n HN 
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Using (17), (47), and with some calculations, the 

TMSE (46) can be expressed as 
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The optimization problem is  

1 ,..., 1

min . 1
N

MMMSE

N

n
a a n

J S T a


                          (49) 

The MMSE estimator is biased. The constraint in (49) 

results in that the multiple MMSE estimation is also 

biased. The Lagrange multiplier method is used as  

1

1

( ,..., , ) 1
N MMMSE

N

n
n

L a a J a


 
    

 
                 (50) 

The partial derivatives of (50) are obtained with respect 

to ( 1,2,..., )ia i N , then, the result is set equal to 

zero as  

* *

1
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H H H H
i i i i i n n n i i
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                                                                             (51) 

Using the optimal training condition in MMSE channel 

estimator  
1 12 2
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T

H
i i R T N L RP N tr N N  
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  and with some calculations, (51) reduces to 
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In the uniform power allocation, 

1 ... /N totP P P N P     , using 
1

1
N

n
n

a


 , (52) 

reduces to 
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Using (53) and 
1

1
N

n
n

a


 , the Lagrange multiplier can 

be obtained as  
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Substituting (54) back into (53), it is shown that in the 

uniform power allocation 
na  is same as (35). Using 

(35) and under optimal training, the TMSE (48) is 

minimized in the uniform power allocation as    

(min)

2 1

2 1 2 1

{ }1 1
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N trL N
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                                                                             (55) 

When N =1, (55) reduces to the special case of (44) for 

single channel estimation with the MMSE estimator. 

According to (55), it is seen that the error decreases 

when the number of sub-blocks N increases. 

In the non-uniform power allocation, 

n nP k P ,
1

N

tot n
n

P P N P


   ,
1

N

n
n

k N


 , suppose 
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that /n na k N  for n = 1, 2, …, N. With some 

calculations, it is shown that the TMSE (48) is 

minimized as 

(min)
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When 1nk  , (56) reduces to (55).  

 

4. SIMULATION RESULTS 

In this section, the performance of the MLS, MSSLS, 

and MMMSE estimators is numerically examined. It is 

assumed that each sub-channel has the exponential PDP 

as  
1

1

(1 )
; 0,1,...,

1

l

l L

e e
b l L

e

 

 


 


                       (57) 

As a performance measure, it is considered that the 

channel TMSE is normalized by the average channel 

energy as 
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F
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E
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                                         (58) 

As optimal training signals, the ZCZ sequences of [26] 

are employed. Figure 2 shows normalized TMSE 

(NTMSE) of the LS channel estimator versus SNR in 

the case of SE   (N =1) and ME (N =2, 3, 4, 5, 10). In 

this figure, it is seen that increasing the number of the 

sub-blocks N results in a lower error of the estimation. 

It means that the performance of the LS estimator in the 

frequency selective MIMO channel in ME case is better 

than SE case.  

In Figure 3, NTMSE of the SSLS channel estimator is 

demonstrated in the case of SE and ME. According to 

this figure, the SSLS estimator has better performance 

in ME case than SE especially at high SNRs. On the 

other hand, at low SNRs, the NTMSEs of the estimator 

for various numbers of sub-blocks N are analogous.    

In Figure 4, NTMSE of the MMSE channel estimator is 

also shown in the case of SE and ME. The results are 

same as Figure 3 for SSLS estimator. Furthermore, the 

performance of MMSE estimator is better than SSLS 

especially for low SNRs and high numbers of N. This 

result is also confirmed by Figures 5-8. In these figures, 

the performance of the LS, SSLS and MMSE 

estimators is compared for various SNRs and the 

number of sub-blocks N. As depicted in these figures, 

for small numbers of N, the performance of the MMSE 

and SSLS estimators in the frequency selective Rician 

MIMO channel is better than LS particularly at low 

SNRs. However, for large numbers of N, the LS 

estimator has lower NTMSE than SSLS especially at 

medium SNRs.  

Therefore, in the Rician frequency selective MIMO 

channels with a long coherence time and hence large N, 

the LS estimator is generally an appropriate method but 

in channels with a short coherence time and hence 

small N, the SSLS and MMSE are mainly better than 

LS.  

