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ABSTRACT: 

In this paper we present a nonlinear optimal control method based on approximating the solution of Hamilton-Jacobi-

Bellman (HJB) equation. Value function is approximated as the output of Multilayer Perceptron Neural Network 

(MLPNN). Parameters of MLPNN are weights and biases of each layer that form structure of the proposed neural 

network. These parameters are unknown thus we apply an Adaptive Extended Kalman Filter to approximate unknown 

parameters. In so doing, the problem of solution of HJB equation is converted to estimation of MLPNN parameters. 

Also, convergence of the estimation error of MLPNN parameters is proven. Two examples have been brought to show 

the merits of the proposed approach and to compare the obtained results by applying the multilayer Perceptron and the 

Radial Basic Function Neural Network (RBFNN). 
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1.  INTRODUCTION 

Because optimization problems have a basic tool in all 

areas of applied mathematics, engineering etc.  

Optimization has been developing in all directions at an 

astonishing rate during the last few decades [5]-[12]-

[15]-[16]-[17]-[18]-[19]. Additionally, in engineering 

field, the optimal control design for linear time 

invariant (LTI) systems include the solution of 

algebraic Riccati equation (ARE) generally. For 

nonlinear systems, there is one special extension 

including state dependent Riccati equation technique 

that provides high performance control but for most 

nonlinear systems, the optimal control design requires 

the solution of Hamilton-Jacobi-Bellman (HJB) 

equation [1]-[2]. Furthermore, we know that some 

optimization problems have not analytical solution like 

HJB, thus we have to use approximate techniques to 

solve them. 

One method of approximation of HJB is based on 

power series. The basic idea is to approximate the value 

function as truncated power series and to find the 

corresponding terms of the series by fitting it in HJB 

equation [3]-[14]. Another approximate method has 

been developed to start with a stabilizing controller for 

a given system and then converges point-wise to 

optimal control. The basis of this technique, a 

successive Galerkin approximation has been proposed 

for generalized Hamilton-Jacobi-Bellman (GHJB) 

equation and it has been shown that the convergence of 

the successive approximation for optimal control. Also 

in [1]-[2] several approximation methods are proposed. 

The difficulty with successive Galerkin and other 

similar methods is the choice of basis function. It is 

important for the convergence of the solution to 

optimal control that the difficulty might be resolved by 

applying neural network as basis function [4]. 

Furthermore, neural network can be used for estimating 

these problems, in [6], nonlinear H  control using 

radial basic function (RBF) has been reported, the 

proposed method is on the basis of estimation of value 

function using nonlinear RBF neural network 

(RBFNN) by gradient method and offline training. 

In [7], authors presented a nonlinear optimal control 

technique based on approximating the solution of HJB 

equation by RBFNN and adaptive extended Kalman 

filter. In [8], authors analyzed the neural networks 

approach applied to the estimation of chlorophyll 

concentration in coastal waters and discussed the use of 
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two types of neural networks including the radial basic 

function neural network and multilayer Perceptron. 

Thus, studying [8] was a motive to consider estimation 

of HJB for value function by MLPNN and compare the 

obtained result with RBFNN. Then in the present 

paper, HJB equation is solved using Multi-Layer 

Perceptron (MLP) for optimal value function. The 

performance of MLP depends on its weights and biases 

in its layers.  However, the weights and biases in 

hidden layer and output layer are unknown and appear 

nonlinearly, an adaptive extended Kalman filter method 

is developed to train the neural network MLP, online 

with good accuracy. Additionally, convergence of the 

estimation error of MLPNN parameters has been 

proven by using the proposed Lyapunov's functions in 

a Lemma. 

The paper is organized as follows: Section 2 states the 

problem. MLP neural and approximation is described 

in section 3. Section 4 presents MPL neural network 

training by adaptive extended Kalman Filter. In section 

5, two examples are brought and in these, our proposed 

method is compared with the obtained results of [7]. 

Finally, our conclusion is given in section 6. 

 

2.  STATEMENT OF PROBLEM  

Consider nonlinear time invariant system with  
.

n m n n

x f ( x ) g( x )u                  

where  x R ,u R ,f :  R R

 

  

n n mg : R R R                                                      (1) 

0 0x   is assumed an equilibrium point and 0 0f(x )  . 

This assumption does not decrease the generality of the 

problem. Also consider the cost function   

0

T TV ( x ) ( x Qx u Ru )dt


                                      (2) 

Where n n m mQ R ,R R   are two positive definite 

matrices. Admissible control is *u  which minimizes 

the performance of index (2).  

If optimal control exists, it can be obtained as follows 

[2]: 

11

2

T* T *u R g( x ) V                                             (3) 

Where 
x


 


 is gradient operator, *V is the value 

function that satisfies HJB equation with boundary 

conditions 0 0*V ( )  . 