The results in Figures. 9, 10 and 11 are obtained 

considering non-uniform power allocation during N 

sub-blocks that are used for channel estimation. In 

these figures, the SSLS and MMSE channel estimators 

are examined. The proposed non-uniform power 

allocations are linear and exponential schemes as 

follows: 

2
, 1, ...,

1
n n

n
P k P P n N

N
  


                      (59) 

1

( 1)
, 1, ...,

(1 )

n
n n N

N e
P k P e P n N

e e



 


  


              (60) 

It means that the optimal weight coefficients, 
na , have 

the linear and exponential distribution, respectively. In 

Figures. 9, 10 and 11, the results are compared with 

uniform power allocation. It is seen that the errors with 

linear power allocation and uniform power allocation 

are analogous. However, the exponential power 

allocation has lower error than the uniform power 

allocation with SSLS channel estimator. On the other 

hand, the exponential power allocation has higher error 

than the uniform power allocation with MMSE channel 

estimator particularly at low SNRs and large values of 

L in multi-path MIMO channel    

In practice, to obtain the best result in channel 

estimation, one of the LS, SSLS, or MMSE methods 

can be used considering the channel statistics, the 

number of antennas, SNR, and N (or channel coherent 

time) in (23), (37), and (56). In order to choose the best 

estimator among the LS, SSLS, and MMSE channel 

estimators, the NTMSEs of (23), (37), and (56) can be 

computed and compared at the receiver.   

 

5. CONCLUSIONS 

The advantages of ME have been probed in the Rician 

frequency selective fading MIMO channels using LS, 

SSLS, and MMSE estimators. In the both SE and ME 

cases, the channel estimation errors have been obtained 

under optimal training. In the case of ME, the optimal 

weight coefficients and TMSE were achieved for 

aforementioned estimators with uniform and non-

uniform power allocations.  

Analytical and numerical results showed that the 

performance of all estimators in the ME case is 

remarkably better than SE case. For small values of N, 

suitable for estimation of the channel with fast fading, 

the MMSE estimator is better than SSLS (LS). 
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However, for large values of N, proper for estimation 

of the channel with slow fading, the LS estimator is 

better than SSLS particularly at medium SNRs. It was 

also shown that the performance of the SSLS estimator 

in the un-equal power allocation is remarkably better 

than equal power allocation.  
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The list of symbols:  

 (٠)
H
                          The Hermitian of a matrix (vector) 

(٠)
–1

                        The inverse of a matrix (vector) 

(٠)
 T

                           The transpose of a matrix (vector) 

tr {٠}                        The trace of a matrix  

E {٠}                       Mathematical expectation 

Im                            The m×m identity matrix 
2

F
                         The Frobenius norm  

(٠)
*
                         The complex conjugate 

                           The Kronecker product 

vec (٠)                    Vectorizing  a matrix 
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Fig. 1. Frame structure for each Tx antenna in a MIMO channel 
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Fig. 2. NTMSE of the LS estimator in the case of single-estimation and multiple-estimation 

(N = 2, 3, 4, 5, 10, NT = NR = 2, L=1, NP =5) 
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Fig. 3. NTMSE of the SSLS estimator in the case of single-estimation and multiple-estimation 

(N = 2, 3, 4, 5, 10, NT = NR = 2, L=1, NP =5, κ = 5) 
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Fig. 4. NTMSE of the MMSE estimator in the case of single-estimation and multiple-estimation 

(N = 2, 3, 4, 5, 10, NT = NR = 2, L=1, NP =5, κ = 5) 
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Fig. 5. NTMSE of the LS, SSLS, and MMSE estimators in the case of multiple-estimation 

(N = 2, NT = NR = 2, L=4, NP =20, κ = 5) 
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Fig. 6. NTMSE of the LS, SSLS, and MMSE estimators in the case of multiple-estimation 

(N = 5, NT = NR = 2, L=4, NP =20, κ = 5) 
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Fig. 7. NTMSE of the LS, SSLS, and MMSE estimators in the case of multiple-estimation 

(N = 10, NT = NR = 2, L=4, NP =20, κ = 5) 
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Fig. 8. NTMSE of the LS, SSLS, and MMSE estimators in the case of multiple-estimation 

(N = 20, NT = NR = 2, L=4, NP =20, κ = 5) 



Majlesi Journal of Electrical Engineering                                 Vol. 9, No. 3, September 2015 

 

29 

 

-10 -5 0 5 10 15 20
10

-3

10
-2

10
-1

10
0

SNR (dB)

N
o
rm

a
liz

e
d
 T

M
S

E

 Uniform Power Allocation

Linear Power Allocation

Exponential Power Allocation

 
 

Fig. 9. NTMSE of the SSLS estimator in uniform power and non-uniform power allocation 

(N = 10, NT = NR = 2, L=1, NP =5, κ = 5) 
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Fig. 10. NTMSE of the SSLS estimator in uniform power and non-uniform power allocation 

(N = 10, NT = NR = 2, L=4, NP =20, κ = 5) 
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Fig. 11. NTMSE of the MMSE estimator in uniform power and non-uniform power allocation for L=1, 4 (N = 10, NT = 

NR = 2, κ = 5) 

 

 

 

 

 

 