11
0

4

T T T* * T * T *( V ) V f x Qx V gR g V            (4) 

We can rewrite generalized Hamilton-Jacobi-Bellman 

(GHJB) equation as follows [1]-[2]: 

0
T T* * * * T * *( V ,u ) V ( f ( x ) g( x )u ) x Qx u Ru          (5) 

It is clear that the above mentioned equation is linear in 

terms of TV . 

Also, we know that the solution of GHJB is analytically 

impossible thus we have to apply approximate 

technique using equations (3), (5) and   the present 

method to solve GHJB. 

 

3.  MLP NEURAL NETWORK 

APPROXIMATION OF THE VALUE FUNCTION 

GHJB equation can be approximated by MLP neural 

network (MLPNN). In this paper, the neural network 

has one hidden nonlinear layer and one linear output 

layer. More hidden layers can be applied but one 

hidden layer is sufficient in this problem. For more 

details about MLPNN refer to [10]. Fig. 1 shows the 

schematic diagram of MLPNN. 

  

 
Fig. 1. Schematic diagram of MLPNN [10] 

 

l nl nl la w F(w p b ) b                                              (6) 

Where l nlw ,w  are corresponding weight vectors and 

l nlb ,b  are biases vector in linear and nonlinear layer. 

p  and a  are respectively input and output of the 

proposed network. Consider active function in 

nonlinear layer as follows:   

1

1

x

x

e
F( x )

e









                                                       (7) 

The active function can be different from our selection. 

In Fig.2, the proposed active function is shown.  

 
Fig. 2. active function of hidden layer. 

 

Output is a linear layer  

l la w F(x) b                                                    (8) 

We approximate the unknown V(x)  using the output of 

MLPNN. Also we know value function must be 

positive definite and for this purpose, consider V(x)  as 

follows: 



Majlesi Journal of Electrical Engineering                                                                     Vol. 9, No. 3, September 2015 

 

33 

 

0 0 0 0

1 1

2 2
V(x)= ( x x ) P( x x ) ( a a )( a a )



        (9) 

where l nl nl la w F(w p b ) b   . P


 is positive definite 

solution of Riccati equation corresponding to the 

linearized of (1), 0a  is related to equilibrium point. 

Clearly a  is a function of l nl l nlw ,w ,b ,b . 

0
T
l l nl l nla a w (w ,w ,b ,b )                                      (10) 

Considering 

  l nl l nlw w b b                                             (11) 

By subsisting (10) in (9)  

1 1

2 2

T T T
l lV(x) x P x ( )w w ( )   



                        (12) 

If V(x) is (12), it can be identified that  0V(x)   for all 

0 0 0nx R ,x and V ( x ) .     

If parameters vector    can be found so that the 

proposed approximation of the value function in (2) 

satisfies the GHJB equation. 

The gradient of value function (12) is    

T T
l lV x P w w 



                                              (13) 

Where 
V

V
x


 


 and 

x





 


. Substituting  V  in 

the GHJB we will get: 

T T T
l l

T T

v ( V,u ) ( x P ( )  w w ( ))  (f(x) g(x) u)   

x Qx u Ru

   


    

 

 (14) 

It can be rewritten  

b( t , ) v                                                            (15) 

Where 

T T Tx Qx u Ru x P( f ( x ) g( x )u )


                   (16) 

  is a known measurable function of x  and u , and 

T T
l lb( t , ) w w ( )( f ( x ) g( x )u )                      (17) 

b  is a known function of the unknown MLPNN 

parameter  . v= ( V,u)   is an equation error 

according to approximation of value function. We 

know that the Kalman filter estimates these parameters. 

The next section explains this estimation. 

 

4.  MLPNN TRAINING 

Estimating the MLPNN parameters equation (15) can 

be appeared as a state estimation problem for 

associated parameters of the given system where the 

MLPNN parameters are unknown state to estimate. 

Furthermore, the basis of Kalman filter is a recursive 

mathematical equation. KF estimates the state process 

by minimizing the mean of square error. Notice that 

equation (15) is a nonlinear equation. Thus, we can use 

an extended Kalman filter [EKF]. 
.

                                                                      (18) 

b( t , ) v                                                            (19) 

Where    and     are corresponding measurable output 

and unknown states of the given system,    and v  are 

white noise disturbances with covariance matrices fQ  

and fR  corresponding the states and output [11]-[13]. 

.

f
ˆ ˆK ( b( t , )                                                      (20) 

1T
f fK WB R                                                            (21) 

b
B=    






                                                                 (22) 

12
.

T
f fW W Q WBR B W                                       (23) 

where 0 0 0f f,Q ,R    . To increase the region of 

convergence of EKF, an adaptive extended Kalman 

filter algorithm is used. 
ˆ                                                                        (24) 

1T
f f

ˆK WC R                                                            (25) 

Furthermore, the corresponding adaptive output matrix 

Ĉ  is adjusted as the following: 
Tˆ ˆC [ sign( )]                                                 (26) 

0 1
0

t

=                                                             (27) 

0 1

1

0
0 0 0

2
.

T
f f

b( )ˆ ˆWhere    >0,C ( ) B ( )   and  ,
ˆ

ˆ ˆW W WC R CW Q   

  


 


  



  

    (28) 

Where TW(0)=W (0)>0 . 

The convergence of the MLPNN parameters is 

illustrated in the following lemma: 

Lemma1. We consider the dynamics of the MPLNN 

parameters (19), if unknown parameters are estimated 

according to (24)-(28), then the output and the 

parameter errors ,  converge to zero.  

Proof. Considering  
ˆ                                                                     (29) 

Substituting (29) in AEKF's formula, we get 
.

fK                                                               (30) 

Applying power series expansion, b=b(t, )  is exhibited 

as 

0b=b C ( t , )                                                          (31) 

Where b=b(t,0)  and C( t , )  is a nonlinear vector. 

Also, the estimate of b=b(t, )  can be as follows: 

0
ˆ ˆ ˆb=b C ( t , )                                                          (32) 

Where ˆ ˆb=b(t, ) , we define ˆ ˆ ˆb=b-b=C -C  . Then we 

have: 

1

. . .. . . .

..
T

f

ˆ ˆ ˆ ˆ ˆb =b -b =C +C C C  

ˆ ˆ ˆ ˆC C CWC R C

   

  

 

    

                                 (33) 
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By taking derivative from (19) and using (26)-(27) and 

substituting (33). We get: 

1
.. . .

T
f

ˆ ˆ ˆ ˆC C CWC R C v                                    (34) 

1
. . .

T T
f

ˆ ˆ ˆC C CWC R sign( ) v                    (35) 

Now, by selecting Lyapunov function 2V   , its 

derivative must be 2
.

V  ,   0      . 

Then we will seek the above condition. Thus we have: 

2
.

TV                                                                  (36) 

Equation (35) is substituted in (36) and two variables 

1  and 2  are introduced as: 

1

. .

C C v                                                            (37) 

 1
2

T
f

ˆ ˆmax CWC R                                                (38) 

We have   

1
12

. .
T T T

f
ˆ ˆ ˆ ˆV ( CWC R sign( ) v    

         
      (39) 

Thus 1
2

max

2  


  


                                           (40) 

Since C +v  is bounded and ˆ ˆb v C C v        

converges to zero, because  ˆ ˆC  has to be bounded and 

has to converge to C v   then it is obvious   

converges to zero. 

Regarding convergence of  , consider Lyapunov 

function as follows: 

 T Tˆ ˆV C C                                                          (41) 

We will search 0   such that 

2
.

V                                                                 (42) 

by replacing (26) in (41), we get: 

2 2

2 2

..
T T T

T T T
f

ˆ ˆV C sign( )  

ˆ ˆ= ( K ) C sign( )

     

    

      

        

            (43) 

By sorting 
.

V , we get: 

2 2 2 2
.

T T T
f

ˆ ˆV ( K C ) sign( )                   (44) 

According to the previous proof, the first term 

converges to zero and by choosing 

 
2 2

max max

 
 


 

                                                   (45) 

We are sure that   converges to zero. 

 

5.  SIMULATION  

SISO nonlinear systems have been brought in this 

section. We apply the proposed algorithm on the first 

order nonlinear and the third order nonlinear system. 

Also, we will apply the proposed method and compare 

the obtained results of cost function with RBF neural 

networks. 

Example 1. Consider the first order nonlinear time 

invariant regulation problem  

3
.

x x u                                                                (46) 

Our aim is to design optimal control for (46) to 

minimize the following cost function: 

2 4 2

0

2J (x x u ) dt



                                               (47) 

The optimal control is given by [3],       
* 32xu x                                                            (48) 

By using the proposed method and 3 neurons with the 

introduced active function, we obtain the results that 

are shown in the following figures. Fig.3 shows state 

system, Fig.4 shows real cost function and estimated 

cost function by MLPNN and estimated cost function 

by RBFNN. The blue curve is a real cost function and 

the black and red curve are estimated cost functions by 

MLPNN and RBFNN respectively. By comparison of 

the estimated cost function by MLPNN and RBFNN, 

we observe that these two mentioned neural networks 

estimate the cost function of first order system well. 
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Fig.3. System state 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

c
o
s
t 

fu
n

c
ti

o
n

 

 

real cost function

estimated MLPNN

estimated RBFNN

 
Fig.4. Performance cost functions 
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Example 2. Consider the problem of regulating the 

voltage of power generator that is third order system 

with equation below [9]  

0

2 2

1

1

.

.

m c

.

c c'
do

' 's s
c f do d d '

do ds ds

'
ds

w ( t )   

wD
w ( t ) w ( t ) ( P ( t ) P ( t ))

H H

P ( t ) P ( t )
T

V V
{ sin( ( t ))[k u T ( x x ) w ( t ) sin( ( t ))]

T x x

T w ( t ) cot( ( t ))



 





   




  



   (49) 

Where ( t )  is the power angle,  w ( t )   is relative 

speed, 1ck   is gain of excitation amplifier, fu ( t )  is 

input, D=5.0   and   H=4  are constant of per unit 

damping and the per unit inertia respectively, 

0 100 0 9mw ,P .   are corresponding synchronous 

machine speed and mechanical input power.  6 9doT .   

is the direct axis transient short circuit time,  

0 83 0 38sV . i .   is bus voltage, 1 863 0 257'
d dx . ,  x .   

are corresponding direct axis reactance and the direct 

axis transient reactance of generator, 
'

' ds
do do

ds

x
T T

x
 . 

mP ( t ) is assumed constant and c mP ( t ) P . We 

defined following constants: 

0
1 2 3

2

4 5

1

2 2 do

'
s ds ds c s

' '
ds ds do ds

wD
a ,a ,a   

H H T

V ( x x ) k V
a   and   a

x x T x


   


 

                      (50) 

 So equations convert to:  

1 2

3

2
4 4

.

.

m c

.

c c c

f

w ( t )  

w ( t ) aw ( t ) a ( P ( t ) P ( t ))

P ( t ) a P ( t ) w ( t ) P ( t ) cot( ( t ))

a w ( t ) sin ( ( t )) a sin ( t )u





 



  

  



                 (51) 

By applying change of variables 

0

3

5

c m

m
f

x

z=P P

u a P
u

a sin x

 



 








                                                      (52) 

The result is: 

1 2

2
3 0 4

.

.

.

m

x y  

y a y a z

z a z y ( z P ) cot( x ) a y sin ( x ) u 



 

      

     (53) 

The objective is to obtain u  minimizing the following 

cost function. 

2 2 2 2

0
J ( x y z u )dt



                                        (54) 

Using feedback linearization from [9] 

0

2
4 0 1 2 3

fl mu y ( z P ) cot( x )  

a y sin ( x ) k x k y k z





   

                              (55) 

Where k  is Kalman gain associated with linear system  

1 2

3

0 1 0 0

0 0

0 0 1

A a a    , B=

a

   
   

    
     

 

Q and R must be positive definite matrices 

Q I     , R=1   

 Therefore the initial control is [9] 

0

2
4 0 1 0725 9 6993

mu y ( z P ) cot( x )

a y sin ( x ) z . y . z  





   

                    (56) 

Five neurons are used in hidden layer for this 

estimation. Fig.5 shows system states and Fig.6 

illustrates the real cost function and two estimated cost 

functions by MLPNN and RBFNN. To estimate the 

cost function by RBFNN, we use 11 neurons in the 

hidden RBF layer. It is obvious that MLPNN has had a 

better performance than RBFF for estimation of cost 

function. Additionally, in this estimation, less neurons 

are used in MLPNN compared to RBFNN, and this 

presents the preference of MLPNN related to RBFNN 

to estimate the cost function.  

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

 

 

x

y

z

 
Fig. 5. System states 
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Fig. 6. Performance cost functions

 

     
 

6.   CONCLUSION 

We have shown an approach to obtain the optimal 

control law for nonlinear systems by applying neural 

networks. The proposed method solves the generalized 

Hamilton-Jacobi-Bellman (GHJB) equation by 

estimating value function using multilayer Perceptron 

neural network (MLPNN). The proposed neural 

network is trained by an Adaptive Extended Kalman 

Filter (AEKF) which estimates the MLPNN parameters 

online. We proved estimation parameter errors 

converge to zero by the Lemma. The method has been 

applied to the first order and the third order nonlinear 

system. Also our results have been compared with 

RBFNN neural network and the exact optimal control. 

As shown that the applied neurons number in MLPNN 

were less than the RBFNN. It causes decrease of 

calculations. But by increasing of neurons number in 

RBFNN, we could reach the close estimation of 

MLPNN so we come to this conclusion that MLPNN 

gives a better estimation to us. 
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